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Abstract
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Trigonometric Fourier series.
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1. Introduction

The concept of approximating a function is due to the great mathematician
Weierstrass. To minimize the error in the degree of approximation, different
summability methods of Fourier series were introduced. For study of degree
of approximation of problems the natural way to proceed is to consider few
restrictions on some modulus of smoothness in Hélder space(H, and H g, p)
spaces). However, for generalized Lipschitz class (Lip(c, p)) there is no such
restriction on ’a’. we required a finer scale of smoothness than is provided
by Lipschitz class. In the mean time, for each a > 0, Besov developped a
remarkable technique for restricting modulus of smoothness by introducing
one more parameter. The degree of approximation of functions belonging
to Lipschitz class have been studied by the researchers (see [8-12] and [19]),
Hoélder space have been studied by the researchers (see [2-3],[7],[13],[16-17]
and [20]) and Zygmund class have been studied by the researchers (see [5-
6],[14-15],[18] and [22]). This motivated us to establish a result on degree of
approximation of Fourier series of functions in Besov space using Norlund
mean.

2. Definitions and Notations

Let h be a function, which is periodic in [0, 27] such that f027r |h(z)|Pdx < oc.

Let us denote

2ﬂ
Ly[0,27] = {h [0,27] — R: / x)Pdx < oo} p> 1

The Fourier series of h(x) is given by

(2.1) Z Up(z) = —i— Z (ancosnx +b smnx>

n=1

When 0 < p < 1, we can still regard (2.1) as the Fourier series of h.
The kth order modulus of smoothness of a function h : A — R is defined
by (23]

(2.2) wy(h,u) = sup = {sup|AL(h,y)|:y,y+kg € A}, u>0,
0<g<u

where
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k
Ap(h,y) =Y (=) 'C(k,i) h(y +ig), k € N
1=0

and

A=R,R+[a,b]CR

The kth order modulus of smoothness of h € L,(A),0 < p < oo is
defined by

(2.3) wi(h,u)p = sup [|AF(h,)p,u > 0.
0<g<u

Let @ > 0 be given and k = [a] + 1. Then for 0 < p and ¢ < oo, the
Besov space (see[21]) B (Ly) is defined as

(24)  Bg(Ly) = {h € Lyt Ihlsg(z,) = lwnlh, ) is fimite)

where

* . du) s
Jar My = { [ a1 21 for 0 < g < o0

and

lwe(Py M (aq) = su;(; u” “wy(h, u)p, for ¢ = oo.
u>

Clearly, [|wg(h, -)|l(a,q) is a seminorm (see[21]) if 1 < p, ¢ < oo.
The Besov norm for Bf'(Ly) is

(2.5) 12l g (r,) = 1Py + [lwr (R )l (o)
Clearly, for fixed o and p

By (Lyp) € By (Lp),q < qu-

For fixed p and ¢

BY(Ly) C BY(L,),B < a.
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And for fixed « and q
By (Lp) C By (Lp,),p1 <p-

Let " uy, be an infinite series with sequence of partial sums {s,} and
{rn} represents the sequence of non negative integers such that

n
Rn:Zrkeooasneoo,
k=0

then the (N, r,) mean of {s,} generated by the sequence {r,} is given by

1 n

N

T, = E Tn—kSk,n =0,1,2, ...
" Rnkzonkk

It is known that, (N, r,) method is regular. (see [4]).
Let Sk (h; x) denotes the k-th partial sum of the Fourier series (2.1). It is
known (see [24])that

(2.6) S, (h;x) ~h(z) = % /0 " (s 1) Dy()du

where

is the Drichlet’s kernel and
(2.7) d(z,u) = h(z +u) + h(x —u) — h(x)
Let o, (h; x) be the (N, r,) mean of the Fourier series (2.1) then
1
(2.8) on(h;x) = = Z Tn—kSk(h; )
We know that (from [24])

(2.9) ln(z) = on(h;x) — h(x) = = (z,u) Ky (u) du
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where

(2.10) Knw) = = 3" kDi(w)
M k=0

We have also used the following additional notations in the rest part of
our present article.

