ISSN 0717-6279 (On line) # On locating chromatic number of Möbius ladder graphs Redha Sakri^{1*} orcid.org/0000-0002-9750-4357 Moncef Abbas² ¹University Djillali Bounaama Khemis Miliana, Fcs. of Sciences and Technology, Khemis Miliana, Algeria <mark>■ rsakri@usthb.dz</mark> ²University of Science and Technology Houari Boumediene. Fcs. of Mathematics, Algiers, Algeria moncef_abbas@yahoo.com Received: 10 May 2020 | Accepted: 24 November 2020 #### **Abstract:** In this paper, we are dealing with the study of locating chromatic number of Möbius-ladders. We prove that Möbius-ladders Mn with n even has locating chromatic number 4 if $n \neq 6$ and 6 if n = 6. **Keywords:** Möbius-ladders; Color code; Locating-chromatic number; Locating coloring. MSC (2020): 05C12, 05C15. #### Cite this article as (IEEE citation style): R. Sakri and M. Abbas, "On locating chromatic number of Möbius ladder graphs", *Proyecciones (Antofagasta, On line)*, vol. 40, no. 3, pp. 659-669, 2021, doi: 10.22199/issn.0717-6279-4170 Article copyright: © 2021 Redha Sakri and Moncef Abbas. This is an open access article distributed under the terms of the Creative Commons License, which permits unrestricted use and distribution provided the original author and source are credited. *Corresponding author #### 1. Introduction Let G = (V, E) be a finite, simple and connected graph. The distance d(u, v) between vertices u and v in G is the length of the shortest path connecting u and v in G and for a subset S of V(G), the distance between u and S is given by $d(u, S) = min\{d(u, x)|x \in S\}$. The eccentricity $\epsilon(v)$ of a vertex v is the greatest distance between v and any other vertex. The diameter diam(G) of the graph is the maximum eccentricity of any vertex in the graph. A k-coloring c of a graph G=(V,E) is a k-partition $\Pi=(V_1,V_2,\ldots,V_k)$ of V(G) into independent sets, called colors. The color code of vertex v of G, with respect to Π is defined to be the ordered k-tuple $c_{\Pi}(v)=(d(v,V_1),d(v,V_2),\ldots,d(v,V_k))$. A k-coloring c of G is a locating coloring (or a locating k-coloring) of G if any two distinct vertices of G have distinct color codes with respect to c. The locating-chromatic number of G, denoted by $\chi_L(G)$, is the smallest k such that G admits a locating k-coloring. The concept of locating coloring was first introduced by Erwin David et al. [1]. They established some bounds for the locating chromatic number of connected graph classes: paths, cycles, complete multipartite graphs and double stars. This concept has been also called resolving coloring and independent resolving partition [2]. For a certain locating-chromatic number, Chartrand et al. [3] characterized all graphs of order n with locating-chromatic number n-1. Asmiati and Baskoro [4, 5] determined all graphs with locating-chromatic number 3. In [6], Asmiati et al. derived the locating-chromatic number for some class of trees, especially a class of trees obtained as an amalgamation of n stars. Behtoei and Omoomi [7] gave the locating chromatic number for the cartesian product of any two graphs and gave the following definition and observation: **Definition 1.