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Abstract

The structure theorems for (Completely) simple semigroups and
(Completely) 0-simple semigroups have proved a powerful tool in the
investigation of such semigroups. In this paper, first of all, we define
weak simple semigroups and weak 0-simple semigroups and compare
them with simple semigroups and 0-simple semigroups respectively.
Then we give examples of these semigroups and describe the struc-
ture of them. Also, we define completely weak simple semigroup and
completely weak 0-simple semigroup. Finally, by using Green’s equiv-
alences, we prove some results and give equivalences, for these semi-
groups.
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1. Preliminaries

This paper is concerned with the study of a certain basic type of semigroup,
known as a (completely) weak (0-) simple semigroup. First, we recall from
[2] that a semigroup without zero is called simple if it has no proper ideals.
A semigroup S with zero (S should have at least two elements) is called
0-simple if

(i) {0} and S are its only ideals;

(ii) S2 6= {0}.

For background material on algebraic structures and some other termi-
nologies of these concepts, we refer the reader to [1, 2, 3].

2. Weak (0-) Simple Semigroups

In this section, first of all, we define weak simple semigroups and weak 0-
simple semigroups and describe the structure of 0-simple semigroup. Then
compare weak simple semigroups and weak 0-simple semigroups with simple
semigroups and 0-simple semigroups, respectively. Then we give examples
of weak simple semigroups and weak 0-simple semigroups. Also, we prove
some results about these semigroups.

Definition 2.1. We say that the semigroup S without zero is weak simple
if the powers of S are the only ideals of S.

Indeed, if S is a weak simple semigroup and S2 = S, then S is a simple
semigroup.

Definition 2.2. We say that the semigroup S with zero is weak 0-simple,
if

(i) {0} and the powers of S are the only ideals of S;

(ii) Sn 6= {0}, for every n ≥ 2(n ∈ N).

Indeed, if S is a weak 0-simple semigroup and S2 = S, then S is a
0-simple semigroup.
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Description of the structure of weak 0-simple semigroup:

Let S is a weak 0-simple semigroup such that S2 6= S. Let α ∈ S \ S2.
It is clear that S2 ∪ {α} is an ideal of S and S2 is a proper subset of
S2 ∪ {α}. Then S = S2 ∪ {α} because S is a weak 0-simple semigroup.
Now if S2 = S3, then the powers of S will be static, for every n ≥ 2.
Otherwise, if S2 6= S3, then we let u ∈ S2 \ S3. We can write u = xy, for
x, y ∈ S. According to S = S2 ∪ {α}, there are three cases that can arise:

(i) x and y belong to S2;

(ii) only one of x or y belongs to S2 and the other one equals α;

(iii) x = α = y.

But (i) and (ii) lead to u ∈ S3, which is a contradiction. Thus only
case (iii) can occur. So u = α2. Now the subset S3 ∪ {α2} is an ideal of S
such that

S3 ⊆ S3 ∪ {α2} ⊆ S2.

Thus S2 = S3 ∪ {α2}, and so S = S3 ∪ {α,α2}, such that αi ∈ Si \ Si+1,
for i = 1, 2. Again if S3 = S4, then the powers of S will be static, for
every n ≥ 3. Otherwise, if S3 6= S4, then in a similar way, we can show
S3 = S4 ∪ {α3}, and so

S = S4 ∪ {α, α2, α3},

such that αi ∈ Si \ Si+1, for i = 1, 2, 3. Therefore by using induction, we
have the following theorem.

Theorem 2.3. Let S is a weak 0-simple semigroup. Then one of the fol-
lowing statements holds:

(i) S2 = S, and so S is a 0-simple semigroup.

(ii) There exists n ≥ 2, such that Sn−1 6= Sn and Sn = Sn+1. In this case,
there exists α ∈ S, such that Si = Si+1 ∪ {αi}, and αi ∈ Si \ Si+1,
for 1 ≤ i ≤ n− 1. Also S = Si+1 ∪ {α, α2, ..., αi}, 1 ≤ i ≤ n− 1.

