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Abstract:
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sive applications in robotics, since the metric dimension can
represent the minimum number of landmarks, which uniquely
determine the position of a robot moving in a graph space.
Finding the metric dimension of a graph is an NP-hard prob-
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1. Introduction

Consider the following problem, which was studied in [19]. A robot moves
in a space, which is modeled by a graph. The robot moves from a node
to a node, and it can locate itself by the presence of distinctively labeled
landmark nodes. The position of robot is represented by its distances to a
set of landmarks. The problem is to find the minimum number of landmarks
required, and to find out where they should be placed, such that the robot
can always determine its location. In graph theory language, a minimum
set of landmarks which uniquely determine the position of robot is called
a metric basis, and the minimum number of landmarks is called the metric
dimension.

Slater [24, 25] introduced the concept of metric dimension and stud-
ied independently by Harary and Melter [8]. Slater referred to a metric
dimension of a graph as its location number and motivated the study of
this invariant by its application to the placement of minimum number of
loran /sonar detecting devices in a network so that the position of every
vertex in the network can be uniquely represented in terms of its distances
to the devices in the set. Applications of the study of metric dimension to
the problem of pattern recognition and image processing are given in [20].

Let G be a connected graph with the vertex set V(G). The distance
d(u,v) between two vertices u,v € V(G) is the number of edges in a
shortest path between them. A vertex w resolves a pair of vertices u,v
if d(u,w) # d(v,w). For an ordered set of vertices W = {wy,wa,...,w,},
the representation of distances of a vertex v with respect to W is the ordered
z-tuple

r(v|W) = (d(v,wy),d(v,w3), ... ,d(v,w,)).

A set of vertices W C V(G) is a resolving set of G if every two vertices
of G have distinct representations (if every pair of vertices of G is resolved
by some vertex of W). The cardinality of a smallest resolving set is called
the metric dimension and it is denoted by dim(G). Note that the i-th
coordinate in r(v|W) is 0 if and only if v = w;. This means that in order
to show that W is a resolving set of G, it suffices to verify that r(u|W') #
r(v|W) for every pair of distinct vertices u,v € V(G) \ W.

The metric dimension of various classes of graphs has been investigated
for four decades. From [7] it follows that the question whether the metric
dimension of a graph is less than a given value, is an NP-complete prob-
lem. In [17] and [22] the authors considered the metric dimension of the
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lexicographic product of graphs and results on the metric dimension of the
corona product of graphs were presented by Iswadi, Baskoro and Siman-
juntak [16]. Céceres et. al. [5] studied the Cartesian product GOH of two
graphs G and H. They proved that for all m,n > 3,

3, if mornisodd
4, otherwise,

and for all m > 2 and n > 3, we have

2, ifnis odd
3, if n is even,

dim(P,8C,,) = {

where C), is the cycle of order n and P, is the path of order m. Naeem
and Imran [21] used a different technique to prove this result and they also
studied the metric dimension of the Cartesian product of the path and the
square of the cycle. They showed that for n > 5,

3, if n=0,2,3 (mod 4)
<4, otherwise.

dim(P,,0C?%) = {

To find the metric dimension of different families of graphs has been a
continuous subject of interest for researchers. The metric dimension of Cay-
ley digraphs has been obtained in [6]. Metric dimension of some chemical
graphs (nanotubes) has been found recently in [23]. The metric dimension
of unicyclic graphs, regular bipartite graphs, Jahangir graph, Mobius lad-
der and circulant graphs has been discussed in [26], [3], [27], [1] and [14]
respectively. Examples of families of graphs with constant metric dimension
can be found in [9, 10, 11, 12, 13, 15, 18].

In this paper, we solve the problem of metric dimension for kayak paddles
graph and cycles with chord. We proved that both families possess the
constant metric dimension 2.

2. Metric dimension of Kayak Paddles graph

A kayak paddle is a graph made of two cycles joined by a path. We can de-
fine K P(l,m,n) as two cycles of length [ and m joined by a path of length n.
Forl>3,m > 3,n > 2, wehave V(KP(l,m,n)) = {u1,us,...,u;,vi,ve,...,
Upny W1, W2, -+« yWp—1} and E(KP(l,m,n)) = {uuitr : 1 <i < FU{vvi41 :
1 <i<m}U{wjwirr:1<i<n-—2}U{ugwi,w,—1v1}, where uj11 = ug
and v,;,4+1 = v1. As a convention, we will label the vertices of Cj in counter
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clockwise direction and vertices of C), in clockwise direction. The graph
KP(8,7,5) is shown in Figure 1.