** [7] Let G be a connected graph. A vertex is called colorful if all of the colors appear in its closed neighborhood. **Observation 1.** [7] In a locating coloring of G, there are no two colorful vertices that are assigned to the same color. Therefore, if there is a locating k-coloring of G, then there are at most k colorful vertices. The following theorem was proved in [1]. **Theorem 2.** [1] Let G be a connected graph of order $n \geq 3$. Then $\chi_L(G) = n$ if and only if G is a complete multipartite graph. The following observation will be useful later. **Observation 3.** To show that a given coloring c is a locating coloring, it suffices to show that $c_{\Pi}(u) \neq c_{\Pi}(v)$ for vertices u, v with c(u) = c(v). The Möbius ladder was originally introduced by Richard Guy and Frank Harary in 1967 [8]. The Möbius ladder on n vertices M_n is constructed by connecting vertices v_i and v_j in the cycle C_n if $d(v_i, v_j) = diam(C_n)$ (see Figure 1b). Some authors considred the case when n is even [9, 10]. The Möbius ladder graph M_n for even positive integer n is a graph can be obtained from the ladder $P_{\frac{n}{2}} \times P_2$ by joining the opposite endpoints of the two copies of $P_{\frac{n}{2}}$ (see Figure 1c). It can be also obtained by introducing a twist in a prism graph of order n. From Figure 1a, it is easy to see why this family is called the Möbius-ladders. Three different views of Möbius-ladders M_{20} are shown on Figure 1. We call $P_1 = v_1 v_2 \dots v_{\frac{n}{2}}$ the inner path and $P_2 = v_{\frac{n+2}{2}} v_{\frac{n+4}{2}} \dots v_n$ the outer path of the Möbius ladder graphs M_n . Figure 1: Three views of Möbius ladder M_{20} Some parameters of Möbius ladders have been studied: strong metric dimension [11], H-antimagic covering [12], local metric dimension [13], metric dimension [14, 15], distance labelings [16] and skew chromatic index [17]. In the next section, we study the locating chromatic number of Möbius-ladders M_n for n even and we prove that $\chi_L(M_n) = 4$ if $n \neq 6$ and n even. #### 2. Main result We start by proving that the graph M_n does not has a locating coloring with three colors and there is no 4-coloring or 5-coloring of M_6 . **Lemma 1.** $\chi_L(M_6) = 6$. **Proof.** It is easy to see that M_6 is isomorphic to $K_{3,3}$, the complete bipartite graph on 2 sets of 3 vertices each. Thus, again by theorem 2, we obtain that the locating chromatic number of M_6 is 6. \square Figure 2: Locating 6-coloring of M_6 **Theorem 2.** If $n \geq 6$ and n even, then $\chi_L(M_n) \geq 4$. **Proof.** We will prove that $\chi_L(M_n) \geq 4$, by showing that there is no locating 3-coloring of M_n . Suppose that M_n has locating 3-coloring, there exists an induced cycle of order 4 with 3 colors. Hence, there are two colorful vertices on this cycle with the same color, which is a contradiction with Observation 1. Therefore $\chi_L(M_n) \geq 4$. \square **Lemma 3.