
https://www.revistas.ucn.cl
https://doi.org/10.22199/issn.0717-6279
https://doi.org/10.22199/issn.0717-6279-4170
https://portal.issn.org/resource/ISSN/0717-6279#
https://orcid.org/0000-0002-9750-4357
https://creativecommons.org/licenses/by/4.0/


660 Redha Sakri and Moncef Abbas

1. Introduction

Let G = (V,E) be a finite, simple and connected graph. The distance
d(u, v) between vertices u and v in G is the length of the shortest path
connecting u and v in G and for a subset S of V (G), the distance between
u and S is given by d(u, S) = min{d(u, x)|x ∈ S}. The eccentricity �(v)
of a vertex v is the greatest distance between v and any other vertex. The
diameter diam(G) of the graph is the maximum eccentricity of any vertex
in the graph.

A k-coloring c of a graphG = (V,E) is a k-partition Π = (V1, V2, . . . , Vk)
of V (G) into independent sets, called colors. The color code of vertex
v of G, with respect to Π is defined to be the ordered k-tuple cΠ(v) =
(d(v, V1), d(v, V2), . . . , d(v, Vk)). A k-coloring c of G is a locating coloring
(or a locating k-coloring) of G if any two distinct vertices of G have distinct
color codes with respect to c. The locating-chromatic number of G, denoted
by χL(G), is the smallest k such that G admits a locating k-coloring.

The concept of locating coloring was first introduced by Erwin David
et al. [1]. They established some bounds for the locating chromatic number
of connected graph classes: paths, cycles, complete multipartite graphs
and double stars. This concept has been also called resolving coloring and
independent resolving partition [2].

For a certain locating-chromatic number, Chartrand et al. [3] charac-
terized all graphs of order n with locating-chromatic number n−1. Asmiati
and Baskoro [4, 5] determined all graphs with locating-chromatic number
3. In [6], Asmiati et al. derived the locating-chromatic number for some
class of trees, especially a class of trees obtained as an amalgamation of n
stars. Behtoei and Omoomi [7] gave the locating chromatic number for the
cartesian product of any two graphs and gave the following definition and
observation :

Definition 1. [7] Let G be a connected graph. A vertex is called colorful
if all of the colors appear in its closed neighborhood.

Observation 1. [7] In a locating coloring of G, there are no two colorful
vertices that are assigned to the same color. Therefore, if there is a locating
k-coloring of G, then there are at most k colorful vertices.

The following theorem was proved in [1].

Theorem 2. [1] Let G be a connected graph of order n ≥ 3. Then χL(G) =
n if and only if G is a complete multipartite graph.
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The following observation will be useful later.

Observation 3. To show that a given coloring c is a locating coloring, it
suffices to show that cΠ(u) 6= cΠ(v) for vertices u, v with c(u) = c(v).

The Möbius ladder was originally introduced by Richard Guy and Frank
Harary in 1967 [8]. The Möbius ladder on n vertices Mn is constructed by
connecting vertices vi and vj in the cycle Cn if d(vi, vj) = diam(Cn) (see
Figure 1b). Some authors considred the case when n is even [9, 10]. The
Möbius ladder graph Mn for even positive integer n is a graph can be
obtained from the ladder Pn

2
×P2 by joining the opposite endpoints of the

two copies of Pn
2
(see Figure 1c). It can be also obtained by introducing

a twist in a prism graph of order n. From Figure 1a, it is easy to see why
this family is called the Möbius-ladders. Three different views of Möbius-
laddersM20 are shown on Figure 1. We call P1 = v1v2 . . . vn

2
the inner path

and P2 = vn+2
2
vn+4

2
. . . vn the outer path of the Möbius ladder graphs Mn.

Some parameters of Möbius ladders have been studied: strong met-
ric dimension [11], H-antimagic covering [12], local metric dimension [13],
metric dimension [14, 15], distance labelings [16] and skew chromatic in-
dex [17]. In the next section, we study the locating chromatic number of
Möbius-ladders Mn for n even and we prove that χL(Mn) = 4 if n 6= 6 and
n even.
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2. Main result

We start by proving that the graph Mn does not has a locating coloring
with three colors and there is no 4-coloring or 5-coloring of M6.

Lemma 1. χL(M6) = 6.

Proof. It is easy to see that M6 is isomorphic to K3,3, the complete
bipartite graph on 2 sets of 3 vertices each. Thus, again by theorem 2, we
obtain that the locating chromatic number of M6 is 6. 2

Theorem 2. If n ≥ 6 and n even, then χL(Mn) ≥ 4.