(iii) Sn 6= Sn+1, for every n ≥ 1. In this case, there exists α ∈ S, such
that for every i ≥ 1,

Si = Si+1 ∪ {αi}.
Thus S = Si+1 ∪ {α, α2, ..., αi}, such that αj ∈ Sj \ Sj+1, j ∈N.
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Note that if S is a weak 0-simple semigroup such that S2 6= S, then
|S \ S2| = 1. Since if α, β ∈ S \ S2, then S2 ∪ {α} and S2 ∪ {β} are ideals
of S such that S2 ⊂ S2 ∪ {α} and S2 ⊂ S2 ∪ {β}. Therefore S2 ∪ {α} =
S = S2 ∪ {β}, and so α = β. By a similar argument, if Sn 6= Sn+1, then
|Sn \ Sn+1| = 1.

Theorem 2.4. Let S is a weak 0-simple semigroup such that S2 6= S.
Then S is a monogenic semigroup with zero.

Proof. Since S2 6= S, by Theorem 2.3, one of the following cases is held:

Case 1. There exists n ≥ 2, such that Sn−1 6= Sn and Sn = Sn+1, that is,

Sn+1 = Sn ⊂ Sn−1 ⊂ . . . ⊂ S2 ⊂ S.

Let S \ S2 = {α}. Then S = Sn ∪ {α, α2, . . . , αn−1}. Let 0 6= x ∈ Sm,
m ≥ n. Then x = x1x2 . . . xm, such that xi ∈ S \ S2 = {α}, 1 ≤ i ≤ m,
that is x = αm. Hence

Sn = {αn, αn+1, αn+2, . . .} ∪ {0}

and
Sn+1 = {αn+1, αn+2, αn+3, . . .} ∪ {0}.

Since Sn = Sn+1, there exits j ≥ 1 such that αn = αn+j . Let r is the small-
est natural number such that αn = αn+r. Then Sn = {αn, αn+1, . . . , αn+r−1}∪
{0}, and so

S = {α,α2, . . . , αn, αn+1, . . . , αn+r−1} ∪ {0},

which is a finite monogenic semigroup with zero of index n and period
r = |Sn|.

Case 2. Sn 6= Sn+1, for every n ≥ 1. That is,

. . . ⊂ Sn ⊂ Sn−1 ⊂ . . . ⊂ S2 ⊂ S.

In this case, by Theorem 2.3(iii), there exists α ∈ S such that S = Si+1 ∪
{α, α2, ..., αi}, for every i ≥ 1, which implies S is an infinite monogenic
semigroup with zero. 2

From Theorems 2.3 and 2.4, we have the following corollary.
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Corollary 2.5. For a semigroup S the following statements are equivalent:

(i) S is a weak 0-simple semigroup such that is not 0-simple;

(ii) S is an infinite monogenic semigroup with zero or is a finite monogenic
semigroup with zero of index n (n > 1) and period r.

Now we give examples of weak simple semigroups and weak 0-simple
semigroups.

Example 2.6. Let S =< a >= {ai|i ≥ 1}, is an infinite monogenic semi-
group. Then only ideals of S, are powers of S, and so S is a weak simple
semigroup. Also

... ⊂
6=
S4 ⊂

6=
S3 ⊂

6=
S2 ⊂

6=
S.

That is, the chain of subsemigroups of S is not static.

If we add zero to the above infinite monogenic semigroup, then the
made semigroup is weak 0-simple, such that the chain of subsemigroups of
S is not static.

Example 2.7. Let S =< b >= {b, b2, ..., bm, bm+1, ..., bm+r−2, bm+r−1}, is
a finite monogenic semigroup, of index m, and period r. Obviously,

S2 =< b >2= {b2, b3, ..., bm, bm+1, ..., bm+r−2, bm+r−1},

S3 =< b >3= {b3, ..., bm, bm+1, ..., bm+r−2, bm+r−1},
...

Sm =< b >m= {bm, bm+1, ..., bm+r−2, bm+r−1},

Sm+1 = Sm.

Thus Sm+1 = Sm ⊂
6=
Sm−1 ⊂

6=
... ⊂

6=
S2 ⊂

6=
S. Also every ideal of S is a

power of S. Therefore S is a weak simple semigroup, such that the powers
of S will be static, for every k ≥ m. In this case, Sm is a group.

