Two-parameter generalization of bihyperbolic Jacobsthal numbers

Dorota Bród (1)
Rzeszow University of Technology, Poland
Anetta Szynal-Liana (D)
Rzeszow University of Technology, Poland
and
Iwona Wtoch (D)
Rzeszow University of Technology, Poland
Received: April 2020. Accepted : May 2021

Abstract

In this paper, we define a two-parameter generalization of bihyperbolic Jacobsthal numbers. We give Binet formula, the generating functions and some identities for these numbers.

Keywords: Jacobsthal numbers, bihyperbolic numbers, bihyperbolic Jacobsthal numbers, recurrence relations, generating functions.

1. Introduction

Let \mathbf{h} be the unipotent element such that $\mathbf{h} \neq \pm 1$ and $\mathbf{h}^{2}=1$. A hyperbolic number z is defined as $z=x+y \mathbf{h}$, where $x, y \in \mathbf{R}$. We will denote by \mathbf{H} the set of hyperbolic numbers.

The addition and the subtraction of hyperbolic numbers is done by adding and subtracting corresponding terms and hence their coefficients. The hyperbolic numbers multiplication can be made analogously as multiplication of algebraic expressions using the rule $\mathbf{h}^{2}=1$. The real numbers x and y are called the real and unipotent parts of the hyperbolic number z, respectively. For others details concerning hyperbolic numbers see for example $[10,11,12]$.

Extension of complex numbers to higher dimension has an interest not only in mathematics also in modern physics and engineering. Quaternions are one of the well-known sets, however they form a non-commutative algebra.

In [9], Olariu introduced commutative hypercomplex numbers in different dimensions. One of 4 -dimensional commutative hypercomplex number is called hyperbolic fourcomplex number. In [10], the authors used the name bihyperbolic numbers.

Note that bihyperbolic numbers are a special case of generalized Segre's quaternions, being a 4 -dimensional commutative number system, and they are also named as canonical hyperbolic quaternions (see [5]). In this paper, we use the name bihyperbolic numbers. Analogously as bicomplex numbers are an extension of complex numbers, bihyperbolic numbers are a natural extension of hyperbolic numbers to 4 -dimension.

Let \mathbf{H}_{2} be the set of bihyperbolic numbers ζ of the form

$$
\zeta=x_{0}+j_{1} x_{1}+j_{2} x_{2}+j_{3} x_{3},
$$

where $x_{0}, x_{1}, x_{2}, x_{3} \in \mathbf{R}$ and $j_{1}, j_{2}, j_{3} \notin \mathbf{R}$ are operators such that

$$
j_{1}^{2}=j_{2}^{2}=j_{3}^{2}=1, j_{1} j_{2}=j_{2} j_{1}=j_{3}, j_{1} j_{3}=j_{3} j_{1}=j_{2}, j_{2} j_{3}=j_{3} j_{2}=j_{1} .
$$

From the above rules the multiplication of bihyperbolic numbers can be made analogously as multiplication of algebraic expressions. The addition and the subtraction of bihyperbolic numbers is done by adding and subtracting corresponding terms and hence their coefficients.

The addition and multiplication on \mathbf{H}_{2} are commutative and associative. Moreover, $\left(\mathbf{H}_{2},+, \cdot\right)$ is a commutative ring.

For the algebraic properties of bihyperbolic numbers, see [1].

2. The (s, p)-Jacobsthal numbers

Let $n \geq 0$ be an integer. The Jacobsthal sequence $\left\{J_{n}\right\}$ is defined by the second order linear recurrence

$$
J_{n}=J_{n-1}+2 J_{n-2} \text { for } n \geq 2
$$

with initial terms $J_{0}=0, J_{1}=1$. So the Jacobsthal sequence has the form $0,1,1,3,5,11,21,43,85,171, \ldots$ and its terms are named as Jacobsthal numbers. The direct formula for the nth Jacobsthal number has the form $J_{n}=\frac{2^{n}-(-1)^{n}}{3}$, named as the Binet formula for the Jacobsthal numbers.

There are many generalizations of this sequence - for example see [6, $7,8,17]$. In [2] a two-parameter generalization of the Jacobsthal sequence was investigated. We recall it.