Proof. We will prove that χ
L(Mn) ≥ 4, by showing that there is no

locating 3-coloring of Mn. Suppose that Mn has locating 3-coloring, there
exists an induced cycle of order 4 with 3 colors. Hence, there are two
colorful vertices on this cycle with the same color, which is a contradiction
with Observation 1. Therefore χL (Mn) ≥ 4. 2

Lemma 3. Let Mn be the Möbius ladder graph, vi be a vertex of Mn,
V3 = {v1, vn

2
} and V4 = {vn, vn+2

2
}. If n ≡ 0 mod 4 and n ≥ 8 then:

d(vi, V4) =
(vi, V3) + 1 if i ∈ [1, n2 ],

d(vi, V3)− 1 if i ∈ [n+22 , n],

Proof. We have d(vi, V3) = min(d(vi, v1), d(vi, vn
2
)). We distinguish two

cases, depending on whether d(vi, V3) = d(vi, v1) or d(vi, V3) = d(vi, vn
2
).

Case 1. i ∈ [1, n4 ]
S
[n+22 , 3n4 ].

In this case, we have d(vi, V3) = d(vi, v1) and d(vi, V4) = d(vi, vn+2
2
).
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If i ∈ [1, n4 ] then d(vi, V4) = d(vi, vn+2
2
) = d(vi, v1)+d(v1, vn+2

2
) = d(vi, V3)+

1.
If i ∈ [n+22 , 3n4 ] then d(vi, V3) = d(vi, v1) = d(vi, vn+2

2
) + d(vn+2

2
, v1)) =

d(vi, V4) + 1.

Case 2. i ∈ [n+44 , n2 ]
S
[3n+44 , n].

In this case, we have d(vi, V3) = d(vi, vn
2
) and d(vi, V4) = d(vi, vn).

If i ∈ [n+44 , n2 ] then d(vi, V4) = d(vi, vn) = d(vi, vn
2
)+d(vn

2
, vn) = d(vi, V3)+

1.
If i ∈ [3n+44 , n] then d(vi, V3) = d(vi, vn

2
) = d(vi, vn)+d(vn, vn

2
) = d(vi, V4)+

1.
Combining the two previous cases we get the following.
If i ∈ [1, n4 ]

S
[n+44 , n2 ] = [1,

n
2 ], then d(vi, V4) = d(vi, V3) + 1.

If i ∈ [n+22 , 3n4 ]
S
[3n+44 , n] = [n+22 , n], then d(vi, V3) = d(vi, V4) + 1, so we

have d(vi, V4) = d(vi, V3)− 1.

2

Lemma 4. Let Mn be the Möbius ladder graph with n ≥ 10, vi a vertex
of Mn, V3 = {v2, vn

2
} and V4 = {vn, vn+4

2
}. If n ≡ 2 mod 4 and n ≥ 10

then:

d(vi, V4) =
(vi, V3) + 1, if ı ∈ [2, n2 ],

d(vi, V3)− 1, if ı ∈ [n+42 , n],
d(vi, V3), if ı ∈ {1, n+22 },

Proof. We have d(vi, V3) = min(d(vi, v2), d(vi, vn
2
)). We distinguish

three cases,

Case 3. i ∈ [2, n+24 ]
S
[n+42 , 3n+24 ].

In this case, we have d(vi, V3) = d(vi, v2) and d(vi, V4) = d(vi, vn+4
2
).

If i ∈ [2, n+24 ], then d(vi, V4) = d(vi, vn+4
2
) = d(vi, v2) + d(v2, vn+4

2
) =

d(vi, V3) + 1.
If i ∈ [n+42 , 3n+24 ], then d(vi, V3) = d(vi, v2) = d(vi, vn+2

2
) + d(vn+2

2
, v1)) =

d(vi, V4) + 1.

Case 4. i ∈ [n+64 , n2 ]
S
[3n+64 , n].

In this case, we have d(vi, V3) = d(vi, vn
2
) and d(vi, V4) = d(vi, vn).
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If i ∈ [n+64 , n2 ] then d(vi, V4) = d(vi, vn) = d(vi, vn
2
)+d(vn

2
, vn) = d(vi, V3)+

1.
If i ∈ [3n+64 , n] then d(vi, V3) = d(vi, vn

2
) = d(vi, vn)+d(vn, vn

2
) = d(vi, V4)+

1.
Combining the two previous cases we get the following:
If i ∈ [1, n4 ]

S
[n+44 , n2 ] = [1,

n
2 ] then d(vi, V4) = d(vi, V3) + 1.