Notice that the converse of Theorem 2.3 is not true in general, that is,
if there exists a semigroup S with zero, such that satisfies in condition (ii)
or condition (iii) of Theorem 2.3, then S necessity is not weak 0-simple
semigroup. See the following example.
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Example 2.8. Let B = {β1, β2, ...}, that can be finite or infinite. Define:

βi.βi = β2i = βi, ∀i ≥ 1;
βi.βk = βk.βi = βi, ∀i, k ∈ N, i < k.

Obviously, B is a semigroup. Now let T is a weak 0-simple semigroup,
which θ is its zero. Consider S = T ∪B, with the following operation:

If two elements are in T or B, then the operation is the same operation T
and B respectively. Also,

βi.t = t.βi = βi, ∀βi ∈ B,∀t ∈ T, t 6= θ;

βi.θ = θ.βi = θ, ∀βi ∈ B.

Clearly, S is a semigroup, such that Sm = Tm ∪ B, for every m ≥ 1.
Since T is a weak 0-simple semigroup, there exists α in T , such that T =
T 2 ∪ {α}. Therefore

S = T ∪B = S2 ∪ {α},

which α /∈ S2. Now if T is a semigroup as Example 2.6, which the chain of
subsemigroups of T is not static, then we have Si = Si+1 ∪ {αi}, for every
i ≥ 1. Then

S = Si+1 ∪ {α1, α2, ..., αi}, αj ∈ Sj \ Sj+1, ∀j ≥ 1.

Therefore S satisfies in condition (iii) of Theorem 2.3, but S is not weak
0-simple semigroup, because B ∪ {θ} is an ideal of S, which is not as a
power of S.

Also if T is a semigroup as Example 2.7, which the chain of subsemigroups
of T is static, then S satisfies in condition (ii) of Theorem 2.3, but S is not
weak 0-simple semigroup, because B ∪ {θ} is an ideal of S, which is not as
a power of S.

Recall from [2] that an equivalence J on S is defined by the rule that
aJ b, for a, b ∈ S, if and only if S1aS1 = S1bS1. Also, the J -class contain-
ing the element a is denoted by Ja.
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Theorem 2.9. Let S is a weak 0-simple semigroup. Then one of the fol-
lowing statements holds:

(i) Ja = {a}, for every a ∈ S.

(ii) There exists n ≥ 1 such that for every a, b ∈ Sn \ {0}, aJ b and for
every a ∈ S \ Sn, Ja = {a}.

Proof. By Theorem 2.3, one of the following cases holds:

Case 1. S2 = S, and so S is a 0-simple. Since S1aS1 is a non zero
ideal of S, for every a ∈ S \ {0}, S1aS1 = S, and so aJ b, for every
a, b ∈ S2 \ {0} = S \ {0}. In this case S \ S2 = ∅. Hence (ii) is satisfied.

Case 2. There exists n ≥ 2, such that Sn−1 6= Sn and Sn = Sn+1, that is,

Sn+1 = Sn ⊂ Sn−1 ⊂ . . . ⊂ S2 ⊂ S.

Now S1aS1 ⊆ S1SnS1 ⊆ Sn, for every a ∈ Sn \ {0}, and so by as-
sumption S1aS1 = Sn. Therefore aJ b, for every a, b ∈ Sn \ {0}. Also
S \ Sn = {α, α2, . . . , αn−1}, such that αi ∈ Si \ Si+1, 1 ≤ i ≤ n− 1. Hence
S1αiS1 6= S1αjS1, for every 1 ≤ i 6= j ≤ n − 1, and so αiJαj , for every
1 ≤ i 6= j ≤ n− 1. Therefore Ja = {a}, for every a ∈ S \ Sn, and so (ii) is
satisfied.

Case 3. Sn 6= Sn+1, for every n ≥ 1. That is,

. . . ⊂ Sn ⊂ Sn−1 ⊂ . . . ⊂ S2 ⊂ S.

In this case, by Theorem 2.3(iii), S is an infinite monogenic semigroup with
zero, and so S1aS1 6= S1bS1, for every a 6= b ∈ S, that is Ja = {a}, for
every a ∈ S. Therefore (i) is satisfied. 2

The converse of Theorem 2.9 is not true, see the following example.

