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Abstract

In this paper, we define a two-parameter generalization of bihy-
perbolic Jacobsthal numbers. We give Binet formula, the generating
functions and some identities for these numbers.
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1. Introduction

Let h be the unipotent element such that h # 41 and h? = 1. A hyperbolic
number z is defined as z = = + yh, where z,y € R. We will denote by H
the set of hyperbolic numbers.

The addition and the subtraction of hyperbolic numbers is done by
adding and subtracting corresponding terms and hence their coefficients.
The hyperbolic numbers multiplication can be made analogously as multi-
plication of algebraic expressions using the rule h? = 1. The real numbers
x and y are called the real and unipotent parts of the hyperbolic number
z, respectively. For others details concerning hyperbolic numbers see for
example [10, 11, 12].

Extension of complex numbers to higher dimension has an interest not
only in mathematics also in modern physics and engineering. Quaternions
are one of the well-known sets, however they form a non-commutative al-
gebra.

In [9], Olariu introduced commutative hypercomplex numbers in differ-
ent dimensions. One of 4-dimensional commutative hypercomplex number
is called hyperbolic fourcomplex number. In [10], the authors used the name
bthyperbolic numbers.

Note that bihyperbolic numbers are a special case of generalized Segre’s
quaternions, being a 4-dimensional commutative number system, and they
are also named as canonical hyperbolic quaternions (see [5]). In this paper,
we use the name bihyperbolic numbers. Analogously as bicomplex numbers
are an extension of complex numbers, bihyperbolic numbers are a natural
extension of hyperbolic numbers to 4-dimension.

Let Hy be the set of bihyperbolic numbers ¢ of the form

¢ = xo + J1x1 + Jox + j3x3,

where xg, z1, 22,23 € R and ji, j2, j3 ¢ R are operators such that
Jt =33 =33 =1, jujz = jaj1 = j, Jijs = Jaj1 = o, Jajs = Jaj2 = Ju.
From the above rules the multiplication of bihyperbolic numbers can
be made analogously as multiplication of algebraic expressions. The addi-
tion and the subtraction of bihyperbolic numbers is done by adding and
subtracting corresponding terms and hence their coefficients.
The addition and multiplication on Hy are commutative and associa-
tive. Moreover, (Ho, +,+) is a commutative ring.

For the algebraic properties of bihyperbolic numbers, see [1].
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2. The (s, p)-Jacobsthal numbers

Let n > 0 be an integer. The Jacobsthal sequence {.J,} is defined by the
second order linear recurrence

In = Jp_1+2Jp_9 forn > 2

with initial terms Jy = 0, J; = 1. So the Jacobsthal sequence has the form
0,1,1, 3,5, 11, 21, 43, 85, 171, ... and its terms are named as Jacobsthal
numbers. The direct formula for the nth Jacobsthal number has the form
Jn = w, named as the Binet formula for the Jacobsthal numbers.

There are many generalizations of this sequence — for example see [6,
7, 8, 17]. In [2] a two-parameter generalization of the Jacobsthal sequence
was investigated. We recall it.

Let n > 0, s > 0, p > 0 be integers. The sequence {.J,(s,p)} was
defined by the following recurrence

(2.1) Ju(s,p) = 2°TPJ,1(s,p) + (2%1P 4 25722 ], o(s,p) for n > 2

with initial conditions Jy(s,p) = 1, Ji(s,p) = 25 + 2P + 257P,

It is easily seen that for s = p = 0 we have J,,(0,0) = Jp42.

The sequence {J,(s,p)} is named as (s, p)-Jacobsthal sequence and its
terms as (s, p)-Jacobsthal numbers.

Theorem 1. [2] (Binet formula for (s, p)-Jacobsthal numbers)

Let n > 0, s > 0, p > 0 be integers. Then the nth (s, p)-Jacobsthal
number is given by
Jn(s,p) = car] + cory,

where

ry o= 25TPTl 4 2\ /45TP 4 25TPF2(25 + 2P),
ro = 25TP=1 — 1. /4s¥p 4 25 F2(25 4 2),
25 4 9P 4 9s+p _ 9stp—1 4 %\/4s+p 1 25FpF2(25 4 20)
22) a= N e ooy :
—98 _9p _ 9s+tp 4 9stp-1 4 %\/4s+p 1 25FPT2(25 1 2P)

\/4s+p + 28+p+2(23 + 2p)

Co —
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Theorem 2. [2] Let n > 1, s > 0, p > 0 be integers. Then

"f (s, p) = Dn(8:P) (@ 4 27y (s5,p) — 1 -2 -
i iI\s,p) = 28+p(1+23+2p)_1 :

Jacobsthal numbers are well-known in the theory of recurrence equa-
tions and they have applications in distinct areas of mathematics. Recently
they are investigated also in the context of hypercomplex numbers, see for
example Jacobsthal quaternions, Jacobsthal hybrid numbers and their gen-
eralizations. Details can be found in [3, 4, 13, 14, 15, 16].