** Let M_n be the Möbius ladder graph, v_i be a vertex of M_n , $V_3 = \{v_1, v_{\frac{n}{2}}\}$ and $V_4 = \{v_n, v_{\frac{n+2}{2}}\}$. If $n \equiv 0 \mod 4$ and $n \geq 8$ then: $$d(v_i, V_4) = \begin{cases} (v_i, V_3) + 1 & \text{if } i \in [1, \frac{n}{2}], \\ d(v_i, V_3) - 1 & \text{if } i \in [\frac{n+2}{2}, n], \end{cases}$$ **Proof.** We have $d(v_i, V_3) = min(d(v_i, v_1), d(v_i, v_{\frac{n}{2}}))$. We distinguish two cases, depending on whether $d(v_i, V_3) = d(v_i, v_1)$ or $d(v_i, V_3) = d(v_i, v_{\frac{n}{2}})$. Case 1. $i \in [1, \frac{n}{4}] \cup [\frac{n+2}{2}, \frac{3n}{4}].$ In this case, we have $d(v_i, V_3) = d(v_i, v_1)$ and $d(v_i, V_4) = d(v_i, v_{\frac{n+2}{2}}).$ $$If i \in [1, \frac{n}{4}] \ then \ d(v_i, V_4) = d(v_i, v_{\frac{n+2}{2}}) = d(v_i, v_1) + d(v_1, v_{\frac{n+2}{2}}) = d(v_i, V_3) + 1.$$ $$If \ i \in [\frac{n+2}{2}, \frac{3n}{4}] \ then \ d(v_i, V_3) = d(v_i, v_1) = d(v_i, v_{\frac{n+2}{2}}) + d(v_{\frac{n+2}{2}}, v_1)) = d(v_i, V_4) + 1.$$ Case 2. $i \in [\frac{n+4}{4}, \frac{n}{2}] \cup [\frac{3n+4}{4}, n]$. In this case, we have $d(v_i, V_3) = d(v_i, v_{\frac{n}{2}})$ and $d(v_i, V_4) = d(v_i, v_n)$. If $i \in [\frac{n+4}{4}, \frac{n}{2}]$ then $d(v_i, V_4) = d(v_i, v_n) = d(v_i, v_{\frac{n}{2}}) + d(v_{\frac{n}{2}}, v_n) = d(v_i, V_3) + 1$. If $i \in [\frac{3n+4}{4}, n]$ then $d(v_i, V_3) = d(v_i, v_{\frac{n}{2}}) = d(v_i, v_n) + d(v_n, v_{\frac{n}{2}}) = d(v_i, V_4) + 1$. Combining the two previous cases we get the following. If $i \in [1, \frac{n}{4}] \cup [\frac{n+4}{4}, \frac{n}{2}] = [1, \frac{n}{2}]$, then $d(v_i, V_4) = d(v_i, V_3) + 1$. If $i \in [\frac{n+2}{2}, \frac{3n}{4}] \cup [\frac{3n+4}{4}, n] = [\frac{n+2}{2}, n]$, then $d(v_i, V_3) = d(v_i, V_4) + 1$, so we have $d(v_i, V_4) = d(v_i, V_3) - 1$. **Lemma 4.** Let M_n be the Möbius ladder graph with $n \ge 10$, v_i a vertex of M_n , $V_3 = \{v_2, v_{\frac{n}{2}}\}$ and $V_4 = \{v_n, v_{\frac{n+4}{2}}\}$. If $n \equiv 2 \mod 4$ and $n \ge 10$ then: $$d(v_i, V_4) = \begin{array}{c} (v_i, V_3) + 1, & \text{if } i \in [2, \frac{n}{2}], \\ d(v_i, V_4) = & d(v_i, V_3) - 1, & \text{if } i \in [\frac{n+4}{2}, n], \\ d(v_i, V_3), & \text{if } i \in \{1, \frac{n+2}{2}\}, \end{array}$$ **Proof.** We have $d(v_i, V_3) = min(d(v_i, v_2), d(v_i, v_{\frac{n}{2}}))$. We distinguish three cases, Case 3. $i \in [2, \frac{n+2}{4}] \cup [\frac{n+4}{2}, \frac{3n+2}{4}].$ In this case, we have $d(v_i, V_3) = d(v_i, v_2)$ and $d(v_i, V_4) = d(v_i, v_{\frac{n+4}{2}}).$ If $i \in [2, \frac{n+2}{4}]$, then $d(v_i, V_4) = d(v_i, v_{\frac{n+4}{2}}) = d(v_i, v_2) + d(v_2, v_{\frac{n+4}{2}}) = d(v_i, V_3) + 1.$ If $i \in [\frac{n+4}{2}, \frac{3n+2}{4}]$, then $d(v_i, V_3) = d(v_i, v_2) = d(v_i, v_{\frac{n+2}{2}}) + d(v_{\frac{n+2}{2}}, v_1)) = d(v_i, V_4) + 1.