Example 2.10. Consider S with the following table:
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0 a b c

0 0 0 0 0
a 0 b 0 0
b 0 0 a 0
c 0 0 0 0

Indeed, S2 = {0, a, b}, aJ b and Jc = {c}. Therefore condition (ii) of
Theorem 2.9, for n = 2 is satisfied. But I = {0, c} is a non zero ideal of
S, which is not equals with no powers of S, because Sn = Sn+1, for every
n ≥ 2.

Theorem 2.11. Let S is a weak 0-simple semigroup. Then for every 0 6=
a ∈ S, there exists m ≥ 1, such that SaS = Sm.

Proof. Let 0 6= a ∈ S. If SaS = {0}, then I = {α|SαS = {0}} is a non-
zero ideal of S. Since S is a weak 0-simple semigroup, there exists n ≥ 1,
such that I = Sn. But SIS = {0}, by definition I. Then Sn+2 = {0},
which is a contradiction. Therefore SaS 6= {0}. Since SaS is an ideal of S,
there exists m ≥ 1, such that SaS = Sm. 2

Theorem 2.12. The semigroup S is weak 0-simple if and only if for every
n ≥ 1, Sn 6= {0}, and for every 0 6= a ∈ S there exists m ≥ 1, such that
SaS = Sm.

Proof. Necessity. It is obvious by definition and Theorem 2.11.

Sufficiency. Let I is a non zero ideal of S. Then for every 0 6= a ∈ I,
there exists ma ∈ N, such that S1aS1 = Sma . Therefore I = ∪a∈ISma .
Let m = min{ma|a ∈ I}. Then I = Sm, and so S is a weak 0-simple
semigroup. 2

Lemma 2.13. Let S is a semigroup with zero, such that for every 0 6=
a ∈ S, there exists m ≥ 1, such that SaS = Sm. If A is a non-empty and
non-zero subset of S, then there exists m ≥ 1, such that SAS = Sm.

Proof. By assumption we have for every 0 6= a ∈ A, there existsma ≥ 1,
such that SaS = Sma . Thus SAS = ∪a∈ASaS = ∪06=a∈ASma . Let m =
min{ma|a ∈ A}. Then ∪06=a∈ASma = Sm, and so SAS = Sm, as required.
2
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Theorem 2.14. Let S is a weak 0-simple semigroup, such that Sn+1 = Sn,
for n ≥ 1. Then Sn is a 0-simple semigroup.

Proof. We must show the only non-zero ideal of Sn is Sn. Let A is a
non-zero ideal of Sn. Since S is a weak 0-simple semigroup, by Theorem
2.11, for every 0 6= a ∈ S there exists m ≥ 1, such that SaS = Sm. Thus
SAS = Sk, for k ≥ 1, by Lemma 2.13. Therefore SnASn = Sk+2n−2. Since
k + 2n− 2 ≥ n, from equality Sn = Sn+1, we obtain SnASn = Sk+2n−2 =
Sn. But Sn = SnASn ⊆ A, because A is an ideal of S. Thus Sn = A, that
is, the only non-zero ideal of Sn is Sn, and so Sn is a 0-simple semigroup,
as required. 2

Notice that, since in a finite weak 0-simple semigroup, the chain of pow-
ers of S is static, thus in these semigroups there exists a power of S, such
that is a 0-simple semigroup.

For a semigroup S, the set of all idempotents of S is denoted by E(S).

Lemma 2.15. Let S is a weak 0-simple semigroup, such that E(S) 6= {0}.
Let SeS = Sm, for 0 6= e ∈ E(S) and m ∈N. Then the chain of powers of
S is static, for every k ≥ m, and so Sm is 0-simple.