If i ∈ [n+22 , 3n4 ]
S
[3n+44 , n] = [n+22 , n] then d(vi, V3) = d(vi, V4) + 1, so we

have d(vi, V4) = d(vi, V3)− 1.

Case 5. i ∈ {1, n+22 }.
We have:
d(v1, V3) = d(v1, v2) = 1 and d(v1, V4) = d(v1, vn) = 1, so d(v1, V3) =
d(v1, V4).
d(vn+2

2
, V3) = d(vn+2

2
, vn
2
) = 1 and d(vn+2

2
, V4) = d(vn+2

2
, vn+4

2
) = 1, so

d(vn+2
2
, V3) = d(vn+2

2
, V4).

So, for i ∈ {1, n+22 } we have d(vi, V3) = d(vi, V4).

2 The following two lemmas will be used to prove our main theorem.

Lemma 5. If n ≥ 8 and n ≡ 0 mod 4 then χL (Mn) = 4.

Proof. We define 4-coloring c of Mn as follows (see figure 3a).

c(vi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , (i odd and i ∈]1, n2 [) or (i even and i ∈]n+22 , n[),
2 , (i even and i ∈]1, n2 [) or (i odd and i ∈]n+22 , n[),
3 , i = 1 or i = n

2 ,
4 , i = n+2

2 or i = n.

It suffices to show that the proper coloring c is a locating coloring ofMn.
Let be vi, vj two distinct vertices at same distance from V3. Without loss
of generality, we can assume that i < j. We consider three cases depending
on the distance of each vertex of Mn from the color class V3.

Case 6. i ∈]1, n2 [ and j ∈]n+22 , n[.
In this case, the vertex vi is in inner path P1 and the vertex vj is in outer
path P2. By Lemma 5, we have d(vi, V4) = d(vi, V3) + 1 and d(vj , V4) =
d(vj , V3)− 1. Using the fact that d(vi, V3) = d(vj , V3), we have d(vi, V4) 6=
d(vj , V4), so cπ(vi) 6= cπ(vj).
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Case 7. i, j ∈]1, n2 [.
In this case, the veritces vi, vj are in inner path P1. We have j =

n−2i+2
2 ;

we can easily verify that: d(vi, V3) = d(vn−2i+2
2

, V3) = i− 1 and by Lemma
5, d(vi, V4) = d(vn−2i+2

2
, V4) = i. Note that i and n−2i+2

2 have different

parity. The vertices vi, vn−2i+2
2

must be in different color classes under c.

so, we have cπ(vi) 6= cπ(vn−2i+2
2
).

Case 8. i, j ∈]n+22 , n[.
In this case, the veritces vi, vj are in outer path P2. We have j =

3n−2i+2
2 .

We can easily verify that: d(vi, V3) = d(v 3n−2i+2
2

, V3) = i− n
2 and by Lemma

5, d(vi, V4) = d(v 3n−2i+2
2

, V4) = i − n
2 − 1. Note that i and

3n−2i+2
2 have

different parity, the vertices vi, v 3n−2i+2
2

must be in different color classes

under c, we have cπ(vi) 6= cπ(v 3n−2i+2
2

).

Case 9. i, j ∈ {1, n2 ,
n+2
2 , n}.

The vertex v1 is adjacent to vertex with color 2 and the vertex vn
2
is not

adjacent to any vertex with color 2 thus d(vi, V2) = 1 and d(vn
2
, V2) 6= 1.

So we have cπ(v1) 6= cπ(vn
2
).

The vertex vn is adjacent to vertex with color 2 and vn+2
2
is not adjacent

to any vertex with color 2, thus d(vn+2
2
, V2) = 1 and d(vn, V2) 6= 1, so we

have cπ(vn) 6= cπ(vn+2
2
).

The vertices v1, vn are adjacent, they must have different color,so we have
cπ(v1) 6= cπ(vn).
It’s easy to see that cπ(v1) 6= cπ(vn) 6= (vn

2
) 6= cπ(vn+2

2
).

From all previous cases, we can see that all vertices in Mn have different
color codes, so χL(Mn) ≤ 4. Using Theorem 2, we have χL(Mn) = 4 when
n ≡ 0 mod 4. So the lemma is proved. 2

Lemma 6. If n ≥ 8 and n ≡ 2 mod 4 then χL (Mn) = 4.

