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1. Introduction

Let (A, ·, 1) be a commutative semigroup with the identity 1. Suppose that
on the carrier A there exists another operation → and one relation R that
with multiplication in A have a link (x · y, z) ∈ R ⇐⇒ (x, y → z) ∈ R
for each x, y, z ∈ A. A relational system designed in this way, when R is a
quasi-ordered relation on A, is in the focus of this paper.

The concept of residuated relational systems ordered under a quasi-
order relation was introduced in 2018 by S. Bonzio and I. Chajda [2] in
2018. Previously, this concept was discussed in [1]. R. D. Maddux suggests
that text [6] written by A. Tarski in 1941 is probably one of the first articles
which relates to ’The calculus of relations’ ([4], page 438). The approach
outlined in [6] is worked out in more detail in [7]. According to R. D.
Madduox already mentioned, the first definition of relation algebras appears
in [3] (cited by [4], page 441). The approach outlined in [6] is worked out
in more detail in [7]. In addition, according to R. D. Madduox, the first
definition of relation algebras appears in [3] (cited by [4], page 441).

This paper continues the investigations of quasi-ordered residuated sys-
tems and of their filters which were started in the author article [5]. In
particular, the concept of implicative filters in a quasi-ordered residuated
system is introduced. Also, some conditions for a filter of such system to
be an implicative filter are listed.

2. Preliminaries

2.1. Concept of quasi-ordered residuated systems

In article [2], S. Bonzio and I. Chajda introduced and analyzed the concept
of ’residual relational systems’.

Definition 2.1. ([2], Definition 2.1) A residuated relational system is a
structure A = hA, ·,→, 1, Ri, where hA, ·,→, 1i is an algebra of type h2, 2, 0i
and R is a binary relation on A and satisfying the following properties:

(1) (A, ·, 1) is a commutative monoid; (2) (∀x ∈ A)((x, 1) ∈ R); (3)
(∀x, y, z ∈ A)((x · y, z) ∈ R⇐⇒ (x, y → z) ∈ R).

We will refer to the operation · as multiplication, to→ as its residuum and
to condition (3) as residuation.

The basic properties for residuated relational systems are subsumed in
the following
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Theorem 2.1 ([2], Proposition 2.1). Let A = hA, ·,→, 1, Ri be a resid-
uated relational system. Then

(4) (∀x, y ∈ A)(x→ y = 1 =⇒ (x, y) ∈ R),
(5) (∀x ∈ A)((x, 1→ 1) ∈ R),
(6) (∀x ∈ A)((1, x→ 1) ∈ R),
(7) (∀x, y, z ∈ A)(x→ y = 1 =⇒ (z · x, y) ∈ R),
(8) (∀x, y ∈ A)((x, y → 1) ∈ R).

Recall that a quasi-order relation 0 0 on a set A is a binary relation which
is reflexive and transitive (Some authors use the term pre-order relation).

Definition 2.2. ([2], Definition 3.1) A quasi-ordered residuated system is
a residuated relational system A = hA, ·,→, 1, i, where is a quasi-order
relation in the monoid (A, ·)

The following proposition shows the basic properties of quasi-ordered
residuated systems.

Proposition 2.1 ([2], Proposition 3.1). LetA be a quasi-ordered resid-
uated system. Then

(9) (∀x, y, z ∈ A)(xy =⇒ (x · zy · z ∧ z · xz · y));
(10) (∀x, y, z ∈ A)(xy =⇒ (y → zx→ z ∧ z → xz → y));
(11) (∀x, y ∈ A)(x · yx ∧ x · yy).

Estimating that this topic is interesting ([1, 2, 5]), it is certain that
there is interest in the development of the concept of some substructures
and processes in these systems.

Let L(a) = {y ∈ A : ay} be the left class and R(b) = {x ∈ A : xb} be the
right class of the relation generated by the elements a and b respectively.
Then R(1) = A. Some authors use the notation U(a) instead of L(a) (see,
for example [2]).

2.2. Concepts of filters

In the article [5], in order to determine the concept of filters in quasi-ordered
residuated systems, the relationships between the following conditions are
analyzed: (F0) 1 ∈ F ; (F1) (∀u, v ∈ A)((u · v ∈ F =⇒ (u ∈ F ∧ v ∈ F ));
(F2) (∀u, v ∈ A)((u ∈ F ∧ uv) =⇒ v ∈ F ); and (F3) (∀u, v ∈ A)((u ∈
F ∧ u→ v ∈ F ) =⇒ v ∈ F ).

It is shown ([5], Proposition 3.2) that (F2) =⇒ (F1). In addition, it is
shown ([5], Proposition 3.4) that for every nonempty subset of F of system
A is valid (F2) =⇒ (F0). Additionally, it has been shown to be valid
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Proposition 2.2 ([5], Proposition 3.6). Let F be a submonoid of the
monoid (A, ·) in a quasi-ordered residuated system A = h(A, ·,→, 1, i. Then
F (2) =⇒ F (3).