$ Case 4. $i \in [\frac{n+6}{4}, \frac{n}{2}] \cup [\frac{3n+6}{4}, n]$. In this case, we have $d(v_i, V_3) = d(v_i, v_{\frac{n}{2}})$ and $d(v_i, V_4) = d(v_i, v_n)$. If $$i \in [\frac{n+6}{4}, \frac{n}{2}]$$ then $d(v_i, V_4) = d(v_i, v_n) = d(v_i, v_{\frac{n}{2}}) + d(v_{\frac{n}{2}}, v_n) = d(v_i, V_3) + 1$. If $i \in [\frac{3n+6}{4}, n]$ then $d(v_i, V_3) = d(v_i, v_{\frac{n}{2}}) = d(v_i, v_n) + d(v_n, v_{\frac{n}{2}}) = d(v_i, V_4) + 1$. Combining the two previous cases we get the following: If $i \in [1, \frac{n}{4}] \bigcup [\frac{n+4}{4}, \frac{n}{2}] = [1, \frac{n}{2}]$ then $d(v_i, V_4) = d(v_i, V_3) + 1$. If $i \in [\frac{n+2}{2}, \frac{3n}{4}] \bigcup [\frac{3n+4}{4}, n] = [\frac{n+2}{2}, n]$ then $d(v_i, V_3) = d(v_i, V_4) + 1$, so we Case 5. $i \in \{1, \frac{n+2}{2}\}.$ have $d(v_i, V_4) = d(v_i, V_3) - 1$. We have: $$d(v_1, V_3) = d(v_1, v_2) = 1$$ and $d(v_1, V_4) = d(v_1, v_n) = 1$, so $d(v_1, V_3) = d(v_1, V_4)$. $d(v_{n+2}, V_3) = d(v_{n+2}, v_{\frac{n}{2}}) = 1$ and $d(v_{n+2}, V_4) = d(v_{n+2}, v_{n+4}) = 1$, so $d(v_{n+2}, V_3) = d(v_{n+2}, V_4)$. $d(v_{\frac{n+2}{2}}, V_3) = d(v_{\frac{n+2}{2}}, V_4).$ So, for $i \in \{1, \frac{n+2}{2}\}$ we have $d(v_i, V_3) = d(v_i, V_4).$ \Box The following two lemmas will be used to prove our main theorem. **Lemma 5.** If $n \geq 8$ and $n \equiv 0 \mod 4$ then $\chi_L(M_n) = 4$. **Proof.** We define 4-coloring c of M_n as follows (see figure 3a). $$c(v_i) = \begin{cases} 1 & , (i \ odd \ and \ i \in]1, \frac{n}{2}[) \ or \ (i \ even \ and \ i \in]\frac{n+2}{2}, n[), \\ 2 & , (i \ even \ and \ i \in]1, \frac{n}{2}[) \ or \ (i \ odd \ and \ i \in]\frac{n+2}{2}, n[), \\ 3 & , i = 1 \ or \ i = \frac{n}{2}, \\ 4 & , i = \frac{n+2}{2} \ or \ i = n. \end{cases}$$ It suffices to show that the proper coloring c is a locating coloring of M_n . Let be v_i, v_j two distinct vertices at same distance from V_3 . Without loss of generality, we can assume that i < j. We consider three cases depending on the distance of each vertex of M_n from the color class V_3 . Case 6. $i \in]1, \frac{n}{2}[$ and $j \in]\frac{n+2}{2}, n[$. In this case, the vertex v_i is in inner path P_1 and the vertex v_j is in outer path P_2 . By Lemma 5, we have $d(v_i, V_4) = d(v_i, V_3) + 1$ and $d(v_j, V_4) = d(v_j, V_3) - 1$. Using the fact that $d(v_i, V_3) = d(v_j, V_3)$, we have $d(v_i, V_4) \neq d(v_j, V_4)$, so $c_{\pi}(v_i) \neq c_{\pi}(v_j)$. Case 7. $i, j \in]1, \frac{n}{2}[.$ In this case, the veritces v_i, v_j are in inner path P_1 . We have $j = \frac{n-2i+2}{2}$; we can easily verify that: $d(v_i, V_3) = d(v_{\frac{n-2i+2}{2}}, V_3) = i-1$ and by Lemma 5, $d(v_i, V_4) = d(v_{\frac{n-2i+2}{2}}, V_4) = i$. Note that i and $\frac{n-2i+2}{2}$ have different parity. The vertices $v_i, v_{\frac{n-2i+2}{2}}$ must be in different color classes under c. so, we have $c_{\pi}(v_i) \neq c_{\pi}(v_{\frac{n-2i+2}{2}})$. Case 8. $i, j \in]\frac{n+2}{2}, n[.