Proof. We define 4-coloring c of Mn as follows (see figure 3a).

c(vi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , i odd and i /∈ {n2 ,

n+4
2 },

2 , i even and i /∈ {2, n},
3 , i ∈ {2, n2},
4 , i ∈ {n+42 , n}.

It suffices to show that the proper coloring c is a locating coloring of
Mn. We analyse two cases depending on the distance of each vertex of Mn
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from the color class V3. Let vi, vj be two distinct vertices at same distance
from V3, without loss of generality we can assume that i < j.

Case 10. i ∈]2, n2 [ and j ∈]n+42 , n[.
In this case, the vertex vi is in inner path P1 and the vertex vj is in outer
path P2. By lemma 6 we have d(vi, V4) = d(vi, V3) + 1 and d(vj , V4) =
d(vj , V3)− 1. Using the fact that d(vi, V3) = d(vj , V3), we have d(vi, V4) 6=
d(vj , V4), thus cπ(vi) 6= cπ(vj).

Case 11. i, j ∈]2, n2 [
In this case, the vertices vi, vj are in inner path P1, and we have j =

n−2i+4
2 .

We can verify that d(vi, V3) = d(vn−2i+2
2

, V3) = i− 2. By lemma 4, we have
d(vi, V4) = d(vn−2i+4

2
, V4) = i − 1. Note that i and n−2i+4

2 have different

parity, the vertices vi, vn−2i+4
2

must be in different color classes under c. So

we have cπ(vi) 6= cπ(vn−2i+4
2

).

Case 12. i, j ∈]n+42 , n[.
In this case, the veritces vi, vj are in outer path P2, and we have j =
3n−2i+4

2 . We can easily verify that d(vi, V3) = d(v 3n−2i+4
2

, V3) =
2i−n−2

2 By

lemma 6 d(vi, V4) = d(v 3n−2i+4
2

, V4) =
2i−n−4

2 . Note that i and 3n−2i+4
2 have

different parity, the vertices vi, v 3n−2i+4
2

must be in different color classes

under c. So we have cπ(vi) 6= cπ(v 3n−2i+4
2

).

Case 13. i, j ∈ {2, n2 ,
n+4
2 , n}.

The vertex v2 is adjacent to vertex with color 1 and the vertex vn
2
is not

adjacent to any vertex with color 1, thus d(v1, V1) = 1 and d(vn
2
, V1) 6= 1.

So we have cπ(v1) 6= cπ(vn
2
).

The vertex vn is adjacent to vertex with color 1 and vn+4
2
is not adjacent

to any vertex with color 1, thus d(vn+4
2
, V1) 6= 1 and d(vn, V1) = 1. So we

have cπ(vn) 6= cπ(vn+4
2
).

The vertices v2, vn+4
2
are adjacent; they must have different color, so we

have cπ(v2) 6= cπ(vn+4
2
).

It’s easy to deduce that cπ(v2) 6= cπ(vn) 6= (vn
2
) 6= cπ(vn+4

2
).

Case 14. i, j ∈ {1, n+22 }.
The vertices v1, vn+2

2
are adjacent, they must have different color, cπ(v1) 6=

cπ(vn+2
2
).
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From all cases, we can see that all vertices inMn have different color codes,
so χL(Mn) ≤ 4. By using Theorem 2, we have χL(Mn) = 4 when n ≡
2 mod 4. So the lemma is proved. 2

Combining Lemma 1, Lemma 5 and Lemma 6, we get the following
theorem.

Theorem 7. If n ≥ 6 and n is even then

χL(Mn) =

(
4 n 6= 6
6 n = 6

Proof. For n ≥ 8, we consider two cases depending on the parity of n
2 .

If n
2 is even then n ≡ 0 mod 4. By lemma 5, we have χL(Mn) = 4.

If n
2 is odd then n ≡ 2 mod 4 and, by lemma 6, we have χL(Mn) = 4.

Then, again by lemma 1, we have χL(M6) = 6. So, the theorem is proved. 2
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Conclusion

We considered the Möbius ladders graphsMn and we proved that the locat-
ing chromatic number ofMn with n even is 4 if n = 6 and 6 if n = 6. In the
future, we will study the Möbius ladders graphsMn for n odd and consider
more families of graph in the context of locating chromatic number.
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