Based on our previous analysis of the interrelationship between condi-
tions (F1), F(2) and (F3) in a quasi-ordered residual system, we introduced
the concept of filters by the following definition.

Definition 2.3. ([5], Definition 3.1) For a non-empty subset F of a quasi-
ordered residuated system A we say that it is a filter of A if it satisfies
conditions (F2) and (F3).

3. The concept of implicative filters

In this section, we introduce the concept of implicative filters in quasi-
ordered residuared systems and analyze it.

Definition 3.1. For a non-empty subset F of a quasi-ordered residuated
system A we say that the implicative filter in A if (F2) and the following
condition (IF) (∀u, v, z ∈ A)((u → (v → z) ∈ F ∧ u → v ∈ F ) =⇒ u →
z ∈ F )

are valid.

It is immediately seen that 1 ∈ F and F satisfies condition (F1) because
F satisfies the condition (F2) and F is a non-empty subset.

Proposition 3.1. Let F be an implicative filter of a quasi-ordered residu-
ated system A. Then the following holds (F4) (∀u, v ∈ A)(u→ (u→ v) ∈
F =⇒ u→ v ∈ F ).

Proof. If we put v = u in (IF), we immediately obtain the claim of
this proposition, since for every u ∈ A always u → u ∈ F holds for every
non-empty set F satisfying condition (F2). Indeed, u→ u ∈ F follows from
uu; whence 1(u→ u) by 1 ∈ F and (F2). 2

In what follows, we need the following lemma

Lemma 3.1. Let a subset F of a quasi-ordered residuated system A satis-
fies the condition (F2). Then the following holds (12) (∀u ∈ A)(u ∈ F ⇐⇒
1→ u ∈ F ).
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Proof. Since (∀x ∈ A)(1→ xx) and (∀x ∈ A)(x1→ x), by Proposition
2.3 (d) in [2], the proof of this lemma follows from (F2). 2

Let us show that every implicative filter in A is a filter of A.

Theorem 3.1. Every implicative filter in a quasi-ordered residuated sys-
tem A is a filter of A.

Proof. Let F be an implicative filter in a quasi-ordered residuated
system A. To prove that F is a filter of A, it suffices to prove that F
satisfies condition (F3). Let u, v ∈ A be arbitrary elements such that
u → v ∈ F and u ∈ F . Then 1 → (u → v) ∈ F and 1 → u ∈ F by (12).
Thus 1 → v ∈ F by (IF). Hence v ∈ F by (12). So, the set F is a filter of
A. 2

We intend to more accurately describe this class of filters in quasi-
ordered residuated systems. In what follows, we need the following two
lemmas

Lemma 3.2. Let F be a subset of a quasi-ordered residuated system A.
Then the condition (F2) is equivalent to the condition (F5) (∀u, v, z ∈
A)((u · v ∈ F ∧ uv → z) =⇒ z ∈ F ).

Proof. (F2) =⇒ (F5). Let u, v, z ∈ A such that x · v ∈ F and uv → z.
Then u · v ∈ F ∧ u · vz by (3). Thus z ∈ F by (F2). (F5) =⇒ (F2).
Conversely, let us assume that (F4) holds. Let u, v ∈ A such that u ∈
F ∧ uv. Then u · 1 ∈ F ∧ u1 → v. Thus v ∈ F according (F5). So, the
formula (F2) is proven. 2

Lemma 3.3. Let a ∈ A be an element of a quasi-ordered residuated system
A. Then L(a) = {y ∈ A : ay} is a filter of A if and only if the following
holds (13) (∀u, v ∈ A)((au ∧ auv) =⇒ av).

Proof. Each set L(a) satisfies condition (F2) according to Proposition
3.1 (13) in [5]. Let u, v ∈ A be such u ∈ L(a) and u→ v ∈ L(a). Then au
and au → v. Thus au and auv by (3). Hence av by (13), i.e. v ∈ L(a).
We have shown that L(a) satisfies condition (F3). Therefore, L(a) is a
filter of A. Conversely, it is obvious that condition (F3) is transformed into
condition (13) in the case F = L(a). 2

Another important result in this report is the following theorem

Theorem 3.2. In a quasi-ordered residuated system A, the set L(1) is an
implicative filter if and only if L(a) is a filter of A for any a ∈ A.



422 Daniel A. Romano

Proof. Each set L(a) satisfies condition (F2) according to Proposition
3.1 (13) in [5].