(2.11) O(z,u,v) = ¢(xz + u,v) — ¢(z,v), for 0 <a<1

and

(2.12) ®(z,u,v) = p(x + u,v) + ¢(x — u,v) — 2¢(x,v), for 1 <a <2

For k = [a] + 1,p > 1; we have

(2.13) wi(h,u)p = wi(h,u)p, for 0 <a <1

and

(2.14) wi(h,u)p, = wa(h,u)p, for 1 <a <2
We write

(2.15) Ly(z,u) =lp(z+u) —ly(z), for 0<a<1

and

(2.16) Ly (z,u) = lp(z 4+ u) + l(z —u) — 2l,(x), for 1 <a <2

By using (2.9),(2.11) and (2.12), we have
1 ™
(2.17) Lo(w,u) = ~ / B (x, u,v) Kn(v) dv
™ Jo
Using the definition of wy(h,u),, (2.15) and (2.16), we have

(2.18) wk(lmu)p = HLn(ﬂu)HP
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3. Known Results

Using Fejer mean of Fourier series Prossdorff [20] first obtained the follow-
ing result on approximation of functions in H, space.

Theorem 3.1

Let fe Hy(0<a<1)and 0 < < a<1. Then

o) = £lls = O( 75 ) for 0 < a < 1

and

low(F) — flls = 0({“%”}15),@ a=1,

where o,,(f) is the Fejer mean of the Fourier series of f.

Alexists [1] obtained a result by taking 8 = 0 in theorem-3.1.

Later Das, Ghosh and Ray [3] further generalized the work by studying the
problem for functions in H(«,p) space (0 < o < 1, p > 1) by the matrix
mean of the Fourier series.

In the present paper, we propose to study a result on the degree of ap-
proximation of Fourier series of functions in Besov space using Noérlund
mean.

4. Main Theorem

Theorem 4.1
Let0< B <a<2 Ifhe€ BS(Ly),p>1, then

1 1
||ln()||Bg(Lp):O<E)+O< )+O(W>’ fOT’1<(]<OO

and

g1
n q

1 1
112ty = O (55 ) + (525 ) for a=ox

We require the following lemmas to prove our main theorem:
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5. Lemmas

Lemma 5.1
Let 1 <p<ooand 0 < a<2. If h € L,0,2r]|, then for0 <u, v <7

O, u,0)]lp < 4wk (h, u)p
(@)[[ (., u, v)llp < 4w (R, v)p
(@) [ @(w)lp < 2wk (h, u)p

Lemma 5.2

Let 0 < o < 2. Suppose that 0 < 3 < . If h € By(Ly),p > 1,1 < q < oo,

then . )
1—1

(@0 5 1) (7 —‘1’%")”?’7%)% av =0 7 (" ale)]) " v}
2 1

(i) 5 1)l 7 —”‘1";;2;“”5%)% do =0m{ J7 (")) av)

|
Q|-

Lemma 5.3
Let 0 < o < 2. Suppose that 0 < 8 < a. If h € By(Ly),p > 1 and ¢ = o0
then

sup_ P @( . 0)l, = 0(u 7).

O<uv<m

Lemma 5.4
Let (N, ry,) kernel of the Fourier series be as defined in (10). Then

Ku(w)] = O(n) for 0 <v < ©
and

|Kp(v)| = O(l) for = <v<rm

v n

6. Proof of the Lemmas

Proof of Lemma-5.1
Foro<a<l, k=[a]+1=1.
By virtue of (2.11),

O(z,u,v) = ¢(z + u,v) — ¢(z,v)
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can be written as

O(z,u,v) = {h(z+u+v)—h(z+v)}
+{h(x +u—v) — h(z —v)}
(6.1) —2{h(z 4+ u) — h(z)}

O(z,u,v) = {h(z+u+v)—h(z+u)}
+{h(z —v+u) — h(z+u)} — {h(z+v) — h(z)}
(6.2) —{h(x —v) — h(z)}

