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1. Introduction

Let n be a positive integer and Zn be the ring of integers modulo n. In 1990,
Grimaldi [3] introduced the notion of unit graph denoted as G(Zn) based on the
elements of Zn and two distinct vertices x and y are adjacent if and only if x+ y is
a unit of Zn. This investigation was further continued by Ashrafi et al. [2], where
author’s were interested to generalize the unit graph G(Zn) to G(R) for an arbitrary
associative ring R. Now a days, there is an enormous amount of literature built up on
several parameters of unit graphs. It would be too unwieldily to cite all references,
but a few pioneering papers like [1, 8] are worth comprehension.

The following result provides some insight into the structure of unit graphs,
which have been established in [2] and is found useful to derive new results.

Lemma 1.1. Let R be a finite commutative ring. Then for G(R) the following
statements hold:

(i) If 2 /∈ U(R), then G(R) is |U(R)|-regular;

(ii) If 2 ∈ U(R), then G(R) is (|U(R)|, |U(R)|− 1)-semi regular.

The benefit of studying of L(G) associated with G is that one may recover the
structure of any connected graph from its line graph, i.e., there is a one-to-one
correspondence between the class of connected graphs and the class of associated
line graphs. With the class of line graph of unit graphs keeping in hand, it is
natural to keep an eye on the properties of unit graphs and determine the properties
of their line graphs. In this paper, we determine several basic properties of line
graph L(G(R)) of unit graphs G(R) associated with finite commutative rings R. In
particular, our focus will be placed on diameter, girth, clique, and chromatic number
of L(G(R)).

Throughout, the paper we shall consider only simple graphs, viz., graphs in
which any two vertices are joined by at most one edge, and without self-loops and
R will be a finite commutative ring with 1 6= 0. As usual, Z, Zn, and Fq will denote
the ring of integers, the ring of integers modulo n, and a finite field with q elements,
respectively. We will usually use the notation “Zt2” for “Z2 × Z2 × Z2 × · · · × Z2| {z }

(t−times)

”

and “∪ti=1G” for t-copies of graph G. We further denote the characteristic of ring
R by Ch(R) = p. To avoid trivialities, we implicitly assume when necessary that
graphs are nonempty. For all terminology and notations in graph theory and abstract
algebra, not specifically mentioned or defined in this paper, we refer the reader to
the standard textbooks [4] and [5], respectively.

The following lemma established in [7] will be used frequently to derive new
results.

Lemma 1.2. Let R ∼= Zt2×S, t ≥ 0. Then G(R) has 2t-copies of G(S), where S is
isomorphic to any one of the rings Z2, Z4, Z2[X]/hX2i, and Z6.
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2. Basic Notations and Results

This section is devoted to study the basic properties of line graph of unit graphs as-
sociated with finite commutative ring. Our ultimate goal is to establish the sufficient
conditions for L(G(R)) to be Planar and Hamiltonian.

Definition 2.1. The line graph L(G) of a graphG, is a graph defined by V (L(G)) :=
E(G) and {e1, e2} ∈ E(L(G)) if e1 and e2 are incident to a common vertex in G. If
{x, y} ∈ E(G) we will denote the corresponding vertex of L(G) by [x, y].
Let R be a commutative ring with nonzero identity and U(R) be the set of unit
elements of R. For the convenience, note that the line graph L(G(R)) of unit graph
G(R) of R will have vertices of the form [u, v] in which the sum of u and v is a unit
of R, i.e., u+ v ∈ U(R).

An example of unit graph and its corresponding line graph over finite field is
shown in Fig. 1.

It is easy to see that for given rings R1 and R2, if R1 ∼= R2, then G(R1) ∼=
G(R2), and hence L(G(R1)) ∼= L(G(R2)) as for instance; for Z2 × Z3 ∼= Z6, clearly
G(Z2 × Z3) ∼= G(Z6) ∼= C6 and L(G(Z2 × Z3)) ∼= L(G(Z6)) ∼= C6. But it might be
possible that if R1 6∼= R2, still G(R1) ∼= G(R2), and then L(G(R1)) ∼= L(G(R2)), as

for instance; G(Z2[x]hx2i )
∼= G(Z4) ∼= C4 and L(G(Z2[x]hx2i ))

∼= L(G(Z4)) ∼= C4.

Theorem 2.1. The following are well-known results:

i) If a graph G is connected, then L(G) is connected and vice-versa.

ii) If a graph G contains a star graph with ‘n’ vertices, then its line graph will
contain a clique of size ‘n− 1’.