$ In this case, the veritces v_i, v_j are in outer path P_2 . We have $j = \frac{3n-2i+2}{2}$. We can easily verify that: $d(v_i, V_3) = d(v_{\frac{3n-2i+2}{2}}, V_3) = i - \frac{n}{2}$ and by Lemma 5, $d(v_i, V_4) = d(v_{\frac{3n-2i+2}{2}}, V_4) = i - \frac{n}{2} - 1$. Note that i and $\frac{3n-2i+2}{2}$ have different parity, the vertices $v_i, v_{\frac{3n-2i+2}{2}}$ must be in different color classes under c, we have $c_{\pi}(v_i) \neq c_{\pi}(v_{\frac{3n-2i+2}{2}})$. Case 9. $i, j \in \{1, \frac{n}{2}, \frac{n+2}{2}, n\}.$ The vertex v_1 is adjacent to vertex with color 2 and the vertex $v_{\frac{n}{2}}$ is not adjacent to any vertex with color 2 thus $d(v_i, V_2) = 1$ and $d(v_{\frac{n}{2}}, V_2) \neq 1$. So we have $c_{\pi}(v_1) \neq c_{\pi}(v_{\frac{n}{2}})$. The vertex v_n is adjacent to vertex with color 2 and $v_{\frac{n+2}{2}}$ is not adjacent to any vertex with color 2, thus $d(v_{\frac{n+2}{2}}, V_2) = 1$ and $d(v_n, V_2) \neq 1$, so we have $c_{\pi}(v_n) \neq c_{\pi}(v_{\frac{n+2}{2}})$. The vertices v_1 , v_n are adjacent, they must have different color, so we have $c_{\pi}(v_1) \neq c_{\pi}(v_n)$. It's easy to see that $c_{\pi}(v_1) \neq c_{\pi}(v_n) \neq (v_{\frac{n}{2}}) \neq c_{\pi}(v_{\frac{n+2}{2}})$. From all previous cases, we can see that all vertices in M_n have different color codes, so $\chi_L(M_n) \leq 4$. Using Theorem 2, we have $\chi_L(M_n) = 4$ when $n \equiv 0 \mod 4$. So the lemma is proved. \square **Lemma 6.** If $n \geq 8$ and $n \equiv 2 \mod 4$ then $\chi_L(M_n) = 4$. **Proof.** We define 4-coloring c of M_n as follows (see figure 3a). $$c(v_i) = \begin{cases} 1 & ,i \text{ odd } \text{ and } i \notin \{\frac{n}{2}, \frac{n+4}{2}\}, \\ 2 & ,i \text{ even } \text{ and } i \notin \{2, n\}, \\ 3 & ,i \in \{2, \frac{n}{2}\}, \\ 4 & ,i \in \{\frac{n+4}{2}, n\}. \end{cases}$$ It suffices to show that the proper coloring c is a locating coloring of M_n . We analyse two cases depending on the distance of each vertex of M_n from the color class V_3 . Let v_i, v_j be two distinct vertices at same distance from V_3 , without loss of generality we can assume that i < j. # Case 10. $i \in]2, \frac{n}{2}[$ and $j \in]\frac{n+4}{2}, n[$. In this case, the vertex v_i is in inner path P_1 and the vertex v_j is in outer path P_2 . By lemma 6 we have $d(v_i, V_4) = d(v_i, V_3) + 1$ and $d(v_j, V_4) = d(v_j, V_3) - 1$. Using the fact that $d(v_i, V_3) = d(v_j, V_3)$, we have $d(v_i, V_4) \neq d(v_j, V_4)$, thus $c_{\pi}(v_i) \neq c_{\pi}(v_j)$. ### Case 11. $i, j \in]2, \frac{n}{2}[$ In this case, the vertices v_i, v_j are in inner path P_1 , and we have $j = \frac{n-2i+4}{2}$. We can verify that $d(v_i, V_3) = d(v_{\frac{n-2i+2}{2}}, V_3) = i-2$. By lemma 4, we have $d(v_i, V_4) = d(v_{\frac{n-2i+4}{2}}, V_4) = i-1$. Note that i and $\frac{n-2i+4}{2}$ have different parity, the vertices $v_i, v_{\frac{n-2i+4}{2}}$ must be in different color classes under c. So we have $c_{\pi}(v_i) \neq c_{\pi}(v_{\frac{n-2i+4}{2}})$. # Case 12. $i, j \in]\frac{n+4}{2}, n[.