Applying Minkowski’s inequality to (6.1) and (6.2), we get for p > 1
1@(u, v)llp < dwg(h, u)p
Which completes the proof of (i).
Again, For 1 <a <2, k=[a]+1=2.
By virtue of (2.12),
(I)<$7u7v) - ¢<(E + u?”) + ¢($ - u,v) - 2(]5(.1','1))

can be written as

O(z,u,v) = {h(z+u+v)+h(z+u—v)—2h(z+u)}
+{h(zx —u+v)+h(x —u—v)—2h(z —u)}
(6.3) —2{h(xz +v) + h(z —v) — 2h(x)}

O(z,u,v) = {h(z+u+v)+h(r—u+v)—2h(zx+v)}
+{h(x+u—v)+h(x —u—v) —2h(z —v)}
(6.4) —2{h(z + u) + h(z —u) — 2h(z)}

If we apply Minkowski’s inequality to (6.3) and (6.4), we get

19w, v)[lp < 4wk (R, v)p
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Which completes the proof of (ii).
We have omitted the proof of (iii) as it is trivial.

Proof of Lemma-5.2
For the proof of (i), applying lemma-5.1(i), we have
%

/0“ !Kn(v)\</07r ||<I>(-;Z,qv)||§d;u> o
:O(l)/OW|Kn(v)|va5{/0ﬂwdf}% dv

—0(1) /OW K (0) [0 do

(By definition of Besov space and 2nd mean value theorem)

—om{ [ (1K) dv}lé{ [ dv}%

1331

(By applying Hoélder’s inequality)

_ 0(1){ /07r (|Kn<v)yvaﬁ)qil dv}l_é

Which completes the proof of (i).
For the proof of (ii), applying lemma-5.1(ii), we have

[Tisaen( [ _”‘I’<-;;;’qv>ugd_s)5 "
1)/07T|Kn(v)]wk(h,v)p{ /Oﬂ%}% v

1)/” 15 (0)] wio(Byv)y 08 do

o) [[ Kot

- O(”{ kb (M>q DV (it )V

(By using Holder’s inequality)

_ 0(1){/5 (]Kn(v)| a=p=3 du>}1%
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(By using the definition of Besov space)

This completes the proof of (ii).

Proof of Lemma-5.3
For 0 < u < v <, using lemma-5.1(i), we have

sup_w @ u o)l = swput Pl uo)l, )
O<u<v<m o<u<ov<m

< 40P sup <u_°‘wk(h, u)p>
u

=40 (vaﬁ) (by the hypothesis)

Again, for 0 < v < wu < 7, using lemma-5.1(ii), we have

sup  u 2| ®(,u, )|, < 4wg(h,v), sup u P
O<v<u<lm O<v<u<lm

< 40 P sup (U_o‘wk(h, U)p>
v

=40 (va_ﬁ) (by the hypothesis)

This completes the proof of the Lemma 5.3.

Proof of Lemma-5.4
For 0 <wv < % and sin nv =n sin v, then

sin (k + %)v

1 n
Kn()] = | 3 r
| K ()] ‘Rn 2 E T in g '
1 & (2k + 1)sin %
:'— E Tn—k ')'U 2‘
R, P 23m5

(2 1)
' n + E:Tn .
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Again, for % <wv <, sing > % and sin nv < 1, we have

n sin <k+%>v
K, _’LZ% — )
R

N v
2sin 5

T k=0

1 n
T'n— k:
<= X

T n
2an ;;) Tk
1
-o(5)
v

7. Proof of Main Theorem

Proof of Theorem-4.1
We first consider the case 1 < ¢ < oo, we haveforp>1,0< < a <2
(7.1) 1 gz ey = 1)l + [[wk(las )l 8.0
Applying lemma-5.1(iii) in (2.9), we get
()l < / 1¢.@lpln(@)ldo