In this paper, we introduce and study bihyperbolic (s, p)-Jacobsthal
numbers which are a generalization of bihyperbolic Jacobsthal numbers.

3. Bihyperbolic (s, p)-Jacobsthal numbers

Let n > 0 be an integer. We define the nth bihyperbolic (s, p)-Jacobsthal
number BhJ;P by the following relation

BhJy? = Ju(s,p) + j1Jny1(s,p) + jadns2(s,p) + j3Jny3(s, p),

where J,(s,p) is given by (2.1).

Note that for s = p = 0 we obtain BhJ%® = BhJ, 2, where BhJ,
denotes nth bihyperbolic Jacobsthal number.

By some elementary calculations we find the following recurrence rela-
tion for the bihyperbolic (s, p)-Jacobsthal numbers.

Theorem 1. Let n >0, s > 0, p > 0 be integers. Then
2P JHP, + (2251 4 2512 JHEP = JHP,.
Proof.

2IPTHLY) 4 (2°54P 4 2°2P) JH P
— 23+p(Jn+1(S,p) + len+2(57p) + ngn+3(S,p) + j3Jn+4(87p))
(227 4+ 2F2) (T (5,p) + 11 (8, 0) + Jodns2(8,0) + jaTnsa(s,p))

— S7p
O - JHn+2'

Theorem 2. Let n >0, s > 0, p > 0 be integers. Then
JHYP — 1 JHy Yy — o J Hplo + jaJ HoYs
= Ju(s,0) = Jnt2(5,p) — Jnta(8,0) + Jnr6(s, p)-



Two-parameter generalization of bihyperbolic Jacobsthal numbers 573

Proof.

JHYP — j1JHyYy — jod Hyo + jsJ Hy'g
= Jn(sap) +j1Jn+1(3ap) +j2<]n+2(5 p) +]3Jn+3(3ap)
_jl(Jn-H(svp) +j1Jn+2(S>p) +j2Jn+3(8,p) +j3Jn+4(S>p))
—J2(Jn+2(5,p) + j1Jnt3(8,0) + jadnra(s,p) + j3Jnis(s,p))
+j3(Jn+3(8,p) +j1Jn+4(S>p) +j2=]n+5(87p) +j3Jn+6(S>p))
= Jun(8,p) + j1Jn+1(5,p) + Jadn+2(8,p) + J3Jn+3(s, p)
—J1In+1(8,p) — Jn+2(8,p) — J3Jnt3(s,p) — J2In+a(s, p)
—j2Jn+2(8,p) = J3Jn+3(8,p) — Jn+a(8,p) — j1Jn+5(5,p)
+J3Jn+3(5 p) + Jodn+a(s,p) + j1Jn+5(8,p) + Jnt6(s,p)
n( $,P ) n+2(3 p) Jn+4(37p) + Jn+6(37p)’

Theorem 3. (Binet formula) Let n > 0, s > 0, p > 0 be integers. Then
JHP = c17r] + carary,
where 11, T2, 1, co are given by (2.2), respectively, and

7= 14 jir + jord + jart, 12 =1+ jirs + jars + jars-

Proof. By Theorem 1 (section 2) we get
BhJyP = Jn(s,p) + j1dnt1(8,p) + J2Jnt2(8,p) + Jzn+3(s,p)
=cir +cary + 71 (011“1+ + 027””rl
n+2

n+3 n—+3

+ 72 (clrl + cary ) + 73 (clr + corg
= arr{ (14 Jir1 + jarf + jard) + corf (1 + jira + jard + jar3)
=17y + carary,

which ends the proof. a

The next theorem presents a summation formula for the bihyperbolic
(s, p)-Jacobsthal numbers.

Theorem 4. Let n >0, s > 0, p > 0 be integers. Then
S HS = JHE, + (22577 4 2502 JHpP — (14 2° + 2°)(1 + j1 + jo + Ja)
s 25+p(1 4 25 + 27) — 1

—j1 _jz(l 495 1 9P ¢ 25+P)

_j3<1 4+ 95+ 9P ¢ 2$+p + 22$+p+1 4 2s+2p+1 4 22$+2p).
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Proof. By the definition of the bihyperbolic (s, p)-Jacobsthal numbers
we have

SSJHPP = JHYP + JHP + .+ JHEP
=0
= Jo(s,p) + j1J1(8,p) + j2J2(s, p) + j3J3(s, p)

Jr=71(8 p) + j1Ja(s,p) + j2Js3(s,p) + jsJa(s,p) + .