Assume that L(a) is a filter of A for all a ∈ A. Let u, v, z ∈ A be such
that u → (v → z) ∈ L(1) and u → v ∈ L(1). Then 1u → (v → z) and
1u → v. Thus u · vz and uv by (3). Hence uz by (13) because L(u) is a
filter of A. So, u → z ∈ L(1). Therefore, the set L(1) is an implicative
filter.

Conversely, suppose that L(1) is an implicative filter of A. Let u ∈ L(a)
and u→ v ∈ L(a). Then au ∧ au→ v and 1a→ u ∧ 1a→ (u→ v). This
means a → u ∈ L(1) ∧ a → (u → v) ∈ L(1). Since L(1) is an implicative
filter of A, it follows a → v ∈ L(1). hence 1a → v and av. So, v ∈ L(a).
Hence, L(a) is a filter of A. 2

The following theorem gives another condition for a filter of a quasi-
ordered residuates system A to be an implicative filter in A.

Theorem 3.3. Let F be a filter of a quasi-ordered sesiduated system A.
Then F is an implicative filter in A if and only if the set Fa = {x ∈ A :
a→ x ∈ F} is a filter of A for any a ∈ A.

Proof. Note that F1 = F by Lemma 3.1. (1) Assume that F is an
implicative filter in A. Since a1 by (2) for every a ∈ A, we have 1a→ 1 by
(3). Then 1 ∈ F and 1a → 1 implies a → 1 ∈ F by (F2). Thus 1 ∈ Fa.
Let us prove that Fa satisfies condition (F2). Let u, v ∈ A be such that
u ∈ Fa and uv. Then a → u ∈ F and a → ua → v according to (10).
Thus a → v ∈ F by (F2). Hence v ∈ Fa. Let u, v ∈ A be such u ∈ Fa
and u → v ∈ Fa. Then from a → u ∈ F and a → (u → v) ∈ F it follows
a → v ∈ F by (IF). Hence v ∈ Fa. This shows that Fa satisfies condition
(F3). So, since Fa satisfies conditions (F2) and (F3), it is a filter of A. (2)
Conversely, suppose that Fa is a filter of A for any a ∈ A. Let u, v, z ∈ A
be elements such that u→ (v → z) ∈ F and u→ v ∈ F . Then v → z ∈ Fu
and v ∈ Fu. Thus z ∈ Fu because Fu is a filter of A. Hence u → z ∈ F .
So, F is an implicative filter in A. 2

To design another condition equivalent to a condition (IF), we need the
following lemmas

Lemma 3.4. Let a subset F of a quasi-ordered residuated systemA satisfy
the condition (F2). Then the following holds (14) (∀u, v, z ∈ A)(u→ (v →
z) ∈ F ⇐⇒ v → (u→ z) ∈ F ).
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Proof. Let u, v, z ∈ A be elements such that u → (v → z) ∈ F . From
here and from the condition (∀u, v, z ∈ A)(u → (v → z)v → (u → z) ([2],
Proposition 3.1(f)) follows v → (u → z) ∈ F . according to (F2). Reverse
implication is obtained from previously proven if variables u and v change
places. 2

Lemma 3.5. Let A be a quasi-ordered residuated system. Then (15)
(∀x, y, z ∈ A)(y → z(x→ y)→ (x→ z)).

Proof. In [2] ((Proposition 3.1(g)) is shown that the following

(∀x, y, z ∈ A)((x→ y) · (y → z)(x→ z))

holds. Since multiplication in A is commutative, we have

(∀x, y, z ∈ A)((y → z) · (x→ y)(x→ z)).

From here we get (15) according to (3). 2

Theorem 3.4. Let F be a non-empty subset of a quasi-ordered residu-
ated system A satisfying (F2). If F satisfies the additional condition (F6)
(∀u, v, z ∈ A)((u→ (v → (v → z)) ∈ F ∧ u ∈ F ) =⇒ v → z ∈ F )

then F is an implicative filter in A.

Proof. Let us show that the set F satisfies condition (FI). Let u, v, z ∈ A
be arbitrary elements such that u → (v → z) ∈ F and u → v ∈ F . Using
(14) and (15) we have

v → (u→ z) ∈ F and v → (u→ z)(u→ v)→ (u→ (u→ z)).

Thus
(u→ v)→ (u→ (u→ z)) ∈ F ∧ u→ v ∈ F.

Hence u→ z ∈ F by (F6). So, F is an implicative filter. 2
We conclude this report with the following theorem

Theorem 3.5. If a non-empty subset F of a quasi-ordered residuates sys-
tem A satisfies conditions (F2), (F3) and (F4), then F is an implicative
filter in A.

Proof. To prove that F is an implicative filter in A, it suffices to show
that (F6) is a valid formula. Let u, v, z ∈ A be such that u → (v → (v →
z)) ∈ F and u ∈ F . Then v → (v → z) ∈ F and u ∈ F by (F3). Thus
v → z ∈ F by (F4). 2
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