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1. Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard
(see, e.g., [4], [14, p.137]) is one of the most well established inequalities in
the theory of convex functions with a geometrical interpretation and many
applications. These inequalities state that if f : I — R is a convex function
on the interval I of real numbers and a,b € I with a < b, then

(1.1) f (a__;h) < bia/bf(x)dx < M

Both inequalities hold in the reversed direction if f is concave. We note

that Hermite-Hadamard inequality may be regarded as a refinement of the
concept of convexity and it follows easily from Jensen’s inequality. Hermite-
Hadamard inequality for convex functions has received renewed attention
in recent years and a remarkable variety of refinements and generalizations
have been studied.
The general structure of this paper consist of five main sections including
introduction. In Section 2, we give some necessary important notations
for concept g¢-calculus and we also mention some related works in the lit-
erature. In section 3 and Section 4, we provide Trapezoid and Midpoint
type inequalities for ¢® integrals, respectively. We also examine the relation
between our results and inequalities presented in the earlier works. Finally,
in Section 5, some conclusions and further directions of research are dis-
cussed. We note that the opinion and technique of this work may inspire
new research in this area.

2. Preliminaries of ¢-Calculus and Some Inequalities

Many integral inequalities well known in classical analysis such as Holder in-
equality, Hermite-Hadamard inequality and Ostrowski inequality, Cauchy-
Bunyakovsky-Schwarz, Gruss, Gruss- Cebysev and other integral inequali-
ties have been proved and applied for g-calculus using classical convexity.For
the other results for g-calculus please refer to [1, 2, 7, 6, 12, 13, 15, 17].

In this section we present some required definitions and related inequalities
about g-calculus. Also, here and further we use the following notation(see

[9):

[n], = =14q¢+¢3+..+¢" qe(0,1).
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In [8], Jackson gave the g-Jackson integral from 0 to b for 0 < ¢ < 1
asfollows:

b oo
21 [ @) da =(1-gb> a"f (")
0

n=0

provided the sum converge absolutely.
Jackson in [8] gave the g-Jackson integral in a generic interval [a, b] as:

b

/bf(:c) dgx :/f(a?) dqx —/af(:c) dgx .
a 0

0

Definition 1. [16] For a continuous function f : [a,b] — R, then q,-
derivative of f at x € [a,b] is characterized by the expression

f(x)—flgz+(1—q)a)
(1-q)(z—a) ’

Since f : [a,b] — R is a continuous function, thus we have

(2.2) aDqf (z) =

Tr = Q.

aDgf (a) =z — alim, Dy f (x).
The function f is said to be g- differentiable on [a, b] if
aDqf (t)

exists for all x € [a,b]. If a = 0 in (2.2), then oDy f (z) = Dy f (x)
where

Dyf (2)
is familiar g-derivative of f at x € [a,b] defined by the expression (see [9])
f(z) = f (qz)
Dy f (z) = I AT 0,
Qf( ) (1 o q)x

Definition 2. [3] For a continuous function f : [a,b] — R, then ¢’-derivative
of f at x € [a,b] is characterized by the expression

flgzr+(1—=q)b) - f(x)
(1-q)(b—z)

quf(:L‘): , x=>o.
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Definition 3. [16] Let f : [a,b] — R be a continuous function. Then, the
qq-definite integral on [a, b] is defined as

b

[ 5 @adr =1 -0 0-0) 3 " @0+ (- )0

a n=0
1
:(b—a)/f((l—t)a+tb)dqt.
0

In [1], Alp et al. proved the following g,-Hermite-Hadamard inequalities
for convex functions in the setting of quantum calculus:

Theorem 1. Let f : [a,b] — R be a convex differentiable function on [a, b]
and 0 < g < 1. Then g-Hermite-Hadamard inequalities are as follows:

b
daiby 1 af (@) + £ ()
(2.3) f(Hq)Sb_aa/f(w) s

In [11] and [1], authors established some bounds for left and right
hand sides of the inequality (2.3).

