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1. Introduction

The study of various types of integral inequalities has been the focus of
great attention for well over a century by a number of mathematicians,
interested both in pure and applied mathematics. One of the many funda-
mental mathematical discoveries of A. M. Ostrowski is the following clas-
sical integral inequality associated with the differentiable mappings:

Theorem 1. [19] Let f : [a,b] — R be a differentiable mapping on (a, b)
whose derivative f' : (a,b) — R is bounded on (a,b), ie. |f'|l,, =
sup |f'(t)| < +o0. Then, we have the following inequality:

te(a,b)

_atb)?
2

1 (z—<
47 (b-a)

1 +

(b_ a) ||f/||oo’

for all z € [a,b]. The constant % is the best possible.

One of the first generalization of Ostrowski’s inequality was given in 1976
by Milovanovi¢ and Pecari¢:

Theorem 2. [17] Let f : [a,b] — R be twice differentiable function on
(a,b) whose derivative f” : (a,b) — R is bounded on (a,b), i.e. ||f"||cc =

sup |f"(t)| < +oo. Then, we have the following inequality:
te(a,b)

‘%<f(x)+(x—a>f(a)+(b—x) > /f )t

1 (w )] (b ap
—a)? 4

15" lloo,

for all x € [a,b].

This result is a special case of a general result stated in [17] for n-times
(n > 1) differentiable function with bounded n-derivative on (a,b). The
inequality (1.1) is a composite trapezoidal inequality, because

b—a (:U—a)f(a)+(b—:n)f(b)) T —a b—x

> (@ + — = L@+ @)+ 5 @)+ )




Ostrowski and Simpson type inequalities for multiplicative ... 745

represents sum of two elementary trapezoidal formulas. For x = (a +
b)/2 it reduces to a symmetric composite trapezoidal formula, and the
corresponding inequality (1.1) to

v (52 1) 5 0]

Until now, a large number of research papers and books have been written
on Ostrowski inequalities and their numerous applications, see ([3, 4, 5, 7,
9, 10, 16, 17, 18, 21, 24, 25, 26]).

On the other hand, the following inequality is well known in the literature
as Simpson’s inequality.

)

£ loo-

Theorem 3. Let f: [a,b] — R be a four times continuously differentiable
mapping on (a,b)

(4)H = sup‘f(‘l)(:v)‘ < o0.Then, the following
o0
inequality holds:

< 20 11 (-0

W=

1410y (2) 2 f e

Sarikaya et al. proved the following Simpson type inequality;
Theorem 4. [27] Let f : [a;b] — R is a different differentiable mapping

on I° such that " € Lj [a,b], where a,b € I with a <b. If |f’| is a convex
on [a,b,] then the following inequality holds:

'é[f(a)+4f(a;b>+f )| - [ @
(1.1)

For more papers on Simpson inequality, please refer to ([6, 11, 12, 13, 14,
15, 22, 23, 28, 27, 29, 30, 31, 32, 33, 34]).

2. Multiplicative Calculus

Recall multiplicative derivative which can be found in [8].

209 @) + 176

]
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Definition 1. [8] Let f : R — R be a positive function. The multiplica-
tive derivative of the function f is given by

A f o (FE RN
()= (1) = Jim (Tﬂ) .

If f has positive values and is differentiable at t, then f* exists and the
relation between f* and ordinary derivative f’ is as follows:

Fr(t) = ellos SO — Rl

If, additionally, the second derivative of f at ¢ exists, then by an easy
substitution, we obtain

£ (t) = ellosof* M — ellog FO]”

Here (In f)” (t) exists because f”(t) exist. Repeating this procedure n
times, we conclude that if f is a positive function and its nth derivative at
t exists, then f*(")(t) exists and

FO @) = o8NV 19 ...
The following properties of multiplicative differentiable exist:

Theorem 1. [8] Let f and g be multiplicatively differentiable functions.
If ¢ is arbitrary constant, then functions cf, fg, f + g, f/g and f9 are *
differentiable and

(1) (ef) (1) = F*(¢)

(2) (F9)" (8) = [*(D)g"(t)
(3) (f +9)" (1) = F*(
@ (L) @ =&
(5) (F9)" (1)

(t
0 2y
Recall also that the concept of the * integral called multiplicative integral is
b
denoted by [(f(x))% which introduced by Bashirov et al. in [8]. While the

f(t) g(t)
t) F(t) +g(t)g ( ) (1) +49(t)

I~

Q

sum of the taerms of product is used in the definition of a classical Riemann
integral of f on [a,b], the product of terms raised to power is used in the
definition multiplicative integral of f on [a,b].

