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1. Introduction and statements of results

For a long time, the interest of mathematicians in singularly continuous
measures and probability distributions was fairly weak, which can be ex-
plained, on the one hand, by the absence of adequate analytic apparatus for
specification and investigation of these measures, and, on the other hand, by
a widespread opinion about the absence of applications of these measures.
Due to the fractal explosion and a deep connection between the theory of
fractals and singular measures, the situation has radically changed in the
last years. It was proved that singular distributions of probabilities are
dominant for many classes of random variables. Possible applications in
the spectral theory of self-adjoint operators serve as an additional stimulus
for a further investigation of singularly continuous measures. The purpose
of this paper is to show that the multifractal Hausdorff and packing mea-
sures are mutually singular. We first recall the definition of the multifractal
Hausdorff measure and the the multifractal packing measure. For an arbi-
trary Borel probability measure µ on Rn, Olsen introduced two parameter
families of measures,½

Hq,t
µ ; q, t ∈ R

¾
and

½
Pq,t
µ ; q, t ∈ R

¾
,

based on certain generalizations of the Hausdorff measure and of the pack-
ing measure. For q, t ∈ R, E ⊆ Rn and δ > 0, write

Pq,t
µ,δ(E) = sup

(X
i

µ
³
B(xi, ri)

´q³
2ri
´t)

, E 6= ∅,

where the supremum is taken over all centered δ-packing of E. Moreover
we can set Pq,t

µ,δ(∅) = 0. Also, we define

Hq,t
µ,δ(E) = inf

(X
i

µ
³
B(xi, ri)

´q³
2ri
´t)

, E 6= ∅,

where the infinimum is taken over all centered δ-covering of E. Moreover
we can set Hq,t

µ,δ(∅) = 0. Especially, we have the conventions 0q = ∞ for
q ≤ 0 and 0q = 0 for q > 0.

The packing and Hausdorff pre-measures are defined respectively by

Pq,t
µ (E) = inf

δ>0
Pq,t
µ,δ(E) and Hq,t

µ (E) = sup
δ>0

Hq,t
µ,δ(E).
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The function Pq,t
µ is not necessarily countably subadditive, also the set func-

tion Hq,t
µ is not necessarily monotone. For these reasons, Olsen introduced

the packing and Hausdorff measures denoted respectively by Pq,t
µ and Hq,t

µ

are defined as following

Pq,t
µ (E) = inf

E⊆
S

i
Ei

X
i

Pq,t
µ (Ei) and Hq,t

µ (E) = sup
F⊆E

Hq,t
µ (F ).

The functions Hq,t
µ and Pq,t

µ are metric outer measures and thus mea-

sures on the Borel family of subsets of Rn. It is easy to see that Pq,t
µ ≤ P

q,t
µ .

Moreover, by using Besicovitch’s theorem, there exists an integer ξ ∈ N,
such that Hq,t

µ ≤ ξPq,t
µ (see [10]). The measure Hq,t

µ is a multifractal gener-
alization of the centered Hausdorff measure, whereas Pq,t

µ is a multifractal
generalization of the packing measure. In fact, in the case when t ≥ 0,
H0,tµ = Ht and P0,tµ = Pt, where Ht denotes the t-dimensional centered
Hausdorff measure and Pt denotes the t-dimensional packing measure.

The measuresHq,t
µ and Pq,t

µ and the pre-measure Pq,t
µ assign in the usual

way a multifractal dimension to each subset E ofRn. They are respectively
denoted by bqµ(E), B

q
µ(E) and Λ

q
µ(E) and satisfy

bqµ(E) = inf

½
t ∈ R; Hq,t

µ (E) = 0

¾
, Bq

µ(E) = inf

½
t ∈ R; Pq,t

µ (E) = 0

¾
,

Λqµ(E) = inf

½
t ∈ R; Pq,t

µ (E) = 0

¾
.

The number bqµ(E) is an obvious multifractal analogue of the Hausdorff
dimension dimH(E) of E whereas Bq

µ(E) and Λ
q
µ(E) are obvious multi-

fractal analogues of the packing dimension dimP (E) and the pre-packing
dimension ∆(E) of E respectively. In fact, it follows immediately from the
definitions that

dimH(E) = b0µ(E), dimP (E) = B0µ(E) and ∆(E) = Λ0µ(E).