Lemma 2.2. [4, Page 71] Let G be an arbitrary graph and L(G) be its line graph.
Then for any vertex [u, v] ∈ V [L(G)] the degree is given by

degL(G)[u, v] = degG(u) + degG(v)− 2

pc
fugur-1
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As in the case of unit graphs, there are two specific kinds in structure either
regular or semi-regular, but which fails to be in case of corresponding line graph,
so it is necessary to measure this deviation. This has been carried out in the next
important result.

Theorem 2.3. Let R be a finite commutative ring with unity and let G(R) and
L(G(R)) be unit graph, and its line graph, respectively associated with R. Then for
any vertex [v1, v2] ∈ V [L(G(R))] the following statements hold:

i) If 2 /∈ U(R), then L(G(R)) is (2 · |U(R)|− 2)-regular;

ii) If 2 ∈ U(R), then deg[v1, v2] ∈ {(2|U(R)|− 3), (2|U(R)|− 4), (2|U(R)|− 2)}.

Proof. Let G(R) be unit graph and L(G(R)) be its line graph. Then there are two
possibilities.

If 2 /∈ U(R), then in view of Lemma 1.1, G(R) is |U(R)|-regular. Take [v1, v2]
be an arbitrary vertex of L(G(R)). Then by Lemma 2.2

deg[v1, v2] = 2 · |U(R)|− 2.
Next if 2 ∈ U(R), then in view of Lemma 1.1, the degree of each vertex v is

either |U(R)| or |U(R)|−1 in G(R). Let [v1, v2] be an arbitrary vertex of L(G(R))
to determine the degree of [v1, v2], we shall make use of the Lemma 1.1 and Lemma
2.2 in each of the following cases :

Case i) If v1 and v2 ∈ U(R), then
deg[v1, v2] = 2 · |U(R)|− 4.

Case ii) If v1 ∈ Z(R) and v2 ∈ U(R) or (vice-versa), then deg[v1, v2] = 2·|U(R)|−3.

Case iii) If v1 and v2 ∈ Z(R), then
deg[v1, v2] = 2 · |U(R)|− 2.
Therefore from the above cases we get the desired result.

Theorem 2.4. Let R be a finite commutative ring with unity and U(R) be the set
of units of R. Then the following statements hold:

i) If 2 /∈ U(R), then |V (L(G(R)))| = 1
2 |R| · |U(R)|;

ii) If 2 ∈ U(R), then |V (L(G(R)))| = 1
2(|R|− 1) · |U(R)|.

Proof. Let R be a finite commutative ring with unity and U(R) be the set of units
of R. First, if 2 /∈ U(R), then G(R) is |U(R)|-regular, and hence the number of
edges in G(R) is equal to 1

2 |R| · |U(R)|. Thus |V (L(G(R)))| =
1
2 |R| · |U(R)|.

Next if 2 ∈ U(R), then by Lemma 1.1, G(R) is (|U(R)|, |U(R)| − 1) semi-
regular, i.e., for every v ∈ U(R), deg(v) = |U(R)| − 1 and for every v ∈ R \ U(R),
deg(v) = |U(R)|. Therefore, by Hand-shaking lemma, the number of edges in G(R)
is equal to 1

2(|R|− 1) · |U(R)|, and hence |V (L(G(R)))| =
1
2(|R|− 1) · |U(R)|.
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Definition 2.2. For distinct vertices x and y of G, let d(x, y) be length of shortest
path from x to y. If there is no any path between x and y, then we write d(x, y) =∞.
Then the diameter of graph denoted by diam(G) and is defined as

diam(G) = sup{d(x, y) : x, y ∈ V (G)}
One can easily notice that if R ∼= Z4, then diam(G(R)) and diam(L(G(R))) are

both equal to 2. However, if R ∼= Z2×Z2, then diam(G(R)) and diam(L(G(R))) is
equal to infinite.

Theorem 2.5. LetR be a finite commutative ring, G(R) be unit graph and L(G(R))
be its line graph. Then

i) If R is a field, then diam(L(G(R))) ∈ {1, 2};

ii) If R is local but not field and have Z2 as a quotient, then diam(L(G(R))) = 2;

iii) IfR is local but not field and does not have Z2 as a quotient, then diam(L(G(R))) =
3.