There is the following relation between Riemann integral and multiplicative
integral:
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Proposition 1. [8] If f is Riemann integrable on [a,b], then f is multi-
plicative integrable on [a,b] and

b

/(f(x))daC = exp (/b log(f(m))dz) .

a

Moreover, Bashirov et al. show that multiplicative integrable has the fol-
lowing results and properties:

Proposition 2. [8] If f is positive and Riemann integrable on [a,b], then
f is multiplicative integrable on [a,b] and

0 fwserr = (fuer)

a

(i) [(7@a)® = [F@)™. [la)™
b ey
(i) J(55) =5
“ ( ( )> [ (g(z))=
() [ @)™ = [(Fa) ™. [7@)*, a<esh

-1
a b a
(wgumWM=1mMJU@WM=<gﬂ@W) .
Theorem 2 (Multiplicative Integration by Parts). [8] Let f : [a,b] —
R be multiplicative differentiable, let g : [a,b] — R be differentiable so the
function f9 is multiplicative integrable.

Then
b

[yt = 220 .
" [ (Flar @y

Theorem 3 (Multiplicative Taylor’s Theorem for One Variable).

[8] Let A be an open interval and let f : A — R be n+ 1 times * differ-
entiable on A. Then for any z, x + h € A, there exists a number 6§ € (0, 1)
such that

n hn+1

fla+n) =] (f*(k)(x))h’“_T (£ @ 4 6m))

k=1



748 M. A. Ali, H. Budak, M. Z. Sarikayaand and Z. Zhang

For the our main results we need to following definition.

Definition 2. A non-empty set K is said to be convex, if for every a,b €
K we have
a+tlb—a) e K, Vtel0,1].

Definition 3. A function f is said to be convex function on set K, if
fltz+ (1 —t)y) <tf(x)+ (1 —1)f(y), vt €[0,1].

Definition 4. A function f is said to be log or multiplicatively convex
function on set K, if

flte+ (1 =t)y) < [f@)]" . [f]'™" vt € [0,1].

Hermite-Hadamard inequality for multiplicatively convex function is proved
by Ali et al. as follows:

Theorem 4. [2] Let f be a positive and multiplicatively convex function
on interval [a, b], then the following inequalities hold

; =
(2.1) 1(%37) < ( @y ) < G(f(a). (b)),

a

where G(.,.) is a geometric mean.

For some more inequalities concerning (2.1), readers can read [1, 20].

3. Ostrowski type inequalities for multiplicative integrals

Before we prove our results, we give the following lemma.

Lemma 1. Let f : [a,b] — R be multiplicative differentiable, let g :
[a,b] = R and h: J C R — [a,b] be two differentiable functions. Then we
have

£ ()7 1
a (a)"
f(h(a)) fb(

a

b
[ by @yt~ .
: £ (h (@) )
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Proof. The proof is obvious from the properties of multiplicative deriva-
tives and integrals. O

Lemma 2. Let f: IY C R — R*' be a multiplicative differentiable map-
ping on I°, a,b € I° with a < b. If f* is multiplicative integrable on [a,b],
then we have the following identity for multiplicative integrals

(@) ( /b (f(t))dt)n = [ ) /b (1)

Proof. Using the integration by parts for multiplicative integrals, we
obtain

O
Now, using Lemma 2, we give the following Theorems.

Theorem 1. Let f : I ¢ R — RY be a multiplicative differentiable
mapping on I°, a,b € I° with a < b. If |log f*| <log M, then we have the
following Ostrowski inequality for multiplicative integrals

; = (b-a) |3+
(3.1) f(@) ( / (f(t))dt) <M

a

for all x € [a,b] .

Proof. Using Lemma 2, we obtain

b —
f(@) ( / (f(t))‘”) -

a
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IN

exp /uog[ <>1bardt>exp(/r z’?«’irdt)
= exp /‘b— log f*(¢ ‘dt)exp(/‘ logf ' )
= exp ﬁ/(t—aﬂlogf<>rdt)exp(bla/b —t\logf()\dt)-

a

Since |log f*| < log M, we get

b ﬁ x b
(@) ( / <f<t>>‘“> < o (lbg%” [ E2 o dt)

B logM [(z—a)® (b—x)?
_eXp<b—a[ 5 T 2 D

O

Theorem 2. Let f : I ¢ R — R™T be a multiplicative differentiable
mapping on I1°, a,b € I° with a < b. If f is increasing on [a,b] and f*
is multiplicatively convex on |a,b], then we the following Ostrowski type
inequality for multiplicative integrals

1

b ab [(r 0?2 (b-a)>~(s_a) ] [(b 2?2 | (o)~ ()
f@ | [ | <5 @l T g e e

a

(3.2)
for all x € [a,b] .