Next, for q ∈ R, we define the dimension functions bµ, Bµ and Λµ by

bµ(q) = bqµ

³
suppµ

´
, Bµ(q) = Bq

µ

³
suppµ

´
and Λµ(q) = Λ

q
µ

³
suppµ

´
. It is

well known that the functions bµ, Bµ and Λµ are decreasing and Bµ, Λµ
are convex and satisfying bµ ≤ Bµ ≤ Λµ.

Multifractal analysis is a natural framework to finely describe geomet-
rically the heterogeneity in the distribution at small scales of the elements
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of compactly supported Borel positive and finite measures on Rn. Specif-
ically, this heterogeneity can be described via the lower and upper local
dimensions of a measure µ, namely

αµ(x) = lim inf
r→0

logµ(B(x, r))

log r
and αµ(x) = lim sup

r→0

logµ(B(x, r))

log r
.

When αµ(x) = αµ(x), we refer to the common value as the local di-
mension of µ at x, and we denote it by αµ(x). For α ≥ 0, let us introduce
the fractal sets which are also very natural, and the most studied in the
literature,

Eα =

½
x ∈ suppµ; αµ(x) ≥ α

¾
, E

α
=

½
x ∈ suppµ; αµ(x) ≤ α

¾
and

E(α) = Eα ∩E
α
.

Inspired by the observations made by physicists of turbulence and sta-
tistical mechanics, mathematicians derived, and in many situations justified
the heuristic claiming that for a measure possessing a self-conformal like
property, its Hausdorff spectrum should be obtained as the Legendre trans-
form of a kind of free energy function called Lq-spectrum. This gave birth
to the abundant literature on the so-called multifractal formalisms, which
aim at linking the asymptotic statistical properties of a given measure with
its fine geometric properties. One of the main importance of the multi-
fractal measures Hq,t

µ and Pq,t
µ , and the corresponding dimension functions

bµ, Bµ, and Λµ is due to the fact that the multifractal spectra functions
fµ and Fµ are bounded above by the Legendre transforms of bµ and Bµ,
respectively, i.e.,

fµ := dimH(E(α)) ≤ b∗µ(α) and Fµ := dimP (E(α)) ≤ B∗µ(α)

for all α ≥ 0.
In general, such a minoration is related to the existence of an auxiliary

measure which is supported by the set to be analyzed. Olsen also gives a
result in such a way and supposes the existence of a Gibbs’ measure at a
state (q,Bµ(q)) for the measure µ, i.e., the existence of a measure νq on
suppµ and constants K,K > 0 with K = K−1 and δ > 0 such that for
every x ∈ suppµ and every 0 < r < δ,

Kµ(B(x, r))q(2r)Bµ(q) ≤ νq(B(x, r)) ≤ Kµ(B(x, r))q(2r)Bµ(q)
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to conclude that

dimH(E(α)) = dimP (E(α)) = b∗µ(α) = B∗µ(α), where α = −B0µ(q).
The authors in [7, 8, 10] provided some examples of the mutual sin-

gularity of multifractal Hausdorff and packing measures for graph directed
self-similar measures inRn with totally disconnected support, cookie-cutter
measures [10], for some homogeneous Moran measures [7, 8] and for self-
similar measures satisfying the significantly weaker open set condition [5, 6].
The aim of this article is to show that the multifractal Hausdorff and
packing measures are mutually singular and provides a positive answer
to Olsen’s questions [10, Questions 7.1 and 7.2] in a more general setting.
Our results apply to a family of measures supported by the full 5-adic grid
of [0, 1], namely the quasi-Bernoulli measures.

These more general results are stated as follows:

Theorem 1. Assume that bµ = Bµ and Bµ is differentiable at p and q
with B0µ(p) 6= B0µ(q). Then

Hp,bµ(p)
µ ⊥Hq,bµ(q)

µ on suppµ.

Theorem 2. Assume there exists a Gibbs measure νq for µ at (q,Bµ(q))
and Bµ is differentiable at p and q. Then, for all p, q ∈ R with B0µ(p) 6=
B0µ(q) we have

Hp,bµ(p)
µ ⊥Hq,bµ(q)

µ and Pp,Bµ(p)
µ ⊥Pq,Bµ(q)

µ on suppµ.

Remark 1. The results of Theorems 1 and 2 hold if we replace the multi-
fractal function Bµ by the function Λµ.

2. Proof of the main results

2.1. Proof of Theorem 1

It follows from [11, Theorem 1.1] that

lim
r↓0

logµ
³
B(x, r)

´
log r

= −B0µ(q), Hq,bµ(q)
µ − a.e.

which implies that Hq,bµ(q)
µ

µ
E(−B0µ(q))

¶
= 1. Finally, we conclude that if

p, q ∈ R with B0µ(p) 6= B0µ(q), then

Hp,bµ(p)
µ ⊥Hq,bµ(q)

µ on suppµ.
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2.2. Proof of Theorem 2

We present some tools, as well as lemmas, which will be used in the proof
of our main result.