Let $n \geq 0, s \geq 0, p \geq 0$ be integers. The sequence $\left\{J_{n}(s, p)\right\}$ was defined by the following recurrence

$$
\begin{equation*}
J_{n}(s, p)=2^{s+p} J_{n-1}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n-2}(s, p) \text { for } n \geq 2 \tag{2.1}
\end{equation*}
$$

with initial conditions $J_{0}(s, p)=1, J_{1}(s, p)=2^{s}+2^{p}+2^{s+p}$.
It is easily seen that for $s=p=0$ we have $J_{n}(0,0)=J_{n+2}$.
The sequence $\left\{J_{n}(s, p)\right\}$ is named as (s, p)-Jacobsthal sequence and its terms as (s, p)-Jacobsthal numbers.

Theorem 1. [2] (Binet formula for (s, p)-Jacobsthal numbers)

Let $n \geq 0, s \geq 0, p \geq 0$ be integers. Then the $n t h(s, p)$-Jacobsthal number is given by

$$
J_{n}(s, p)=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}
$$

where

$$
\begin{align*}
& r_{1}=2^{s+p-1}+\frac{1}{2} \sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)} \\
& r_{2}=2^{s+p-1}-\frac{1}{2} \sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)} \\
& c_{1}=\frac{2^{s}+2^{p}+2^{s+p}-2^{s+p-1}+\frac{1}{2} \sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)}}{\sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)}} \tag{2.2}\\
& c_{2}=\frac{-2^{s}-2^{p}-2^{s+p}+2^{s+p-1}+\frac{1}{2} \sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)}}{\sqrt{4^{s+p}+2^{s+p+2}\left(2^{s}+2^{p}\right)}} .
\end{align*}
$$

Theorem 2. [2] Let $n \geq 1, s \geq 0, p \geq 0$ be integers. Then

$$
\sum_{l=0}^{n-1} J_{l}(s, p)=\frac{J_{n}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n-1}(s, p)-1-2^{s}-2^{p}}{2^{s+p}\left(1+2^{s}+2^{p}\right)-1} .
$$

Jacobsthal numbers are well-known in the theory of recurrence equations and they have applications in distinct areas of mathematics. Recently they are investigated also in the context of hypercomplex numbers, see for example Jacobsthal quaternions, Jacobsthal hybrid numbers and their generalizations. Details can be found in $[3,4,13,14,15,16]$.

In this paper, we introduce and study bihyperbolic (s, p)-Jacobsthal numbers which are a generalization of bihyperbolic Jacobsthal numbers.

3. Bihyperbolic (s, p)-Jacobsthal numbers

Let $n \geq 0$ be an integer. We define the nth bihyperbolic (s, p)-Jacobsthal number $B h J_{n}^{s, p}$ by the following relation

$$
B h J_{n}^{s, p}=J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p),
$$

where $J_{n}(s, p)$ is given by (2.1).
Note that for $s=p=0$ we obtain $B h J_{n}^{0,0}=B h J_{n+2}$, where $B h J_{n}$ denotes nth bihyperbolic Jacobsthal number.

By some elementary calculations we find the following recurrence relation for the bihyperbolic (s, p)-Jacobsthal numbers.

Theorem 1. Let $n \geq 0, s \geq 0, p \geq 0$ be integers. Then

$$
2^{s+p} J H_{n+1}^{s, p}+\left(2^{2 s+p}+2^{s+2 p}\right) J H_{n}^{s, p}=J H_{n+2}^{s, p}
$$

Proof.

$$
\begin{aligned}
& 2^{s+p} J H_{n+1}^{s, p}+\left(2^{2 s+p}+2^{s+2 p}\right) J H_{n}^{s, p} \\
& =2^{s+p}\left(J_{n+1}(s, p)+j_{1} J_{n+2}(s, p)+j_{2} J_{n+3}(s, p)+j_{3} J_{n+4}(s, p)\right) \\
& +\left(2^{2 s+p}+2^{s+2 p}\right)\left(J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p)\right) \\
& =J_{n+2}(s, p)+j_{1} J_{n+3}(s, p)+j_{2} J_{n+4}(s, p)+j_{3} J_{n+5}(s, p) \\
& =J H_{n+2}^{s, p}
\end{aligned}
$$