$ In this case, the veritces v_i, v_j are in outer path P_2 , and we have $j = \frac{3n-2i+4}{2}$. We can easily verify that $d(v_i, V_3) = d(v_{\frac{3n-2i+4}{2}}, V_3) = \frac{2i-n-2}{2}$ By lemma $6 d(v_i, V_4) = d(v_{\frac{3n-2i+4}{2}}, V_4) = \frac{2i-n-4}{2}$. Note that i and $\frac{3n-2i+4}{2}$ have different parity, the vertices $v_i, v_{\frac{3n-2i+4}{2}}$ must be in different color classes under c. So we have $c_{\pi}(v_i) \neq c_{\pi}(v_{\frac{3n-2i+4}{2}})$. ## Case 13. $i, j \in \{2, \frac{n}{2}, \frac{n+4}{2}, n\}.$ The vertex v_2 is adjacent to vertex with color 1 and the vertex $v_{\frac{n}{2}}$ is not adjacent to any vertex with color 1, thus $d(v_1, V_1) = 1$ and $d(v_{\frac{n}{2}}, V_1) \neq 1$. So we have $c_{\pi}(v_1) \neq c_{\pi}(v_{\frac{n}{2}})$. The vertex v_n is adjacent to vertex with color 1 and $v_{\frac{n+4}{2}}$ is not adjacent to any vertex with color 1, thus $d(v_{\frac{n+4}{2}}, V_1) \neq 1$ and $d(v_n, V_1) = 1$. So we have $c_{\pi}(v_n) \neq c_{\pi}(v_{\frac{n+4}{2}})$. The vertices v_2 , $v_{\frac{n+4}{2}}$ are adjacent; they must have different color, so we have $c_{\pi}(v_2) \neq c_{\pi}(v_{\frac{n+4}{2}})$. It's easy to deduce that $c_{\pi}(v_2) \neq c_{\pi}(v_n) \neq (v_{\frac{n}{2}}) \neq c_{\pi}(v_{\frac{n+4}{2}})$. # Case 14. $i, j \in \{1, \frac{n+2}{2}\}.$ The vertices v_1 , $v_{\frac{n+2}{2}}$ are adjacent, they must have different color, $c_{\pi}(v_1) \neq c_{\pi}(v_{\frac{n+2}{2}})$. From all cases, we can see that all vertices in M_n have different color codes, so $\chi_L(M_n) \leq 4$. By using Theorem 2, we have $\chi_L(M_n) = 4$ when $n \equiv 2 \mod 4$. So the lemma is proved. \square Combining Lemma 1, Lemma 5 and Lemma 6, we get the following theorem. **Theorem 7.** If $n \ge 6$ and n is even then $\chi_L(M_n) = \begin{cases} 4 & n \ne 6 \\ 6 & n = 6 \end{cases}$ **Proof.** For $n \geq 8$, we consider two cases depending on the parity of $\frac{n}{2}$. If $\frac{n}{2}$ is even then $n \equiv 0 \mod 4$. By lemma 5, we have $\chi_L(M_n) = 4$. If $\frac{n}{2}$ is odd then $n \equiv 2 \mod 4$ and, by lemma 6, we have $\chi_L(M_n) = 4$. Then, again by lemma 1, we have $\chi_L(M_6) = 6$. So, the theorem is proved. \square Figure 3: 4-Locating Coloring of M_{10} and M_{12} #### Conclusion We considered the Möbius ladders graphs M_n and we proved that the locating chromatic number of M_n with n even is 4 if n=6 and 6 if n=6. In the future, we will study the Möbius ladders graphs M_n for n odd and consider more families of graph in the context of locating chromatic number. #### References - [1] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, "The locating-chromatic number of a graph", *Bulletin Institute Combinatorial Application*, vol. 36, pp. 89-101, 2002. - [2] V. Saenpholphat and P. Zhang, "Conditional resolvability in graphs: a survey", *International journal of mathematics and mathematical sciences*, vol. 2004, Art ID. 247096, 2004, doi: 10.1155/S0161171204311403 - [3] G. Chartrand, D. Erwin, M. A. Hennings, P. J. Slater, and