(72) = Ol < 2 [ (o (h0), d

Applying Hélder’s inequality, we have

Ol < 2 (ont) ™ w0l /Ow(wiﬁ?p)qdv}é
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Now,
us 31 1—=
I= {/n (]Kn(v)]va+%)q dv}
0
" = 1=¢
om{ [ (1) o
0
1
(7.4) —0(n7>
Again,
. Ao
J= {/ <|Kn(u)|ua+%> 1 dv}
. Ao
S
nﬂ- -
:{/ vt ! dv} !
1
(7.5) ~0 ﬁ)
Now,

1
T (WL, u)p\9du
lwr(tns Mg = {/0 (71# p) w
(r (HLn(-,u)lle@}%
0 ub u
a ™ 5odu )9
P q
{/0 (/0 |Ln(x,u)|de) —uuﬁqﬂ}
) P oNE g 1
s ™ U U q
{‘/0 (/0 7_(_/0 (LIZ‘,’LL,'U) (U) v l’) uuﬁfIJrl}
By repeated application of generalized Minkowski’s inequality, we have
1 s T s 1 4 du 2
p q
o g < [ [ ([ 0@ uwor mora) ol 5]
1
17 (7 ™ 4 du e
=— Ky, ®(.,u, dv o — 5T
[ [ i@ el a) =]

S
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1
q
/ (K ()| @, u,0)|F 6+1) d

<2
= AL /)”@ L 1 )] o
o

H(I) u,v |q du
/ WPt }|Kn(v)| dv

n 7r ||(I)(.,”LL,’U)”g du
_._; 0 {/v uBat+l }’Kn(v)‘ dv

Applying lemma-5.2, we have

" /07r ('Kn(v)l vt >L1dv}lﬂ
o =0 + .77, (say)
Now,
(!Kn(v)\ v >_ U}l—%

Similarly,

/ ™ gl qiLl 17%
’- {/ <|Kn(v)| v q) dv}
0

s

T



1336 Birupakhya Prasad Padhy, Anwesha Mishra and U. K. Misra

1 Ll 1-3
Uy (o) e
i1y ) T F et )T
= O(n) / v T Ldv +o(1) / Va1 dv
0

(7.8) = 0<na1 5)

Using (7.6),(7.7) and (7.8), we get

1 1
(7.9) ekl gy = O(na——ﬁ—%) +0( =)

By (7.4),(7.5) and (7.9), we get

(710) ()l g 1) = o(n—1a> +0< . 15__> + O<na1 B)

Now, we consider the case when ¢ = oo

[ Ln (- w)lp
lna‘ oo -
0k (En Ml 5,00) = sUP — 3
—sup—[ /q)xuv (v) dv dx]p
u>0 T

Applying generalized Minkowski’s inequality, we get
-8 - 1
U p p P
s )50 < 510 *— / { [ 1o uolK,ep o} a
uB
—sup— |K )] [|2(, w,0)llp dv
u>0
<2 [MRa] {supu 8wl o
™ Jo u>0
= 0(1)/ v*P|K,(v)| dv (by lemma-5.3)
0

—0() [/0_ B K,y (v)] do + /: 0B K (0) dv]

= O(n) /; 2P dv + O(l)/ v* P71 dv (by lemma-5.4)
0

(7.11) = 0<na15)




(7.12) -0(+3)
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Also, for ¢ = o0

IOl < 2 [ Kale) (b v),
1/ | Ky, (v)] v dv (by the hypothesis)
0

— o(1) [/0_ K (0)] 0 do + /_7r K (0)] 0® do

x s

=0(n) /OZ v dv+0(1)/ v dv

s

nOé
From (7.11) and (7.12), we get

1ln Ol gs . py = (o + llwr(n, )l (3,00)

(7.13) —0( >+0< alﬁ)

1]

2]

This completes the proof of Theorem 4.1.
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