Proof. Using Lemma 2, we have

]
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1

b a—b
f(a) ( / (f(ﬂ)‘”)

o) /b ([f*(t)]%)dt
oo s v
:exp(ﬁ]@_amgf (S )dt)

com (g 0= (e £=20) )

xT

N
@
>
o
/-~
o>
I‘H
—
/-\

Since f* is multiplicatively convex, we obtain

1

b a—b
(@) ( / (f(t))‘“)

a

< oxp (ﬁj(t—a) B S (@) + 1= Zlogf*(b)]dt)

a

X exp (lea/b(b—t) Llj_ log f* (a) + Z Zlogf*(b)} dt)

T

exp (M/(t_a)(b—t)dt+M/(t—a)2dt)

(b—a)? J (b—a)® 2
b b
X exp (1 0s f C;/ )2 dt + ng ()b;/(t—a)(b—t)dt),

i.e.,
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< f* (a)ﬁz[%(b*a)(xfa)té(r*a)ﬁ%(b*r)S] s (b)@[%(b*a)(b*x)Q*%(b*x)3+%(r*a)3] '
O
Corollary 1. If we choose © = QTH’ in Theorem 2, then we have the fol-

lowing Midpoint type inequalities for multiplicative integrals

(33) (50| 2@ e

Now we give the following Ostrowski inequality for multiplicative integrals
by using the Multiplicative Taylor’s Theorem.

Theorem 3. Let f : I ¢ R — RY be a multiplicative differentiable
mapping on I°, a,b € I° with a < b. If [log f**| < log M, then we have the
following Ostrowski inequality for multiplicative integrals

(b—a)2 (e-242)°

V@) @] o) (/ (f(t))dt> <um *ETE }

(3.4)

for all x € [a,b] . aki

Proof. By the Theorem 3, for z,t € (a,b) we have

(z—1)2

F@)=f@ IO 7@
where £ =y + 0 (x — t). By the using multiplicative integral, we get
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F@) = /b (f(t) Fe @ [f**(f)]@)

(35) - /b (FEN™. /b (DI /b (o=

Here we have

By the equalities (3.5) and (3.6), we have

-2

b b p—1)2 dt
@) @) L) ( / (f(t))dt) — [ (=)

a a

Then, by using the assumption [log f**| < log M, it follows that

a

b
log M
< eXp(Og2 /(:r—t)2dt
a
(b—)? {L (”—“T“’)T
2 12 (b—a)
= M

b
< exp (%/@f —t)* [log f** (&) dt

|
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4. Simpson type inequalities for multiplicative integrals

Lemma 3. Let f: IY C R — R" be a multiplicative differentiable map-
ping on I°, a,b € I° with a < b. If f* is multiplicative integrable on [a, b],
then we have the following identity for multiplicative integrals

(rarwfo(=3])' (fuar)
(/ Qf (e 12ta>]<ié>>dt)
(quf*(%H%b)]( >>dt) ‘

1
a—b

b—a)

o=
NN

Proof. From the Proposition 2 (i), we have

(4.1)

By using the Lemma 1, we obtain
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_ f(a—zi—b) %[f@]% /b(f(x))dx 5
Similarly, we get e
o/lq (5 +¥b)fa(%_%)>dt_[f(a;b)]%[f@)ﬁ :/2<f(x))d‘r

(4.3)

By substituting the equalities (4.2) and (4.3) in (4.1), we have the re-
quired result (4.1). O
Now, using Lemma 3, we give the following Theorems.

Theorem 1. Let f : I ¢ R — R™T be a multiplicative differentiable
mapping on 1°, a,b € I° with a < b. If f is increasing on [a,b] and f* is
multiplicatively convex on [a,b], then we have

(4.4) (f (@ 1) |1 (a;b)D% ( /b (f <x>>df) < roroys
Proof. Using Lemma 3, we have

(f(a)f(b) (%57 )l (/b )
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)"
e

b—a

>} ) x?j’({ (1-+t
i(

+t
2
dt)

)
)

)}(%i))dt]
}(%i)>dt]