Proof. Since S is a weak 0-simple semigroup, for 0 6= e ∈ E(S) there
exists m ≥ 1, such that SeS = Sm, by Theorem 2.11. Indeed e ∈ Sn, for
every n ≥ 1. Then Sm = SeS ⊆ Sk, for every k ≥ 3. If m = 1 or m = 2,
then obviously the converse of inclusion is satisfied, and so Sm = Sk, for
every k ≥ 3. Thus Sm = Sm+1. Now if m ≥ 3, since above inclusion
is satisfied, for every k ≥ 3, thus for k = m + 1, is satisfied too, that is
Sm ⊆ Sm+1, and so Sm = Sm+1. Therefore the chain of powers of S is
static, for every k ≥ m, and so Sm is 0-simple, by Theorem 2.14. 2

Lemma 2.16. Let S is a weak 0-simple semigroup, such that E(S) 6= {0}.
Let SE(S)S = Sm, for m ∈ N. Then the chain of powers of S is static, for
every k ≥ m, and so Sm is 0-simple.

Proof. Since S is a weak 0-simple semigroup, there exists m ≥ 1 such
that SE(S)S = Sm, by Lemma 2.13. Since E(S) ⊆ Sn, for every n ≥ 1,
therefore Sm = SE(S)S ⊆ Sk, for every k ≥ 3. Now by using a similar
argument as in the proof of Lemma 2.15, we obtain the result. 2
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Recall from [2] that an element a of semigroup S is called regular if
a = axa, for some x ∈ S. If all elements of S are regular, we say that S is
a regular semigroup.

Corollary 2.17. Every regular weak 0-simple semigroup is a 0-simple semi-
group.

Proof. Let S is a regular weak 0-simple semigroup. Then for every
a ∈ S, there exists x ∈ S, such that a = axa, and so a = a(xa)(xa).
Since xa ∈ E(S), therefore a = a(xa)(xa) ∈ SE(S)S, and so S ⊆ SE(S)S.
Obviously, the converse of inclusion is satisfied. Thus S = SE(S)S, and so
S is 0-simple, by Lemma 2.16, as required. 2

3. Completely Weak (0-) Simple Semigroups

In this section by using the natural partial order relation on the idempo-
tents of a semigroup, we define completely weak simple semigroups and
completely weak 0-simple semigroups. Then we prove some results of these
semigroups and give equivalences of them.

Among idempotents in an arbitrary semigroup, there is a natural par-
tial order relation defined by the rule that e ≤ f if and only if ef = fe = e.
It is easy to verify that the given relation is a partial order relation. If
S is a semigroup with zero, then the defining properties of a zero element
immediately imply that 0 is the unique minimum idempotent. The idem-
potents that are minimal within the set of non-zero idempotents are called
primitive. Thus a primitive idempotent e has the property that

ef = fe = f 6= 0 =⇒ e = f.

Recall from [2] that the semigroup S is called completely simple if it is
simple and (E(S),≤) has a primitive idempotent. Also, the semigroup
Siscalledcompletely0−simpleifitis0−simpleand(E(S),≤) has a primitive
idempotent.

Definition 3.1. We say that the semigroup S is completely weak simple
if S is a weak simple and (E(S),≤) has a primitive idempotent.

Definition 3.2. We say that the semigroup S is completely weak 0-simple
if S is a weak 0-simple and (E(S),≤) has a primitive idempotent.
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Since in every finite weak simple semigroup, every element has a power
which is idempotent, E(S) 6= ∅. Also since |E(S)| <∞, E(S) has a prim-
itive idempotent. Therefore every finite weak simple semigroup is com-
pletely weak simple.

In every finite weak 0-simple semigroup, if E(S) 6= {0}, then by using a
similar argument as in the finite weak simple semigroup, we can conclude
that every finite weak 0-simple semigroup is completely weak 0-simple.

Notice that if S is a completely weak 0-simple semigroup, then S is not
an infinite monogenic semigroup. Now similar to Theorem 2.3 we have the
following theorem.

Theorem 3.3. Let S is a completely weak 0-simple semigroup. Then one
of the following statements holds:

(i) S2 = S, and so S is a completely 0-simple semigroup.

(ii) There exists n ≥ 2, such that Sn−1 6= Sn and Sn = Sn+1. In this
case, Sn \ {0} is a group, and Sn is a completely 0-simple semigroup.

Recall from [2] that an equivalence L on S is defined by the rule that
aLb, for a, b ∈ S, if and only if S1a = S1b. Similarly, an equivalence R on
S is defined by the rule that aRb, for a, b ∈ S, if and only if aS1 = bS1,
and the join L ∨ R is denoted by D. Also the L-class [R-class, D-class]
containing the element a is denoted by La [Ra, Da].