Proof. i) Let R be a finite field of characteristic p. If p = 2 and a, b be two
nonzero distinct elements of F2k , then [0, a] − [0, b] − [1, b] is a path of length 2 in
L(G(R)). On the other hand, if p > 2 (but RZ3), then for two arbitrary vertices
[vm, vn] and [vk, vl] of L(G(Fpk)) one have a path [vm, vn] − [vm, vk] − [vk, vl] (or
[vm, vn]− [vn, vl]− [vk, vl]). Accordingly vm + vk 6= pk or vn + vl 6= pk, which again
gives a path of length 2. Therefore diam(L(G(R))) = 2.
Now if R ∼= Z3, then L(G(R)) ∼= K2, for which diam(L(G(R))) = 1.

ii) Next, let R be local with hmi as a maximal ideal, which is not field
and have Z2 as a quotient, then in view of [2, Theorem 3.2], G(R) is complete
bipartite with hmi and R\hmi as two partite sets. In L(G(R)) for any two arbitrary
vertices [m1, u1], [m2, u2] one have the following path [m1, u1] − [m1, u2] − [m2, u2]
(or [m1, u1]− [m2, u1]− [m2, u2]) of length 2. Therefore, diam(L(G(R))) = 2.

iii) Let R be local with maximal ideal hmi, which is not field and does not
have Z2 as a quotient. Then clearly no two elements of hmi are adjacent. How-
ever the elements of hmi are adjacent with elements of R \ hmi in G(R). Let u1,
u2 be two elements of R \ hmi which are adjacent in G(R), then for distinct ver-
tices [u1, u2], [u3, u4] ∈ V (L(G(R))) one can see the presence of path of length 3
namely, [u1, u2] − [m1, u1] − [m2, u3] − [u3, u4], where m1,m2 ∈ hmi. Therefore,
diam(L(G(R))) = 3.

Definition 2.3. For a graph G, the girth of G denoted by gir(G) is the length of
smallest cycle in G. If G does not contain any cycle, then gir(G) =∞.

Theorem 2.6. Let R be a finite commutative ring with unity. If |U(R)| ≥ 3, then
gir(L(G(R))) = 3.

Proof. Let R be a finite commutative ring with unity such that |U(R)| ≥ 3. If R has
atleast 3 units (say u1, u2, u3), then corresponding to these units u1, u2 and u3 there
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exist three vertices namely, [0, u1], [0, u2] and [0, u3] in L(G(R)), which are mutually
adjacent. Therefore in L(G(R)) one can easily find a triangle, which ensures that
gir(L(G(R))) = 3.

Theorem 2.7. Let R be a finite local ring with nonzero maximal ideal hmi and
R 6∼= Z4. Then gir(L(G(R))) = 3.

Proof. Let R be a finite local ring with nonzero maximal ideal hmi. Then hmi =
ann(x) for some x ∈ hmi∗. If there are distinct y, z ∈ hmi∗ \ {x} with y+ z ∈ U(R),
then y−x−z−y is a cycle of length three in G(R), and hence there is a associated 3
cycle in L(G(R)). This implies that gir(L(G(R))) = 3. On the other hand if G(R)
do not contain such triangle, then we may choose ui ∈ U(R), which corresponds a
triangle namely, [0, u1]−[0, u2]−[0, u3]−[0, u1] in L(G(R)). Hence gir(L(G(R))) = 3.
.

The following result is especially interesting and have appeared in [1].

Proposition 2.8. Let R be a finite commutative ring with unity having |U(R)| ≤ 2.
Then R is isomorphic to Zt2×S (t ≥ 0), where S is isomorphic to Z2 or Z3 or Z4 or
Z6 or

Z2[x]
hx2i .

Theorem 2.9. Let R be a finite commutative ring with unity having |U(R)| ≤ 2.
Then gir(L(G(R))) ∈ {4, 6,∞}.

Proof. Let R be a finite commutative ring with unity such that |U(R)| ≤ 2. Then
in view of Proposition 2.8, R is isomorphic to Zt2 × S (t ≥ 0), where S ∼= Z2 or Z3
or Z4 or Z6 or

Z2[x]
hx2i . First, when S ∼= Z2, then the unit graph G(R) ∼= ∪2ti=1K2, and

its corresponding line graph L(G(R)) ∼= ∪2ti=1K1. Therefore gir(L(G(R))) =∞.
Next, if S ∼= Z3, then for t = 0, gir(L(G(R))) =∞, however for t > 0 the girth

of L(G(R)) can be determined analogues to those used for S ∼= Z6.
Now, when S ∼= Z4 or Z6 or Z2[x]hx2i . Then in view of [2, Theorem 3.2.], G(R) is cycle

if and only if R ∼= Z4 or Z6 or
Z2[x]
hx2i , and hence in all the cases L(G(R))

∼= G(R).