Lemma 1. For any q ∈ R, we have

Kνq ≤ Hq,Bµ(q)
µ on suppµ.

Proof. Fix δ > 0 and let

µ
B (xi, ri)

¶
i∈N

be a centered δ-covering of suppµ.

Then

νq(suppµ) ≤
X
i

νq (B (xi, ri))

≤ K
X
i

µ (B(xi, ri))
q (2ri)

Bµ(q) .

Consequently

Kνq(suppµ) ≤ H
q,Bµ(q)
µ,δ (suppµ) ≤ Hq,Bµ(q)

µ (suppµ) ≤ Hq,Bµ(q)
µ (suppµ)

which achieves the proof of Lemma 1.

Lemma 2. For any q ∈ R, we have

Pq,Bµ(q)
µ ≤ Kνq on suppµ.

Proof. Let F be a closed subset of suppµ. For δ > 0 write

B(F, δ) =

½
x ∈ suppµ; dist(x, F ) ≤ δ

¾
.

Since F is closed, B(F, δ)& F for δ & 0. Then for all ε > 0, there exists
δ0 satisfying

νq
³
B(F, δ)

´
≤ νq(F ) + ε, ∀ 0 < δ < δ0.

Fix δ > 0 and let

µ
B(xi, ri)

¶
i
be a centered δ-packing of F . Observing

that
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K
X
i

µ (B(xi, ri))
q (2ri)

Bµ(q) ≤
X
i

νq
³
B (xi, ri)

´
≤ νq

³
B(F, δ)

´
≤ νq(F ) + ε

≤ νq(suppµ) + ε.

It results that

Pq,Bµ(q)
µ (F ) ≤ K

µ
νq(suppµ) + ε

¶
.

Letting ε ↓ 0, now yields

Pq,Bµ(q)
µ (suppµ) ≤ Pq,Bµ(q)

µ (suppµ) ≤ Kνq(suppµ)

which proves the desired result.

Let us now prove our main theorem. It follows easily from Lemmas 1
and 2 that

Kνq ≤ Hq,bµ(q)
µ ≤ ξPq,Bµ(q)

µ ≤ ξKνq on suppµ.

It results that

1

ξK
Hq,bµ(q)
µ ≤ νq ≤

1

K
Hq,bµ(q)
µ on suppµ

and
1

K
Pq,Bµ(q)
µ ≤ νq ≤

ξ

K
Pq,Bµ(q)
µ on suppµ.

Since νq is the Gibbs measure for µ at (q,Bµ(q)) and if we assume that Bµ

is differentiable, it is shown in [4, 10] that

lim
r↓0

logµ
³
B(x, r)

´
log r

= −B0µ(q), νq − a.e.,

this implies that νq

µ
E(−B0µ(q))

¶
= 1. We therefore infer that if p, q ∈ R

with B0µ(p) 6= B0µ(q), then

νp⊥νq.(2.1)

Finally, the result follows from (2.1).
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3. An example

Let F = ∪n≥1Fn such that Fn stands for a sequence of the 5-adic intervals.
If x belongs to [0, 1[, In(x) stands for the interval Fn which contains x.
Now, considering I = Iε1ε2···εn and J = Iε01ε02···ε0p , we set

IJ = Iε1ε2···εnε01ε02···ε0p .

A probability measure on [0, 1[ is said to be quasi-Bernoulli if there exists
C > 0 such that, for any I, J ∈ F , one has

1

C
µ(I)µ(J) ≤ µ(IJ) ≤ Cµ(I)µ(J).

We say that the measure µ has a strong separation condition if

µ ∈ D :=
n
µ is a quasi-Bernoulli measure with(

µ(Iε1ε2···εn) = 0, if ∃ i εi /∈ {1, 3}
µ(Iε1ε2···εn) 6= 0, if ∀ i εi ∈ {1, 3}

)
.

Let µ ∈ D, for any q, t ∈ R, one defines

Kµ(q, t) = lim
δ→0

sup

⎧⎨⎩
∗X
j

µ(Ij)
q|Ij |t; Ij ∈ F , |Ij | ≤ δ, Ii ∩ Ij = ∅, ∀i 6= j

⎫⎬⎭ ,

where the star means that the terms for which µ(Ij) = 0 are removed (a
convention valid throughout this example), and let

τµ(q) = sup

½
t ∈ R; Kµ(q, t) = +∞

¾
.