Lemma 3.4. Let S is a completely weak 0-simple semigroup and e is a
primitive idempotent. Then,

(i) Re = eS \ {0}.

(ii) Le = Se \ {0}.

Proof. We prove (i), the proof (ii) is similar. If a ∈ Re, it is clear that
a 6= 0. Since e is a left identity element for Re, ea = a ∈ eS \ {0}, and so
Re ⊆ eS \ {0}. Now let a = es ∈ eS \ {0}. Then ea = e2s = es = a. Since
S is a weak 0-simple semigroup, there exist t, z ∈ S, such that e = zat,
by Theorem 2.11. Now by using a similar argument as in the proof of [2,
Lemma 3.2.4], we obtain the result. 2
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Lemma 3.5. Let S is a completely weak 0-simple semigroup. Then there
exists n ≥ 1, such that for every a1, a2, ..., an ∈ S, if a1a2...an 6= 0, then

(i) Ra1a2...an = (a1a2...anS) \ {0}.

(ii) La1a2...an = (Sa1a2...an) \ {0}.

Proof. (i) Let e is a primitive idempotent. Then there exists n ≥ 1,
such that SeS = Sn, by Theorem 2.11. Now let a1, a2, ..., an ∈ S, such
that a1a2...an 6= 0 and u ∈ (a1a2...anS) \ {0}. Since SeS = Sn, there exist
z, t ∈ S, such that a1a2...an = zet, and so for some v ∈ S, u = zev. Thus
eRet and eRev, by Lemma 3.4, and so evRet. Since R is a left congruence,
we obtain zevRzet, that is uRa1a2...an, and so u ∈ Ra1a2...an . Therefore
(a1a2...anS) \ {0} ⊆ Ra1a2...an , hence

[(a1a2...anS) \ {0}] \ {a1a2...an} ⊆ [Ra1a2...an \ {a1a2...an}].(3.1)

Now let c ∈ Ra1a2...an \ {a1a2...an}. Then there exists x ∈ S, such that
c = a1a2...anx. Thus c ∈ [(a1a2...anS) \ {0}] \ {a1a2...an}, and so

Ra1a2...an \ {a1a2...an} ⊆ [(a1a2...anS) \ {0}] \ {a1a2...an}.(3.2)

Therefore Ra1a2...an \ {a1a2...an} = [(a1a2...anS) \ {0}] \ {a1a2...an}, by (1)
and (2). Hence Ra1a2...an = a1...anS \ {0}, as required.

(ii) It is similar to the proof of (i). 2

Theorem 3.6. Let S is a completely weak 0-simple semigroup. Then there
exists n ≥ 1, such that Sn is completely 0-simple.

Proof. Since S is a completely weak 0-simple semigroup, by Lemma 3.5,
there exists n ≥ 1, such that for every a1, a2, ..., an ∈ S, if a1a2...an 6= 0,
then

(i) Ra1a2...an = (a1a2...anS) \ {0}.

(ii) La1a2...an = (Sa1a2...an) \ {0}.

Let x = a1...an and y = b1...bn are a non-zero elements of S
n. Then

a1...anSb1...bn 6= {0}, since otherwise, if a1...anSb1...bn = {0}, then, by
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Theorem 2.11, there exist m1,m2 ∈ N, such that Sa1...anS = Sm1 and
Sb1...bnS = Sm2 . Then

Sm1+m2 = (Sa1...anS)(Sb1...bnS) = S(a1...anS
2b1...bn)S

⊆ S(a1...anSb1...bn)S = {0},
and so Sm1+m2 = {0}, which is a contradiction. Thus a1...anSb1...bn 6= {0},
and so there exists u ∈ S, such that

(a1...an)u(b1...bn) = d 6= 0.

Since Rb1b2...bn = (b1...bnS) \ {0}, there exists k ∈ S, such that b1...bnk =
b1...bn. Thus b1...bnk

m = b1...bn, for every m ≥ 1. Also since Ra1a2...an =
(a1a2...anS) \ {0} and d ∈ (a1a2...anS) \ {0}, there exists l ∈ S, such that

a1...an = dl = (a1...an)u(b1...bn)l = (a1...an)u(b1...bn)k
nl = dknl.