Theorem 2. Let $n \geq 0, s \geq 0, p \geq 0$ be integers. Then

$$
\begin{aligned}
& J H_{n}^{s, p}-j_{1} J H_{n+1}^{\bar{s}, p}-\overline{j_{2}} J H_{n+2}^{s, \bar{p}}+j_{3} J H_{n+3}^{s, p} \\
& =J_{n}(s, p)-J_{n+2}(s, p)-J_{n+4}(s, p)+J_{n+6}(s, p) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& J H_{n}^{s, p}-j_{1} J H_{n+1}^{s, p}-j_{2} J H_{n+2}^{s, p}+j_{3} J H_{n+3}^{s, p} \\
& =J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p) \\
& -j_{1}\left(J_{n+1}(s, p)+j_{1} J_{n+2}(s, p)+j_{2} J_{n+3}(s, p)+j_{3} J_{n+4}(s, p)\right) \\
& -j_{2}\left(J_{n+2}(s, p)+j_{1} J_{n+3}(s, p)+j_{2} J_{n+4}(s, p)+j_{3} J_{n+5}(s, p)\right) \\
& +j_{3}\left(J_{n+3}(s, p)+j_{1} J_{n+4}(s, p)+j_{2} J_{n+5}(s, p)+j_{3} J_{n+6}(s, p)\right) \\
& =J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p) \\
& -j_{1} J_{n+1}(s, p)-J_{n+2}(s, p)-j_{3} J_{n+3}(s, p)-j_{2} J_{n+4}(s, p) \\
& -j_{2} J_{n+2}(s, p)-j_{3} J_{n+3}(s, p)-J_{n+4}(s, p)-j_{1} J_{n+5}(s, p) \\
& +j_{3} J_{n+3}(s, p)+j_{2} J_{n+4}(s, p)+j_{1} J_{n+5}(s, p)+J_{n+6}(s, p) \\
& =J_{n}(s, p)-J_{n+2}(s, p)-J_{n+4}(s, p)+J_{n+6}(s, p) .
\end{aligned}
$$

Theorem 3. (Binet formula) Let $n \geq 0, s \geq 0, p \geq 0$ be integers. Then

$$
J H_{n}^{s, p}=c_{1} \hat{r_{1}} r_{1}^{n}+c_{2} \hat{2_{2}} r_{2}^{n},
$$

where $r_{1}, r_{2}, c_{1}, c_{2}$ are given by (2.2), respectively, and

$$
\hat{r_{1}}=1+j_{1} r_{1}+j_{2} r_{1}^{2}+j_{3} r_{1}^{3}, \quad \hat{r_{2}}=1+j_{1} r_{2}+j_{2} r_{2}^{2}+j_{3} r_{2}^{3}
$$

Proof. By Theorem 1 (section 2) we get

$$
\begin{aligned}
B h J_{n}^{s, p} & =J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p) \\
& =c_{1} r_{1}^{n}+c_{2} r_{2}^{n}+j_{1}\left(c_{1} r_{1}^{n+1}+c_{2} r_{2}^{n+1}\right) \\
& +j_{2}\left(c_{1} r_{1}^{n+2}+c_{2} r_{2}^{n+2}\right)+j_{3}\left(c_{1} r_{1}^{n+3}+c_{2} r_{2}^{n+3}\right) \\
& =c_{1} r_{1}^{n}\left(1+j_{1} r_{1}+j_{2} r_{1}^{2}+j_{3} r_{1}^{3}\right)+c_{2} r_{2}^{n}\left(1+j_{1} r_{2}+j_{2} r_{2}^{2}+j_{3} r_{2}^{3}\right) \\
& =c_{1} \hat{r_{1}} r_{1}^{n}+c_{2} \hat{r_{2}} r_{2}^{n}
\end{aligned}
$$

which ends the proof.
The next theorem presents a summation formula for the bihyperbolic (s, p)-Jacobsthal numbers.

Theorem 4. Let $n \geq 0, s \geq 0, p \geq 0$ be integers. Then

$$
\begin{aligned}
\sum_{l=0}^{n} J H_{l}^{s, p}= & \frac{J H_{n+1}^{s, p}+\left(2^{2 s+p}+2^{s+2 p}\right) J H_{n}^{s, p}-\left(1+2^{s}+2^{p}\right)\left(1+j_{1}+j_{2}+j_{3}\right)}{2^{s+p}\left(1+2^{s}+2^{p}\right)-1} \\
& -j_{1}-j_{2}\left(1+2^{s}+2^{p}+2^{s+p}\right) \\
& -j_{3}\left(1+2^{s}+2^{p}+2^{s+p}+2^{2 s+p+1}+2^{s+2 p+1}+2^{2 s+2 p}\right) .
\end{aligned}
$$