P. Zhang, "Graphs of order n with locating-chromatic number n-1", *Discrete mathematics*, vol. 269, no. 1-3, pp. 65-79, 2003, doi: 10.1016/S0012-365X(02)00829-4 - [4] A. Asmiati and E. T. Baskoro, "Characterizing all graphs containing cycles with locating-chromatic number 3", *AIP conference proceedings*, vol. 1450, no. 1, pp. 351-357, 2012, doi: 10.1063/1.4724167 - [5] E. T. Baskoro and A. Asmiati, "Characterizing all trees with locating-chromatic number 3", *Electronic journal of graph theory and applications*, vol. 1, no. 2, pp. 109-117, 2013, doi: 10.5614/ejgta. 2013.1.2.4 - [6] A. Asmiati, H. Assiyatun, and E. T. Baskoro, "Locating-chromatic number of amalgamation of stars", *Journal of mathematical and fundamental sciences*, vol. 43, no. 1, pp. 1-8, 2011, doi: 10.5614/itbj.sci.2011. 43.1.1 - [7] A. Behtoei and B. Omoomi, "On the locating chromatic number of Cartesian product of graphs", 2012, *arXiv:*1106.3453v3 - [8] R. K. Guy and F. Harary, "On the Mobius ladders", *Canadian mathematical bulletin*, vol. 10, no. 4, pp. 493-498, 1967, doi: 10.4153/CMB-1967-046-4 - [9] N. Biggs, R. Damerell, and D. Sands, "Recursive families of graphs", *Journal of combinatorial theory, series B,* vol. 12, no. 2, pp. 123-131, 1972, doi: 10.1016/0095-8956(72)90016-0 - [10] J. P. McSorley, "Counting structures in the Möbius ladder", *Discrete mathematics*, vol. 184, no. 1-3, pp. 137-164, 1998, doi: 10.1016/S0012-365X(97)00086-1 - [11] M. Widyaningrum and T. A. Kusmayadi, "On the strong metric dimension of sun graph, windmill graph and Möbius ladder graph", *Journal of physics: conference series*, vol. 1008, Art. ID. 012032, 2018, doi: 10.1088/1742-6596/1008/1/012032 - [12] N. Indriyani and T. Sri Martini, "Super (a, d)-H-antimagic covering of Möbius ladder graph", *Journal of physics: conference series*, vol. 1008, Art. ID. 012047, april 2018, doi: 10.1088/1742-6596/1008/1/012047 - [13] W. Tri Budianto and T. Atmojo Kusmayadi, "The local metric dimension of starbarbell graph, K_m P_n graph and Möbius ladder graph", *Journal of physics: conference series*, vol. 1008, Art. ID. 012050, 2018. doi: 10.1088/1742-6596/1008/1/012050 - [14] M. Munir, A. R. Nizami, Z. Iqbal, and H. Saeed, "Metric dimension of the Möbius ladder", *Ars combinatoria*, vol. 135, pp. 249-256, 2017. [On line]. Available: https://bit.ly/330sgJW - [15] M. Ali, G. Ali, M. Imran, A. Q. Baig, and M. K. Shafiq, "On the metric dimension of Möbius ladders", *Ars combinatoria*, vol. 105, pp. 403-410, 2012. [On line]. Available: https://bit.ly/3e4q8XC - [16] A. Rojas and K. Diaz, "Distance labelings of Möbius ladders", Degree of Bachelor of Science, Worcester Polytechnic Institute, 2013. [On line]. Available: https://bit.ly/3303PfC - [17] M. J. Punitha and S. Rajakumari, "Skew chromatic index of comb, ladder and Möbius ladder graphs", *International journal of pure and applied mathematics*, vol. 101, no. 6, pp. 1003-1011, 2015, doi: 10.12732/ijpam.v101i6.18