Therefore (a1...an, d) ∈ RSn . Similarly, we can show (d, b1...bn) ∈ LS
n
, and

so
(a1...an, b1...bn) ∈ LS

n ◦RSn = DSn .

Thus Sn \ {0} and {0} are DSn-classes, in Sn. Since E(S) \ {0} ⊆ Sn{0}
and S has a primitive idempotent, DSn-class Sn\{0} has a regular element,
and so Sn \ {0} is regular. Since {0} is regular, tSn is regular. Let a ∈ Sn.
Then there exists x ∈ Sn, such that a = axa, and so a = a(xa)(xa). Since
xa ∈ E(S), therefore a = a(xa)(xa) ∈ SnE(S)Sn, and so Sn ⊆ SnE(S)Sn.
Obviously, the converse of inclusion is satisfied. Thus Sn = SnE(S)Sn, and
so Sn = Sn+1, that is Sn is 0-simple. Since S has a primitive idempotent
and E(S) ⊆ Sn, Sn is completely 0-simple. 2

By using a similar argument as in the proof of Theorem 3.6, for every
completely weak simple semigroup S, there exists n ≥ 1, such that Sn is
completely simple and E(S) ⊆ Sn. Since every idempotent is primitive, in
every completely simple semigroup, thus every idempotent is primitive, in
every completely weak simple semigroup.

Lemma 3.7. For a regular semigroup S, the following statements are
equivalent:

(i) S has only one idempotent;

(ii) S is cancellative;

(iii) S is a group.
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Proof. (i) ⇒ (ii). Since S is regular, for every a ∈ S, there exists
x ∈ S, such that a = axa. Then ax and xa are idempotent. Thus for every
a ∈ S, there exists x ∈ S such that ax = xa = e and ae = ea = a. Now let
ac = bc, for a, b, c ∈ S. Thus there exists x ∈ S such that cx = e. Therefore
acx = bcx implies that a = b. Similarly, ca = cb implies that a = b, and so
S is cancellative, as required.

(ii) ⇒ (iii). Since S is regular and cancellative, for every a ∈ S, there
exists x ∈ S such that axa = a and xax = x. Let xa = e. Then xax = x
implies that xaxe = xe, and so ax = e. Therefore ax = xa = e, and so
a2x = a and ax2 = x. Now a2xb = ab, implies that a(xb) = b, for every
b ∈ S. Also bax2 = bx implies that bax = b, and so (bx)a = b, for every
b ∈ S. Therefore aS = Sa = S, for every a ∈ S, that is S is a group.

(iii)⇒ (i). It is obvious. 2

Corollary 3.8. (i) Let S is a weak simple semigroup, such that |E(S)| = 1.
Then there exists n ≥ 1, such that Sn is a group.
(ii) Let S is a completely weak simple semigroup, such that is cancellable.
Then there exists n ≥ 1, such that Sn is a group.

Proof. (i). Let S is a weak simple semigroup, such that |E(S)| = 1.
Then S has a primitive element, and so S is a completely weak simple semi-
group. Since Theorem 3.6 is also true, for every completely weak simple
semigroup, therefore there exists n ≥ 1, such that Sn is completely simple,
and so Sn is regular. Since E(S) ⊆ Sn and |E(S)| = 1, Sn is a group, by
Lemma 3.7.

(ii). Since Theorem 3.6 is also true, for every completely weak simple
semigroup, therefore there exists n ≥ 1, such that Sn is completely simple,
and so Sn is regular. Since S is cancellative, Sn is also cancellative, and so
Sn is a group, by Lemma 3.7. 2

Notice that every theorem that said for (completely) weak 0-simple
semigroup, satisfies for (completely) weak simple semigroup, too.

Recall from [2] that for a and b in semigroup S, La ≤ Lb (Ra ≤ Rb)
if S1a ⊆ S1b (aS1 ⊆ bS1). Thus we may regard S/L (S/R) as a partially
ordered set. The semigroup S satisfies condition minL (minR) according to
the partially ordered set S/L (S/R) satisfies the minimal condition.
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In a semigroup S, an ideal minimal within the set of all non-zero ideals
is called 0-minimal.