1—t¢

L2 14+t 11—
toL) e
‘ng< . _

1+1¢ 1_
1gf<
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O
Example 1. Let f : [0,1] — RT, f(t) = ¢ with ¢ € R*. Then we

have f*(t) = e**. We also have f(a) = f(0) = 1, f(b) = f(1) = €5,
F(22) = £ (3) = 5. f*(@) = £7(0) = 1 and f*(b) = f*(1) = €*. On the

other hand
b b—a 1
( / (f <x>>dm> = / (ecﬂ)dw = ef.
0

/N
kﬁ
=
N~—
~
—
=
| —
~
I/~
IS
vo| +
o
N~
| I
[\V)
~—
(= [
A/
@\c_
—~
kﬁ
&
N~—
N—
oy
v
I
m‘
Sle

and

[=2]

(F@F 65 = (%)% = %,

5. Applications to Special Means of Real Numbers

We will consider the following means for real numbers a, b with a # b. We

have

(1) The arithmetic means for a,b € R™:
A:=A(a,b) = 4.

(2) The geometric means for a,b € R™:
G:=G(a,b) = Vab.

(3) The harmonic means for a,b € RT\{0} :
H:=H(a,b) = 295.

(4) The logarithmic means for a,b € R and |a| # |b|:
L:=L(a,b) = mpiiamr-

(5) The identric means for a,b € RT\{0} :

1

I=1(a,b) ;:{ L&) b #a

a, b=a

(6) The generalized logarithmic means for a,b € R\{0} and p € R\{—1,0} :
1

L [ pptl_gptl ] w
Ly = Ly(a.b) = [y
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It is well-known that L_y = L and Ly = I, because L, is monotonic
nondecreasing over p € R.

Now, using our main results we give some applications to special means of
real numbers. Some error estimates for the special means are obtain below.
(1) Consider a positive function f : [a,b] — R with b > a > 0. If f (z) = &*"
with p > 1, then we have

1
(J2 7 ()77 = etblon),

(a) From inequality (3.1), we have following relation of means for M =

exp (pbp_l)

1 z—A
P Lp < M(bfa) |:Z+(b—a)2i|.

For a moment, if we put

(i) x = A, then we have

(b—a)
e 1p <M.

(ii) = = G, then we get

1 G—A
G- < [ﬁ(m)?] ,

(iii) Onme can write similar inequalities by choosing x = H, L, I.

(b) From inequality (3.4), we have following relation for means with M =
exp (p(p — 1) %)

_atb
1_12+(” 2 )}

1 b—a
(ot ) -2kon) < e

If we choose following assumptions, then we have

(i) z = A, we have

1
1 (b—
(eAP—&-A(aP,bP)—QLg) 2 S M 12(1 .

(i) =z =G, we get

(eGP+aP<f:>+bp<f;f>um) oM
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(iii) Similar inequalities can be written for x = H, L, I.

(2) Consider a positive function f : [a,b] — R with b > a > 0. If f(z) =
1
er+ 1" with p > 1, then

fr(a) = e

is multiplicatively convex on given domain and

1
b b—a
([ i) = emmtien,

From inequality (3.2), we have

+1
exp+1 ngJrl (a,b)

(@=a)2 | (b=—2)3—(z-a)3 (-2  (@=a)3—(b—2)3
< eap{%bfa)+ 3(b—a)2 T S T 302

For an instance, if we choose
(i) x = A or from inequality (3.3), we have

Aptl_ppP b b A(aP ,bP b4a
e p+1(a7 ) < (6 ((l ) ))
(il) =z =G, we get

1
eGHLLgL(a,b)

(G—a)? <b—G>3—(G—a>3}+bp[<b70>2+<c—a>3—<b—a>3}

ar 2(b—a) 3(b—a)2

< e 2(b—a) 3(b—a)?

(iii) Similar inequalities can be written for = H, L, I.

(3) Consider a positive function f : [a,b] — R with b > a > 0. If f(z) =
1
er+ 1" with p > 1, then
fr(a) = e

is multiplicatively convex on given domain and

1
b b—a
(/ f<x>‘“)b _ ritien),

From inequality (4.4), we have

1 5(b—a)
(eA(aPH,bPH)JrAPH3Lgi}(a,b)>3<z’+1> < (eA(a&bp)) 36
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Conclusion

In this work, authors established Ostrowski and Simpson type inequalities
in the setting of multiplicative calculus. We also gave applications to special
means of real numbers by utilizing our newly established results. The
results in this paper can be very crucial in the field of integral inequalities
and multiplicative calculus. Interested readers can establish several new
results in this field by using our new idea.
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