Proof. By the definition of the bihyperbolic (s, p)-Jacobsthal numbers we have

$$
\begin{aligned}
\sum_{l=0}^{n} J H_{l}^{s, p}= & J H_{0}^{s, p}+J H_{1}^{s, p}+\ldots+J H_{n}^{s, p} \\
& =J_{0}(s, p)+j_{1} J_{1}(s, p)+j_{2} J_{2}(s, p)+j_{3} J_{3}(s, p) \\
& +J_{1}(s, p)+j_{1} J_{2}(s, p)+j_{2} J_{3}(s, p)+j_{3} J_{4}(s, p)+\ldots \\
& +J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p) \\
& =J_{0}(s, p)+J_{1}(s, p)+\ldots+J_{n}(s, p) \\
& +j_{1}\left(J_{1}(s, p)+J_{2}(s, p)+\ldots+J_{n+1}(s, p)+J_{0}(s, p)-J_{0}(s, p)\right) \\
& +j_{2}\left(J_{2}(s, p)+J_{3}(s, p)+\ldots+J_{n+2}(s, p)+J_{0}(s, p)+J_{1}(s, p)\right. \\
& \left.-J_{0}(s, p)-J_{1}(s, p)\right) \\
& +j_{3}\left(J_{3}(s, p)+J_{4}(s, p)+\ldots+J_{n+3}(s, p)+J_{0}(s, p)\right. \\
& \left.+J_{1}(s, p)+J_{2}(s, p)-J_{0}(s, p)-J_{1}(s, p)-J_{2}(s, p)\right) .
\end{aligned}
$$

Using Theorem 2 (section 2), we obtain

$$
\begin{aligned}
& \sum_{l=0}^{n} J H_{l}^{s, p} \\
& =\frac{1}{2^{s+p}\left(1+2^{s}+2^{p}\right)-1}\left[J_{n+1}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n}(s, p)-1-2^{s}-2^{p}\right. \\
& +j_{1}\left(J_{n+2}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n+1}(s, p)-1-2^{s}-2^{p}\right) \\
& +j_{2}\left(J_{n+3}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n+2}(s, p)-1-2^{s}-2^{p}\right) \\
& \left.\left.+j_{3}\left(J_{n+4}(s, p)+\left(2^{2 s+p}+2^{s+2 p}\right) J_{n+3}(s, p)-1-2^{s}-2^{p}\right)\right)\right] \\
& -\left(j_{1} J_{0}(s, p)+j_{2}\left(J_{0}(s, p)+J_{1}(s, p)\right)+j_{3}\left(J_{0}(s, p)+J_{1}(s, p)+J_{2}(s, p)\right)\right) \\
& =\frac{1}{2^{s+p}\left(1+2^{s}+2^{p p}-1\right.}\left[J_{n+1}(s, p)+j_{1} J_{n+2}(s, p)+j_{2} J_{n+3}(s, p)+j_{3} J_{n+4}(s, p)\right. \\
& +{\left(22^{s s+p}+2^{s+2 p}\right)\left(J_{n}(s, p)+j_{1} J_{n+1}(s, p)+j_{2} J_{n+2}(s, p)+j_{3} J_{n+3}(s, p)\right)}^{\left.-\left(1+2^{s}+2^{p}\right)\left(1+j_{1}+j_{2}+j_{3}\right)\right]} \\
& -j_{1}-j_{2}\left(1+2^{s}+2^{p}+2^{s+p}\right) \\
& -j_{3}\left(1+2^{s}+2^{p}+2^{s+p}+2^{2 s+p+1}+2^{s+2 p+1}+2^{2 s+2 p}\right) \\
& =\frac{J H_{n+1}^{s, p}+\left(2^{s+p}+2^{s+2 p}\right) J H_{n}^{s, p}-\left(1+2^{s}+2^{p}\right)\left(1+j_{1}+j_{2}+j_{3}\right)}{2^{s+p}\left(1+2^{s}+2^{p}\right)-1} \\
& -j_{1}-j_{2}\left(1+2^{s}+2^{p}+2^{s+p}\right) \\
& -j_{3}\left(1+2^{s}+2^{p}+2^{s+p}+2^{2 s+p+1}+2^{s+2 p+1}+2^{2 s+2 p}\right) .
\end{aligned}
$$

In particular, we obtain the following formula for the bihyperbolic Jacobsthal numbers.