Figure 1: The graph K FP{8,7.5)

Theorem 1. Let G = KP(l,m,n), then dim(G) = 2.

Proof.  As metric dimension of a graph is 1 if and only if it is a path [4],
this proves the fact that

(2.1) dim(G) > 2.

For reverse inequality, we will prove the existence of a resolving set of
cardinality 2. There are three different array, which need to be discussed
here.

Case 1: When [ and m both are even.

Suppose | = 2p and m = 2q, where p, ¢ > 2. Consider the set W = {u,, v},
then the representation of each vertex with respect to W is given by:

] p—i,g+n—2+44) for 1<i<p;
T(UZ|W)_{(i—p,2p+q+n—z’) for p+1<i<lI

‘ ) (p+n—2+4,q—1i) for 1<i<g;
r(uz|W)—{(p+2q+n—i,i—q) for ¢g+1<i<m.

r(wiW)=p-1+i,g+n—-1—1i) for1<i<n-—1.

Case 2: When [ is odd and m is even.


Marisol Martínez
figu-1
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In this case, we have the following subcases:

Subcase I: [ =3 and m =2¢q, ¢ > 2

Consider the set W = {ug, v}, then the representation of each vertex with
respect to W is given by:

' ) 2—ig+n—2+1d) forl1<i<2
W‘Z‘W){ (1,g+mn) fori=3.

' ) (n+i,q—id) for1<i<g;
T(vz‘W)_{(Zq—i—n—i-Q—i,i—q) forg+1<i<m.

r(w;|W)=(14+1iq9g+n—-1—14) for1<i<n-—1.

Subcase II: [ = 5 and m = 2¢, ¢ > 2 Consider the set W = {ua, v4},
then the representation of each vertex with respect to W is given by:

(2—i,g+n—2+i) for1<i<2
r(u;|W) =2 (1—2,q+n+1) for3<i<4;
(2,g+mn) fori=0>5.

‘ ) (n+i,q—1) forl1<i<g;
T(UZ|W)_{(2q+n+2—]:”i—q) forg+1<i<m.

r(wiW)=(1+i,g+n—-1-i) ,1<i<n-—1.

Subcase IIl: [ =7 and m =2q, ¢ > 2

Consider the set W = {ug3, v}, then the representation of each vertex with
respect to W is given by:

B—i,g+n—2+1) forl<i<s3;
r(u|W)=2 (i—3,g+n+2) ford<i<5h;
(B,g+n+7—1i) for6<i<T.

‘ ) (n+1+4,g—1i) forl1<i<g;
r(szW)—{(2q+n+3_¢7i_q) for g+1<i<m.

r(wi|W)=2+i,g+n—-1—1) forl1<i<n-—1.
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Subcase IV: [ =2p+ 1, p>4 and m =2q, ¢ > 2
Consider the set W = {u,, vy}, then the representation of each vertex with
respect to W is given by:

(p—i,qg+n—2+1) forl<i<p;
(t—p,p+q+n—1) for

r(u|W) =4 p+1<i<p+2;
(t—p,2p+q+n+1—1i) forp+3<i<2p—1;
(p,2p+q+n+1—i) for2p<i<l.

4 ) (p+n—-2414,q—1i) forl<i<g;
T(UZ\W)—{(p+2q+n—i,z’—q) forg+1<i<m.

r(wlW)y=p—-1+i,g+n—-1—14) for1<i<n-—1.
Case 3: When |/ and m both are odd.
In this case, we have the following subcases:

Subcase I: [ = 3 and m = 2¢q+1, q¢ > 1 There are four possibilities, which
must be consider here.

(i): If m = 3. Consider the set W = {ug, v2}, then the representation of
each vertex with respect to W is given by:

' ) @2—id,n+19) forl1<i<2
r(wlW) _{ (1,n+2) fori=3.

, f (n+i4,2—4) for1<i<2;
T(U'L‘W) _{ <n+27 1) fOI‘i:S‘
r(wiW)=(1+i,n+1—4) forl<i<n-—1

(ii): If m = 5. Consider the set W = {uga,v2}, then the representation of
each vertex with respect to W is given by:

' ) @2—id,n+id) forl<i<2
r(wlW) _{ (1,n+2) fori=3.
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(n+4,2—1) forl<i<2
r(v|W)=¢ (n+3,i—2) for3 <i<4;
(n+2,2) fori=>.

r(wiW)=(1+i,n+1—i) forl<i<n-—1

(iii): If m = 7. Consider the set W = {ug,v3}, then the representation of
each vertex with respect to W is given by:

' ) @2=in+141) forl<i<2;
T(““‘W)_{ (1,n+3) fori=3.