On the other hand, Bermudo et al. gave the following new definition and
related Hermite-Hadamard type inequalities:

Definition 4. [3] Let f : [a,b] — R be a continuous function. Then, the
qb-definite integral on [a, b] is defined as

b

[1 @ de = (-0 00> s @t (- a0

a n=0
1
=(b—a) [ f(ta+ (1—1)b)dgt.
/

Theorem 2. [3] Let f : [a,b] — R be a convex function on [a,b] and
0 < g < 1. Then, g-Hermite-Hadamard inequalities are as follows:

b
20 (55) <5t fro e <TI0
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From Theorem 1 and Theorem 2, one can the following inequalities:

Corollary 1. [3] For any convex function f : [a,b] — R and 0 < ¢ < 1, we
have

f(quqb)ﬁ(ij‘f)sbia{/bf(:c qx+/f bdqx}_f<a>+f<b>

(2.5)
and

201 (“50) < 55t {/f q$+/f }_f(a);f(b)'

In this paper we will find some bounds for the left and right hand sides
of the inequality (2.4).

3. New Trapezoid Type Inequalities for Quantum Integrals

In this section we will prove some new Trapezoid type inequalities for func-
tions whose ¢b-derivatives are convex.

Lemma 1. Let f : [a,b] C R — R be a g-differentiable function on (a,b)
with ®D,f be continuous and integrable on [a,b], then

f(a)+qf (b) 1
144 _b—aa/f(x)bdqz
( 1
q
(3.1) —fqo/ (1= (1+¢)8)" Dyf (ta+ (1—t)b)dyt

where 0 < g < 1

Proof. By the Definition 2, we have

f(gta+ (1 —qt)b) — f(ta+ (1 —1t)b)
(I-g)(b—a)t ’

"Dy f (ta+ (1 —t)b) =
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Then it follows that

(1—(1+q) )’ Dyf (ta+ (1 —1t)b)dyt

o—__

dyt

1
_ B f(gta+ (1 —qt)b) — f(ta+ (1 —1t)b)
‘O/“ 4oy (-6 a)t

_ Ff(gta+(1—qt)b) — f (ta+ (1 —1)b)
b—ao (I—g)t

dyt

1+q [ Fgta+(1—qt)b) — f (ta+ (1—t)b)

Ch— al (1-q)

dyt.
(3.2)

By the equality (2.1), we have

1 /1f(qta+(1—qt)b)—f(ta+(1—t)b)

(1—q)t ot

(qk+1a+ (1 _ qu) b) - 1 (qka+ (1 _ qk:) b)
=0 =0

(3.3)
By the equality (2.1) and Definition 4, we get

1
1—|—q/f gta+(1—gt)b) — f(ta+(1—-1)D) , .
q
0

b (1-1¢q)

= ;jgiqkf(qkﬂa—k(l—qkﬂ)b) 2+q2q f(q a+(1—q )b)

k=0

_ l+g quf(q a+(1—q )b)—%zqkf(qka+(1—qk)b)

q(b— @ i=o
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I+ 0—-9 & 1+gq
ST l;)qkf (q’“a+(1—qk) b) - q(b_a)f(a)

b
el R )

(3.4)

By substitute the equalities (3) and (3) in (3), we have

1
/(1—(l—i—q)t)quf(ta—i—(l—t)b)dqt
0

_ 1+q 1+4+g¢ a 1 ~ fla
= /f Tt @)+ =, [F0) ~ f(a)]
_ (A+q) [fla)+af(b
- q(b—a) 1+q —a/f ]

which completes the proof. O

Remark 1. If we take the limit ¢ — 1~ in Lemma 1, then Lemma 1
reduces to [5, Lemma 2.1].

Theorem 1. Let f : [a,b] C R — R be a ¢-differentiable function on (a, b)
with quf be continuous and integrable on [a,b]. If ‘quf) is convex on
[a,b] then we have the inequality

fla)+aqf(b
‘ 1+¢q —a/j b%m

¢* (1 +4q+ ¢?)
(1+g+¢®)(1+q)!

7> (1+ 3¢% + 2q3)

< (6-a) (1+q+¢®)(1+4q)*

"Dyt (@) +['Daf )

where 0 < ¢ < 1.
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Proof. Taking modulus in Lemma 1 and using convexity of ‘bD , We
obtain
’f( @) +af (b / ‘o
144¢ —a
1
_ ngT_qa) [ =@t Dof tat (1-0)b)dyt
0

1
<1029 10— (140)01['Dy (ta+ (1 - 1) dyt
0

1
< q(b__a)/m —(1+q)1) [t‘quf (a)‘ + (=1 ‘quf(b)H dgl
0

_ ng;qa) _‘quf(a)‘O/’(l—(1+q)t)]tdqt+)quf(b)‘0/](1—(1+q)t)\(1_t)dqt]

gb—a) | q(1+49+4° q (1 +3¢* +2¢°
_ : ‘quf(a)) ( . ) 3+‘quf(b)‘ ( 5 )3
ta | (I+q+¢*)(1+q) (I+q+¢*)(1+q)
which completes the proof. a

Remark 2. If we take the limit ¢ — 1~ in Theorem 1, then Theorem 1
reduces to [5, Theorem 2.2].