Corollary 5. Let $n \geq 1$ be an integer. Then

$$
\sum_{l=0}^{n} B h J_{l}=\frac{B h J_{n+2}-B h J_{1}}{2}
$$

Proof. By Theorem 4 for $s=p=0$ we have

$$
\begin{aligned}
\sum_{l=0}^{n} J H_{l}^{0,0} & =\frac{J H_{n+1}^{0,0}+2 J H_{n}^{0,0}-3\left(1+j_{1}+j_{2}+j_{3}\right)}{2}-\left(j_{1}+4 j_{2}+9 j_{3}\right) \\
& =\frac{J H_{n+2}^{0,0}-\left(3+5 j_{1}+11 j_{2}+21 j_{3}\right)}{2}
\end{aligned}
$$

Using fact that $J_{n}(0,0)=J_{n+2}$ and $B h J_{0}=j_{1}+j_{2}+3 j_{3}, B h J_{1}=$ $1+j_{1}+j_{2}+5 j_{3}$, we get

$$
\begin{aligned}
\sum_{l=0}^{n} B h J_{l} & =\frac{B h J_{n+2}-\left(3+5 j_{1}+11 j_{2}+21 j_{3}\right)}{2}+B h J_{0}+B h J_{1} \\
& =\frac{B h J_{n+2}-\left(3+5 j_{1}+11 j_{2}+21 j_{3}\right)+2\left(1+2 j_{1}+4 j_{2}+8 j_{3}\right)}{2} \\
& =\frac{B h J_{n+2}-\left(1+j_{1}+3 j_{2}+5 j_{3}\right)}{2}=\frac{B h J_{n+2}-B h J_{1}}{2},
\end{aligned}
$$

which ends the proof.
Now, we give the ordinary generating functions for the bihyperbolic (s, p)-Jacobsthal numbers.

Theorem 6. The generating function for the bihyperbolic (s, p)-Jacobsthal sequence $\left\{B h J_{n}^{s, p}\right\}$ has the following form

$$
G(x)=\frac{B h J_{0}^{s, p}+\left(B h J_{1}^{s, p}-2^{s+p} B h J_{0}^{s, p}\right) x}{1-2^{s+p} x-\left(2^{2 s+p}+2^{s+2 p}\right) x^{2}}
$$

Proof. Assuming that the generating function of the bihyperbolic (s, p) Jacobsthal sequence $\left\{B h J_{n}^{s, p}\right\}$ has the form $G(x)=\sum_{n=0}^{\infty} B h J_{n}^{s, p} x^{n}$, we obtain that

$$
\begin{aligned}
& \left(1-2^{s+p} x-\left(2^{2 s+p}+2^{s+2 p}\right) x^{2}\right) G(x) \\
= & \left(1-2^{s+p} x-\left(2^{2 s+p}+2^{s+2 p}\right) x^{2}\right) \cdot\left(B h J_{0}^{s, p}+B h J_{1}^{s, p} x+B h J_{2}^{s, p} x^{2}+\ldots\right) \\
= & B h J_{0}^{s, p}+B h J_{1}^{s, p} x+B h J_{2}^{s, p} x^{2}+\ldots \\
& -2^{s+p} B h J_{0}^{s, p} x-2^{s+p} B h J_{1}^{s, p} x^{2}-2^{s+p} B h J_{2}^{s, p} x^{3}-\ldots \\
& -\left(2^{2 s+p}+2^{s+2 p}\right) B h J_{0}^{s, p} x^{2}-\left(2^{2 s+p}+2^{s+2 p}\right) B h J_{1}^{s, p} x^{3} \\
& -\left(2^{2 s+p}+2^{s+2 p}\right) B h J_{2}^{s, p} x^{4}-\ldots \\
= & B h J_{0}^{s, p}+\left(B h J_{1}^{s, p}-2^{s+p} B h J_{0}^{s, p}\right) x
\end{aligned}
$$

since $B h J_{n}^{s, p}=2^{s+p} B h J_{n-1}^{s, p}+\left(2^{2 s+p}+2^{s+2 p}\right) B h J_{n-2}^{s, p}$ and the coefficients of x^{n} for $n \geq 2$ are equal to zero.