(n+1i,3—14) forl<i<3;
(W) =< (n+4,i—3) ford<i<5;
(n+9—-14,3) for6<i<7.

r(wiW)=(1+i,n+2—1) forl<i<n-—1

(iv): If m = 2¢+ 1, ¢ > 4. Consider the set W = {ug,v,}, then the
representation of each vertex with respect to W is given by:

' ) @—d,g+n—2+14) forl<i<2
T(“Z‘W)_{ (1,g+n) fori=3.

n+i,q—1i) forl<i<g;
g+n+1,i—q) forg+1<i<qg+2;
2g+n+3—i,i—q) forqg+3<i<2q—1;
2g+n+3—1i,q) for2qg<i<m.

(
r(0 W) = E
(

r(wi|W)=(14+4i,g+n—-1—1) forl1<i<n-—1.

Subcase II: [ =5 and m=2¢+1, ¢ > 2

There are three possibilities, which must be consider here.

(i): If m = 5. Consider the set W = {ug, v}, then the representation of
each vertex with respect to W is given by:

2—i,n+i) forl<i<2;
r(u|W) =14 (i—2,n+3) for3<i<4;
(2,n+2) fori=>5.
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(n+4,2—1) forl<i<2
r(vi|W)=¢ (n+3,i—2) for3 <i<4;
(n+2,2) fori=>.

r(wi|W)=(14+i,n+1—-14) forl<i<n-—1.

(ii): If m = 7. Consider the set W = {uga,v3}, then the representation of
each vertex with respect to W is given by:

(2—in+1+1d) forl1<i<2;
r(u W) =14 (i—2,n+4) for3<i<4
(2,n+3) fori=>5.

(n+1i,3—1) forl<i<s3;
r(iW) =14 (n+4,i—3) ford<i<5;
(n+9—14,3) for6<i<7.

r(wi|W)=(1+i,n+2—4) forl<i<n-—1

(iii): If m = 2¢+ 1, ¢ > 4. Consider the set W = {ug,v,}, then the
representation of each vertex with respect to W is given by:

(2—i,g+n—2+41) forl<i<2
r(w|W) =2 (i—2,g+n+1) for3<i<4;
(2,q+mn) fori=0>5.

(n—i—i,Q—i) for 1 <i<g;
Pl )= ) @+ Lizq) forgtl<i<q+
) (2q4n+3—di—q) forg+3<i<2g-1;
(

2g+n+3—1i,q) for2qg<i<m.

r(wi|B)=(1+4,qg+n—1—4) for1<i<n-—1.

Subcase IIl: [ =7 and m=2¢+1,¢>3

There are two possibilities, which must be consider here.

(i): If m = 7. Consider the set W = {ug, v3}, then the representation of
each vertex with respect to W is given by:

3—i,n+1+1) forl<i<3;
r(ui| W) = (i1—3,n+5) ford<i<5h;
(3,m+10—14) for6<:<T.
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(n+1+1i,3—1)
for 1 <14 <3;
(n+5,1—3)
for 4 <1 <5;
(n+10—14,3)
for 6 <i<T.

r(wW)=2+i,n+2—4) forl<i<n-—1.

(ii): If m = 2¢+ 1, ¢ > 4. Consider the set W = {us,v,}, then the
representation of each vertex with respect to W is given by:

(B—id,g+n—24+1i) forl<i<3;
r(w|W) =2 (i—3,g+n+2) ford<i<5;
(B,g+n+7—1i) for6<:<T.

(n+1+i,qg—1) forl<i<g;

r(0i| B) = (q+n+2,i—q) forqg+1<i<qg+2;
(2¢+n+4—i,i—q) forq+3<i<2q-—1;
(2¢g+n+4—1i,q) for2q<i<m.

r(wi|B)=2+1i,q+n—1—14) forl1<i<n-—1.

Subcase IV: [=2p+1,p>4and m=2q+1,q>4
Consider the set W = {up, vy}, then the representation of each vertex with
respect to W is given by:

(p—i,qg+n—2+1) forl<i<p;

(g W) = (it—p,p+qg+n—1) forp+1<i<p+2;
(i—p,2p+q+n+1—1i) forp+3<i<2p—1;
(p,2p+qg+n+1—1) for2p<i<l.