Theorem 2. Let f : [a,b] C R — R be a g-differentiable function on (a, b)
with D, f be continuous and integrable on [a,b]. If ’quf’pl ,p1 > 1, is
convex on [a,b] then we have the inequality

fla)+af (b
‘ 144¢ —a/f bdqa:

Q@—a)<QQ+Q+Q%>k%
l+g (1+q)°

q(1—|—4q+q2)
X(ﬂ+q+fﬂl+®Jqufw)

where 0 < g < 1.

"Dy f (b)

¢ (14 3¢%+2¢°)
+ 2 3 ‘
(1+q+4¢*)(1+q)

p1>a
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Proof. Taking modulus in Lemma 1 and using the power mean inequal-

ity, we have
f(a)+aqf (b
| 1+44¢ —a/f

1
— b —
< 1+q 0/|1 (1+q)t |]Dfm+(1 t)b)]dt

1
sngf‘q@(/ul—(lw)tndqt)
0

1 P1
(/|(1—(1+q)t)|]quf(m+(1—t)b)}pldqt) .
0

1—L
pP1

. p1
Since ‘qu f‘ is convex, we have

1
/| (1= (1+q)t)|| *D, f(ta—i—(l—t)b)’pldqt
0

P1

1
< /I(l—(1+q)t)! [t Dy F@)" +(=t)] *Dy £ )" ] dyt
0
a(l+da+q") |, o, CO+3¢+2¢°) 1,
(1—0—q—|—q2)(1—|—q)3} Dy f(a) +<1+q+q2)(1+q)3} D, f(b)
We also have
1
- gy 1C+a+d)
0/\(1 (1 gyl = LI
This completes the proof. O

4. New Midpoint Type Inequalities for Quantum Integrals

In this section we will prove some new Midpoint inequalities for functions
whose ¢b-derivatives are convex.



208 Hiiseyin Budak

Lemma 2. Let f : [a,b] C R — R be a g¢-differentiable function on (a,b)
with ®D,f be continuous and integrable on [a,b], then

1
1+q

q(b—a) /#Dﬁuw+u—t j(p~)1%ﬂm+@—o@%t

0

b

N

a

where 0 < ¢ < 1.

Proof. We have

q(b—a) Tthqf(ta—i—(l—t /1<t——) Dyf (ta+ (1 —1)b) dyt

0

1 1
—g(b—a) /t”qu(ta+(1—t)b)dqt—é/”qu(ta+(1—t)b)dqt
0 _1
1

1
/thqf(ta+(1—t)b)dqt—é/quf(ta—i-(l—t)b)dqt
0

0

=q(b—a)

"Dyf (ta+ (1 —t)b)dyt| .

_l’_
Q|
c:\_qH
£~

(4.1)

By the equality (2.1), we have

/lf gta + 1—qt)b)—f(ta+(1—t)b)dt
J (1-q)(b—a) !

1
/tb of Ga+(1—1)b
0

_ 1 iqkf(qk+1a+(l_qk+1>b>_bia00 kf(qka+(1—qk>b>
=0

k=0
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:—q(bl_a)quf(qka—l—(1—qk)b) _biaquf (ha+ (1-*)0)

1 1 > fla
“b-a (E B 1) 2 (rax (1)) - q(b(—)a>

1
1
_a)o/f(ta+(1—t)b)dqt—

fla)
q(b—a)

q(b
(4.2)
Similarly we get

1 1
1

_ 1 [ flgta+(1—qt)b) — f(ta+ (1 —1)b)
a/”qu(taJr(l—t)b)dqt_ qo/

(1-q)(b—a)t

dyt

1 > 1 >

= ey o (e (L= ) ) S s (da (1= 44) )

k=0
1

-3 i (¢ e+ (1=a"1)b) = f(qha+ (1-d")b)]

k=0

B
Il
o

-

1 [ flgtat (1—q)b) — f(ta+ (L—1)b)
quf(ta—l—(l—t)b)dqt—q/ 000 o)