In particular, we obtain the generating function for bihyperbolic Jacobsthal numbers

$$
g(x)=\frac{B h J_{0}+\left(B h J_{1}-B h J_{0}\right) x}{1-x-2 x^{2}}
$$

Recall that

$$
\begin{aligned}
B h J_{0} & =j_{1}+j_{2}+3 j_{3} \\
B h J_{1} & =1+j_{1}+3 j_{2}+5 j_{3}
\end{aligned}
$$

and

$$
B h J_{1}-B h J_{0}=1+2 j_{2}+2 j_{3} .
$$

4. Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] M. Bilgin and S. Ersoy, "Algebraic Properties of Bihyperbolic Numbers", Advances in A pplied Clifford Algebras, vol. 30 no. 13, 2020. doi: 10.1007/ s00006-019-1036-2
[2] D. Bród, "On a two-parameter generalization of J acobsthal numbers and its graph interpretation", Annales Universitatis Mariae Curie-Skłodowska. Sectio A, M athematica (Online), vol. 72, no. 2, pp. 21-28, 2018. doi: 10.17951/ a.2018.72.2.21
[3] D. Bród and A. Szynal-Liana, "On a new generalization of J acobsthal quaternions and several identities involving these numbers", Commentationes M athematicae, vol. 1-2, no. 59, pp. 33-45, 2019. doi: $10.14708 / \mathrm{cm} . v 59 i 1-2.6492$
[4] D. Bród and A. Szynal-Liana, "On J (r, n)-J acobsthal Quaternions", Pure and Applied M athematics Quarterly, vol. 14 no. 3-4, pp. 579-590, 2018. doi: 10.4310/ PAM Q.2018.v14.n3.a7
[5] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, and P. Zampetti, The mathematics of Minkowski spacetime with an introduction to commutativehypercomplex numbers. Basel: Birkhäuser, 2008.
[6] A. Dasdemir, "The Representation, Generalized Binet Formula and Sums of The Generalized Jacobsthal p-Sequence", Hittite Journal of Science and Engineering, vol. 3 no. 2, pp. 99-104, 2016. doi: 10.17350/ HJ SE 19030000038
[7] S. Falcon, "On the k-Jacobsthal Numbers", American Review of M athematics and Statistics, vol. 2 No. 1, pp. 67-77, 2014.
[8] D. Jhala, K. Sisodiya and G. P. S. Rathore, "On Some Identities for k-J acobsthal Numbers", International Journal of M athematical Analysis, vol. 7, no. 12, pp. 551-556, 2013. doi: 10.12988/ ijma.2013.13052
[9] S. Olariu, Complex N umbers in n dimensions. Amsterdam: North-Holland, 2002.
[10] A. A. Pogorui, R. M. Rodríguez-Dagnino and R. D. Rodríguez-Said, "On the set of zeros of bihyperbolic polynomials", Complex Variables and Elliptic Equations, vol. 53, no. 7, 2008. doi: 10.1080/ 17476930801973014
[11] D. Rochon and M. Shapiro, "On algebraic properties of bicomplex and hyperbolic numbers", A nalele U niversităt, ii Oradea, F ascicola M atematica, vol. 11, pp. 71-110, 2004.
[12] G. Sobczyk, "The Hyperbolic Number Plane", The College M athematics J ournal, vol. 26, no. 4, 1995. doi: 10.1080/ 07468342.1995.11973712
[13] A. Szynal-Liana, "The Horadam Hybrid Numbers", Discussiones M athematicae. General Algebra and A pplications (Online), vol. 38, pp. 91-98, 2018. doi: 10.7151/ dmgaa. 1287
[14] A. Szynal-Liana and I. Włoch, "A note on J acobsthal quaternions", Advances in Applied Clifford Algebras, vol. 26, pp. 441-447, 2016. doi: 10.1007/ s00006-015-0622-1
[15] A. Szynal-Liana and I. Włoch, H ypercomplex numbers of the Fibonacci type. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, 2019.
[16] A. Szynal-Liana and I. Włoch, "On J acobsthal and Jacobsthal-Lucas hybrid numbers", A nnales M athematicae Silesianae, vol. 33, pp. 276-283, 2019. doi: 10.2478/ amsil-2018-0009
[17] S. Uygun, "The (s, t)-J acobsthal and (s, t)-J acobsthal Lucas Sequences", A pplied M athematical Sciences, vol. 9, no. 70, pp. 3467-3476, 2015. doi: 10.12988/ ams. 2015.52166

Dorota Bród

Faculty of Mathematics and Applied Physics
Rzeszow University of Technology
al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Corresponding author
email: dorotab@prz.edu.pl, ORCID: 0000-0001-5181-1725

Anetta Szynal-Liana

Faculty of Mathematics and Applied Physics Rzeszow University of Technology
al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
email: aszynal@prz.edu.pl, ORCID: 0000-0001-5508-0640
and

Iwona Włoch

Faculty of Mathematics and Applied Physics Rzeszow University of Technology
al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
email: iwloch@prz.edu.pl, ORCID: 0000-0002-9969-0827