Jn(8,p) + j1dn+1(s,p) + jaJnt2(s, p) +.73Jn+3(5 p)
—Jo(S, )+J1(S,p) ...—l—J(, )
+41 (J1(s,p) + Jo(5,p) + ... + Jny1(s,p) + Jo(s,p) — Jo(s,p))
+jo(J2(s,p) + J3(s,p) + ... + Jnt2(s,p) + Jo(s,p) + Ji(s,p)
—Jo(s,p) — J1(s,p))
+73(J3(s,p) + Ja(s,p) + ... + Jnts(s,p) + Jo(s,p)

+J1(s,p) + J2(s,p) — Jo(s,p) — Ji(s,p) — Ja(s,p)).
Using Theorem 2 (section 2), we obtain
f; JH?

W[ Jna1(s,p) + (2257P 4 25%2P) ], (5,p) — 1 — 25 — 2P
+71(Jnra(s,p) + (225FP 4 25F2P) ], 1y (s,p) — 1 — 25 — 2P)
+j2(Jny3(s,p) + (22542 4 25720) ], 1o(s,p) — 1 — 25 — 2P)
+73(Jnta(s,p) + (24P 4+ 25729) J,  3(s, p) — 1 — 25 — 2P))]
—(J1Jdo(s,p) + j2(Jo(s,p) + Ji(s,p)) + js(Jo(s,p) + Ji(s,p) + Ja(s,p)))

- WLLHJ(S,]?) +~j1‘]n+2(87p) +j2Jn+3(Sap) +j3Jn+4(S,p)
+(2257P + 2520, (8, p) + j1n41(8, D) + G2 Jnt2(8, D) + jsJnt3(s,p))
—(1 425+ 2°)(1 + j1 + jo + j3)]

—j1 = ja(1+2° + 27 4 2°%P)
—j3(1+2542° + 98+p 4 92s+p+1 | 9s+2p+1 | 228+2p)
_ JH 4 (22 £ 2 ) JHED — (14274 27)(1+ 1 + o + o)
25tP(1 + 25 +2°) — 1
—j1 — j2(1 + 2% + 2P 4 251P)
—j3(1+ 25 + 2P 4+ 25FP 4 92s+p+l 4 9s+2p+1 4 228+2p)'

In particular, we obtain the following formula for the bihyperbolic Ja-
cobsthal numbers.

Corollary 5. Let n > 1 be an integer. Then

S° gy - Bhnez = Bhh
=0 2
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Proof. By Theorem 4 for s = p =0 we have
_ JHpy +2JHYO —3(1+ 1+ o + )
2
JHyDo — (34 551 + 11j2 + 2153)
- 2
Using fact that J,(0,0) = J,42 and BhJy = ji + jo + 373, BhJy =
1+ 71+ 72+ 5J3, we get

n 0,0 . ) )
ZZ JH” — (j1 + 452+ 9353)
=0

n Bhnys — 1+ 1153 + 215
s> phy = B2 Z B4 52]1 U2+ 2458) g g4 B,
=0

_ BhJpyo — (34541 4 1152 + 2153) + 2(1 + 251 + 42 + 853)

 BhJpia— (141 +3jo+5j3) _ BhJyyo — BhJ
g 2 - 2 )

which ends the proof. |

Now, we give the ordinary generating functions for the bihyperbolic
(s, p)-Jacobsthal numbers.

Theorem 6. The generating function for the bihyperbolic (s, p)-Jacobsthal
sequence { BhJ3P} has the following form

) — BRIST + (BhJY? — 27 BhJ3P)a
($) - 1 — 2s5tpy — (223+p + 23+2p)$2

Proof.  Assuming that the generating function of the bihyperbolic (s, p)-
Jacobsthal sequence { BhJ3P} has the form G(z) = ioj BhJ3Pz™, we ob-
tain that "

(1 — 25FPg — (22577 4 2572P) 202G ()

= (1 — 25FPy — (225%P 4 2520)32) . (BRJSP + BhJPx + BhJ3Pa? + ..

= BhJSP 4+ BhJPx + BhJ§Pa? + ...
— 2P BRJSPx — 2P BRI P a2 — 2P BhJSPad — .
_(223+p + 2s+2p)Bthap$2 o (22s+p + 28+2p)Bth’p$3
—(225FP 4 25H2) BR 5Pt —

= BhJSP + (BhJP — 25tP BhJSP )z,

since BhJ3P = 25TPBRJP, + (22577 + 25T2P) BRJ P, and the coefficients
of ™ for n > 2 are equal to zero. |

)
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In particular, we obtain the generating function for bihyperbolic Jacob-

sthal numbers
_ BhJo+ (BhJy — BhJy)x

9(w) 1—x — 222

Recall that

BhJo = j1+j2+ 373,
BhJy = 1+ j1+3j2+573
and
Bth — BhJo =1+ 2j2 + 2j3.
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