(p+n—2+4+i,q—1) forl<i<g;
(p+q+n—1i—q) forq+1<i<q+2;
(p+2¢q+n+1—ii—q) forg+3<i<2¢-—1
(p+2¢+n+1—1i,q) for2g<i<m

T(UZ|W) =

r(wiW)=p—-1+i,g+n—-1—1i) forl1<i<n-—1.
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It can be seen that, for every case, each vertex has unique representation
with respect to W, which proves W to be resolving set and hence

(2.2) dim(G) < 2.

Now from inequalities (2.1) and (2.2), it can be concluded that metric
dimension of KP(l,m,n) =dim(G) =2. O

Remark: Note that KP(1,m,1) has also metric dimension 2. In this case,
V(KP(l,m,1)) = {ui,ua,...,u;,v1,02,...,vm}and E(KP(l,m,1)) = {uuit1 :
1 <i<lPU{vvitr: 1 <i<m}U{ujvr}, where v = ug and vy,41 = v1.
The resolving set in each case is the same as discussed above, however for
representations of vertices with respect to resolving set, eliminate 7 (w;| W)
completely and put n = 1 in r(u;|W) and r(v;|W).

3. Metric dimension of Cycles with chord

Let us denote the graph constructed from a cycle C), by joining two vertices
whose distance in the cycle is ¢, by CL. Forn > 4, 2 <t < n — 2,
the graph C! is of course also the graph C7~*. Therefore, to find the
metric dimension, it suffices to consider ¢ < [§] for given value of n. Let
V(CE) = {u,ug,...,up} and E(CY) = {wjuiy1 : 1 < i < n}U {ujups1}
where u,4+1 = u1. As a convention, we will label the vertices in clockwise
direction. For example C}, is illustrated in Figure 2.

“a

Figure 2: The graph CF,

Theorem 2. Let G = C!, then dim(G) = 2.
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Proof. Clearly we have
(3.1) dim(G) > 2

since metric dimension of a graph is 1 if and only if it is a path [4]. For
reverse inequality, we will show that there exist a resolving set of cardinality
2. For this, the following array need to be discussed.

Case 1: When n and ¢t both are even.

Suppose n = 2k, t = 2p. Consider the set W = {ujip, Uttpy1}. The
representation of each vertex w; with respect to W is given by:

k—p—1+ik—p—1+41i) forl<i<p;
r(wW)=2 (k+p—i,k+p+1—i) forp+1<i<k-+np;
(i—k—pi—k—p—1) fork+p+1<i<n.

Case 2: When n is odd and ¢ is even.

Suppose n = 2k + 1, t = 2p. Consider the set W = {upypi1, Uppi2}. The
representation of each u; with respect to W is given by:

(k—p+ik—p—141) forl<i<p;

(k,k) fori=p+1;

(k+p+1—ik+p+2—i) forp+2<i<k+p+1;
(i—k—-p—1i—k—p—2) fork+p+2<i<n.

r(w|W) =

Case 3: When n is even and ¢ is odd.

Suppose n = 2k, t = 2p+ 1. Consider the set W = {upipi1, Upypr2}. The
representation of each vertex u; with respect to W is given by:

(k—p—1+ik—p—2+1i) for1<i<p+1;
r(w|W)=¢ (k+p+1—-i,k+p+2—1) forp+2<i<k+p+1;
(t—k—-p—1li—-k—p—2) fork+p+2<i<n.

Case 4: When n and ¢ both are odd.

Suppose n = 2k 4+ 1, t = 2p + 1. Consider the set W = {upipt1, Uktpra}-
The representation of each vertex u; with respect to W is given by:
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(k—p—1+ik—p—1+1i) forl1<i<p+1;
r(w|W)=< (k+p+1—ik+p+2—i) forp+2<i<k+p+1;
(t—k—-p—1lyi—-k—p—2) fork+p+2<i<n.

It can be seen that, for every case, each u; has unique representation
with respect to W, which proves W to be resolving set and hence

(3.2) dim(G) < 2.

By comparing inequalities (3.1) and (3.2), it can be seen that metric
dimension of C}, = dim(G) = 2.

Conclusion

The metric dimension for the graph K P(n,n,1), n > 3 has been discussed
in [2]. Thus, we have found the metric dimension of KP(l,mn) in more
general frame. The family C!, is also interesting, as it is similar to a circle
but distance between vertices of circle get change by adding one extra edge
here. Important phenomena is that there is no change in metric dimension
i.e. dim(Cy) = dim(C?). In this way, our work in this direction naturally
arise a question of characterization of changes in graph which could change
the metric dimension of that graph by adding just one extra edge.
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