A semigroup S is called group-bound if every element a in S has a power
an (n ≥ 1) lying in a subgroup of S.

Theorem 3.9. Let S is a weak 0-simple semigroup. Then the following
statements are equivalent:

(i) S is a completely weak 0-simple semigroup;

(ii) there exists n ≥ 1, such that Sn is completely 0-simple;

(iii) there exists n ≥ 1, such that Sn is group-bound and simple;

(iv) there exists n ≥ 1, such that Sn is simple and satisfies in conditions
minRSn and minLSn ;

(v) there exists n ≥ 1, such that Sn is simple and contains at least one
left 0-minimal ideal that is simple and contains at least one right
0-minimal ideal that is simple.

Proof. (i) ⇒ (ii). Since S is a weak 0-simple semigroup, there exists
n ≥ 1, such that Sn is completely 0-simple, by Theorem 3.6, and so (ii) is
satisfied.

(ii) ⇒ (i). Since E(S) ⊆ Sn, for every n ≥ 1, S has a primitive idem-
potent, and so S completely weak 0-simple, as required.

Statements (ii), (iii), (iv) and (v) are equivalent, by [2, Theorem 3.2.11].
2

A semigroup S is called completely regular if every element a of S lies
in a subgroup of S (see [2]).

Similarly, we can show the following theorem for weak simple semigroup.

Theorem 3.10. Let S is a weak simple semigroup. Then the following
statements are equivalent:

(i) S is a completely weak simple semigroup;

(ii) there exists n ≥ 1, such that Sn is completely simple;

(iii) there exists n ≥ 1, such that Sn is completely regular and simple;
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(iv) there exists n ≥ 1, such that Sn is simple and satisfies in conditions
minRSn and minLSn ;

(v) there exists n ≥ 1, such that Sn is simple and contains at least one left
minimal ideal that is simple and contains at least one right minimal
ideal that is simple.

Recall from [2] that a semigroup S has the weak cancelation property if
for all a, b, c in S, ca = cb and ac = bc imply that a = b.

Theorem 3.11. Let S is a semigroup, such that if An = Sn, for ideal A
of S and n ≥ 1, then there exists m ≥ 1, such that A = Sm. Then the
following statements are equivalent:

(i) S is a completely weak simple semigroup;

(ii) there exists n ≥ 1, such that Sn is completely simple;

(iii) there exists n ≥ 1, such that Sn is regular and has the weak cancela-
tion property;

(iv) there exists n ≥ 1, such that Sn is regular and for every a, b ∈ Sn,
aba = a implies bab = b;

(v) there exists n ≥ 1, such that Sn is regular and every idempotent in
S is primitive.

Proof. Statements (ii), (iii), (iv) and (v) are equivalent, by [2, Theorem
3.2.11].

(i) ⇒ (ii). Since Theorem 3.6 is also true, for every completely weak
simple semigroup, therefore there exists n ≥ 1, such that Sn is completely
simple, as required.

(ii) ⇒ (i). It is sufficient to show S is weak simple. Let A is an ideal
of S. Then SnAnSn ⊆ An, that is An is an ideal of Sn. Thus An = Sn,
because Sn is simple. Now by assumption, there exists m ≥ 1, such that
A = Sm. Thus the powers of S, are the only ideals of S, and so S is weak
simple. 2

Theorem 3.12. Let S is a semigroup, such that if An = Sn, for ideal A
of S and n ≥ 1, then there exists m ≥ 1, such that A = Sm. Then the
following statements are equivalent:
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(i) S is a completely weak simple semigroup;

(ii) there exists n ≥ 1, such that Sn is completely simple;

(iii) there exists n ≥ 1, such that Sn is completely regular and for every
x, y ∈ Sn, xx−1 = (xyx)(xyx)−1;

(iv) there exists n ≥ 1, such that Sn is completely regular and simple.

Proof. (i)⇔ (ii) is satisfied, by Theorem 3.11.

Statements (ii), (iii) and (iv) are equivalent, by [2, Proposition 4.1.2].
2
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