In light of Lemma 1.2, G(Zt2 × S) is isomorphic to 2t-copies of G(S), and hence
L(G(Zt2×S)) is isomorphic to 2t-copies of L(G(S)). Therefore for each of the above
listed rings girth of L(G(R)) is either 4 or 6. Thus gir(L(G(R))) ∈ {4, 6,∞}.

Theorem 2.10. Let R be finite commutative ring with unity and let L(G(R)) be
its line graph of unit graph G(R). Then gir(L(G(R))) ∈ {3, 4, 6,∞}.

Proof. Invoking Theorem 2.6 and Theorem 2.9, the proof follows.

Theorem 2.11. Let R be finite commutative ring with unity such that |R| ≥ 4. If
R does not have Z2 × Z2 as a quotient, then L(G(R)) is Hamiltonian.
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Proof. Let R be a finite commutative ring with unity such that |R| ≥ 4 and let
G(R) be unit graph associated with R. Assume that R does not have Z2 × Z2 as
a quotient, then in this case G(R) is connected and in view of [2] it is known that
G(R) is Hamiltonian. But in light of [4, Theorem 8.8] it is clear that “if G(R) is
Hamiltonian, then L(G) is also Hamiltonian”. Therefore L(G(R)) is Hamiltonian.

Theorem 2.12. Let R be a finite commutative ring having |U(R)| ≤ 2. Then
L(G(R)) is planar.

Proof. Let R be a finite commutative ring with unity such that |U(R)| ≤ 2. Then
in view of Proposition 2.8, R is isomorphic to Zt2×S (t ≥ 0), where S ∼= Z2 or Z3 or
Z4 or Z6 or

Z2[x]
hx2i . To show that L(G(R)) is planar, by following the steps analogues

to those used in proof of Theorem 2.9, we found that if R ∼= Zt2 × S, then for t = 0

and S is either Z2 or Z3 or Z4 or
Z2[x]
hx2i , or Z6 then L(G(R)) is isomorphic to K1,

K2, C4, C4,and C6 respectively, which are all planar.

On the other hand if t ≥ 1 and S is either Z2 or Z3 or Z4 or
Z2[x]
hx2i , or Z6,

then for each of the above S, L(G(R)) is isomorphic to ∪2ti=1K1, ∪2
t−1
i=1 C6, ∪2

t

i=1C4,
∪2ti=1C4, and ∪2

t

i=1C6 respectively and is not difficult to verify that each of the listed
line graph is planar. Thus the result follows.

Definition 2.4. The chromatic number of graph G, denoted by χ(G) is the mini-
mum number of colors that can be assigned to the vertices in such a way that every
two adjacent vertices have different color.

In the next theorem a new class of weakly perfect graph have been exposed using
the tool of chromatic number and clique.

Theorem 2.13. Let R be a finite commutative ring with unity and U(R) be the
set of units of R. Then L(G(R)) is weakly perfect.

Proof. Let R be a finite commutative ring with unity and U(R) be the set of units
of R. In order to prove the desired result it is enough to show that χ(L(G(R))) =
ω(L(G(R))). To do this we claim the followings:
i) χ(L(G(R))) = |U(R)| and ii) ω(L(G(R))) = |U(R)|.

Towards proving i) it is known that the maximum degree of a vertex in G(R)
is |U(R)|, this implies that χ(L(G(R))) ≥ |U(R)|. Since the edge coloring in G(R)
leads to the vertex coloring in L(G(R)) and [2, Theorem 5.2] depicts that G(R) is
of class one. Therefore, χ(L(G(R))) = |U(R)|.

ii) Note that the maximum degree of a vertex in G(R) is |U(R)| and therefore
corresponding to that degree(of a vertex in G(R)) there exist a maximal clique
of order |U(R)| in L(G(R)). Thus ω(L(G(R))) = |U(R)|. This indicates that
χ(L(G(R))) = ω(L(G(R))) = |U(R)|, and hence L(G(R)) turns out to be weakly
perfect.

Remark 2.14. In view of [6, Theorem 2.2] one can notice that G(R) is weakly
perfect graph, and Theorem 2.13 depicts that L(G(R)) is also weakly perfect, which
is a enlargement of a new class of weakly perfect graphs, via. derived graphs.
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