The next lemma compare the function τµ(q) to Λµ(q).

Lemma 3. One has τµ(q) = Λµ(q).

Proof. It is clear that if µ ∈ D, then

suppµ =
\
n≥1

[
ε1ε2 · · · εn
εi∈{1,3}

Iε1ε2···εn .

For δ > 0, let (Ij)j be a δ-packing of [0, 1[ and t > Λµ(q). For any j there
exists nj ∈N∗ such that Ij ∈ Fnj , xj ∈ Ij ∩K and

Ij ⊆ B(xj , 5
−nj ), µ(Ij) = µ(B(xj , 5

−nj )).
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The strong separation condition implies that

µ
B(xj , 5

−nj )
¶
j
is a δ-packing

of suppµ. Therefore

X
j

µ(Ij)
q|Ij |t ≤

X
j

µ(B(xj , 5
−nj ))q(2× 5−nj )t

≤ Pq,t
µ,δ(K),

which implies that

sup
X
j

µ(Ij)
q|Ij |t ≤ P

q,t
µ,δ(suppµ) and Kµ(q, t) ≤ P

q,t
µ (suppµ) < +∞

which proves that τµ(q) ≤ Λµ(q).

The converse inequality is obvious, indeed, let t and δ be two real num-

bers such that t > τµ(q) and δ > 0. Let

µ
B(xj , rj)

¶
j
be a δ-packing of

suppµ. Fix j, since xj ∈ suppµ, there exits nj ∈ N∗ such that

1

5nj
≤ rj <

1

5nj−1
,

which implies that

Inj (xj) ⊆ B(xj , rj) and µ(Inj (xj)) ≤ µ(B(xj , rj)).

Also, eachB(xj , rj) is covered by at most three 5-adic intervals Ij,1, Inj−1(xj), Ij,2.
Also, the strong separation condition ensures that

µ(B(xj , rj)) ≤ µ(Inj−1(xj)).

We can see from the construction of measure µ that, there exists a constant
C > 0 such that

µ(B(xj , rj)) ≤ Cµ(Inj (xj)).

It results that, there exists a δ-packing (Inj )j of [0, 1[ such that

µ(Inj ) ≤ µ(B(xj , rj)) ≤ Cµ(Inj ).(3.1)

One has
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X
j

µ(B(xj , rj))
q(2rj)

t ≤ Cq,t

X
j

µ(Inj )
q|Inj |t

≤ Cq,t sup
X
j

µ(Inj )
q|Inj |t,

which implies that

Pq,t
µ (suppµ) ≤ Cq,tKµ(q, t) < +∞.

Consequently, we have Λµ(q) ≤ t. Finally, we obtain Λµ(q) ≤ τµ(q) and the
proof ends. 2

It is shown in [3, 12] that, if µ ∈ D then there exists a measure νq such
that for all I ∈

½
Iε1ε2···εn ∈ Fn; εi ∈ {1, 3}

¾
,

1

K
µ(I)q|I|τµ(q) ≤ νq(I) ≤ Kµ(I)q|I|τµ(q), K > 0.

By using Lemma 3 and (3.1), there exist two constants K > 0 and K > 0
such that

Kµ(B(x, r))q(2r)Λµ(q) ≤ νq(B(x, r)) ≤ Kµ(B(x, r))q(2r)Λµ(q)

for all x ∈ suppµ and 0 < r < 1,

Heurteaux in [9] proved that the function Λµ is differentiable at q ∈ R.
Now, it follows from Remark 1 that, for any p, q ∈ R with Λ0µ(p) 6= Λ0µ(q),

Hp,bµ(p)
µ ⊥Hq,bµ(q)

µ and Pp,Bµ(p)
µ ⊥Pq,Bµ(q)

µ on suppµ.

Remark 2. 1. Our main results have been proved rigorously for graph
directed self-similar measures in Rn with totally disconnected sup-
port, cookie-cutter measures [10], for some homogeneous Moran mea-
sures [7, 8] and for self-similar measures satisfying the significantly
weaker open set condition [5, 6]. Also, these results hold for Mandel-
brot measures (see [3] for the definition).

2. The results of Theorems 1 and 2 hold if we replace the multifractal
Hausdorff and packing measures by the multifractal Hewitt-Stromberg
measures, see [1, 2] for the precise definitions.
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