0

B 1 o qk+1 qk+1 1 o qk qk

B q(b—a)§f<1+qa+ (1_ 1+q> b>_q(b—a),§f<l+qa+ (1_ 1+q> b)
o ) g g g ¢

P S () A (2]

=awma [ (757) 0]

Jun
+
Q

Q|-
c:\

dyt

(4.4)
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If we substitute the equalities (4)-(??) in (4), we get

1
1+q

q(b—a) /thqf(ta+(1—t dt+/1(t__>

0

Fltat+ (1—t)b)dgt

/1f ta+(1—1) b)dqt—f(a+qb>

1+4+q

0
e

which completes the proof. O

Remark 3. If we take the limit ¢ — 1~ in Lemma 2, then Lemma 2
reduces to [10, Lemma 2.1].

Theorem 1. Let f : [a,b] C R — R be a g-differentiable function on (a, b)
with D, f be continuous and integrable on [a,b]. If ’quf} is convex on

[a,b] then we have the inequality

bia/f(x)bdqx_f(aliqu>

3
1+9)°1+q+¢)

—1 4 2q + 2¢?
1+9)°(1+q+¢)

Sq@—whw%ﬂ@} +['Dyf ®)

where 0 < ¢ < 1.

, We

obtain

Proof. Taking modulus in Lemma 2 and using convexity of ‘bD
1 ; b a+ Qb
= [ S =i (T57)
a
T

<q(b—a) /thqf(ta—l—(l—t dt+/(t——> D,f (ta+ (1 —t)b)d,t

0
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1
T+q

<q(b—a) /t‘quf ta—l—(l—t)b) dgt + / (——t) ]bD f(ta+(1—t)b))dt
0

1
1+4q

<q=a) | [ t[t]'Def @]+ =0)]'Dus ®)]] dt

0

/“(~%) "Dt @]+ (1=1) 'Df )

1
1+q

—q(b—a) }quf(a)‘ /ththr ——t tdyt
0 T

1

1+q

1
—i—‘quf(b)) 0/ t(1—1t)d T/(__t> (1-t)d

It can be easily that

! - >%f+q+fw
1
_/<$_ ) (1+4¢q)° (2+q+q2)’

q
1+ (1 +q+¢)

t(l—t)dqt:

o\ﬂ

and
—1+q+4¢?

_1<3_Q“_”%“%Lwﬁu+ww%

By these equalities the proof is completed. O
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Remark 4. If we take the limit ¢ — 1~ in Theorem 1, then Theorem 1
reduces to [10, Theorem 2.2].

Theorem 2. Let f : [a,b] C R — R be a ¢-differentiable function on (a, b)

with D, f be continuous and integrable on [a,b]. If’ s ,p1 > 1, s

convex on [a,b] then we have the inequality

b

i [ @) Y -1 ()

a

1

1\
< o0-9 ()

1 b P q b P ﬁ
X ((1+q)3(1+q+q2)’qu(a) 1t a (1+q+q)} of (D) )
2 b P —14+q+4° b p1 o
((1+q)3(1+q+q2)‘qu(a) +(1+q)3(1+Q+q2)\qu<b) ) ]

where 0 < ¢ < 1.

Proof. Taking modulus in Lemma 2 and using the power mean inequal-
ity, we obtain

bia/bf(x) g _f<aiqu)

L 1—L 1

1+q T
< q(b—a) /tdqt / bD Flta+ 1 —t)b)| " dgt
0 0
1—L L
1 P 1 P
1 1
/(6—t>dqt /(a—t>’ bDy fta+ (1 —t)b)| " dgt

. p1
Since ‘qu f‘ is convex, we have
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B

/t\ "Dy f(ta+ (1 —1)b)|" dgt
0
< [t[ePous @+ -0 Dt )] det
0
— 1 b p1 q b P
1+ (A +gt ) "Dut @+ 1+9°1+q+¢ "Dt ()
and similarly
Il
[ (5 =t)| 'y ftar a—on)]" de
2 b Pt “l4+q+q® P
(1+q)3(1+q+q2)’qu(a) (1+q)3(1+q+q2)]1)qf(b)

On the other hand we can easily see that
1

T+q 1
[ tdgt = ( 1+1q)3 = (% — t) d4t. This completes the proof. O
0 1

1+q

5. Conclusions

In this paper, we establish some Trapezoid and Midpoint type inequalities
for gb-integrals. In order to validate that their generalized behavior, we
show the relation of our results with previously published ones. In the
future works, authors can obtain similar inequalities by using the different
kind convexities.
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