Proyecciones Journal of Mathematics Vol. 41, N^o 1, pp. 83-99, February 2022. Universidad Católica del Norte Antofagasta - Chile

(Completely) weak simple semigroups and (Completely) weak 0-simple semigroups

Leila Nouri University of Sistan and Baluchestan, Iran and Hossein Mohammadzadeh Saany University of Sistan and Baluchestan, Iran Received : March 2020. Accepted : February 2021

Abstract

The structure theorems for (Completely) simple semigroups and (Completely) 0-simple semigroups have proved a powerful tool in the investigation of such semigroups. In this paper, first of all, we define weak simple semigroups and weak 0-simple semigroups and compare them with simple semigroups and 0-simple semigroups respectively. Then we give examples of these semigroups and describe the structure of them. Also, we define completely weak simple semigroup and completely weak 0-simple semigroup. Finally, by using Green's equivalences, we prove some results and give equivalences, for these semigroups.

MSC(2010): Primary 20M10; Secondary 20M12.

Keywords: Ideal, (0-) simple semigroups, Completely (0-) simple semigroups, Regular semigroup, Green's equivalences.

1. Preliminaries

This paper is concerned with the study of a certain basic type of semigroup, known as a (completely) weak (0-) simple semigroup. First, we recall from [2] that a semigroup without zero is called *simple* if it has no proper ideals. A semigroup S with zero (S should have at least two elements) is called 0-*simple* if

(i) $\{0\}$ and S are its only ideals;

(*ii*) $S^2 \neq \{0\}.$

For background material on algebraic structures and some other terminologies of these concepts, we refer the reader to [1, 2, 3].

2. Weak (0-) Simple Semigroups

In this section, first of all, we define weak simple semigroups and weak 0simple semigroups and describe the structure of 0-simple semigroup. Then compare weak simple semigroups and weak 0-simple semigroups with simple semigroups and 0-simple semigroups, respectively. Then we give examples of weak simple semigroups and weak 0-simple semigroups. Also, we prove some results about these semigroups.

Definition 2.1. We say that the semigroup S without zero is weak simple if the powers of S are the only ideals of S.

Indeed, if S is a weak simple semigroup and $S^2 = S$, then S is a simple semigroup.

Definition 2.2. We say that the semigroup S with zero is weak 0-simple, if

- (i) $\{0\}$ and the powers of S are the only ideals of S;
- (ii) $S^n \neq \{0\}$, for every $n \ge 2(n \in \mathbf{N})$.

Indeed, if S is a weak 0-simple semigroup and $S^2 = S$, then S is a 0-simple semigroup.

Description of the structure of weak 0-simple semigroup:

Let S is a weak 0-simple semigroup such that $S^2 \neq S$. Let $\alpha \in S \setminus S^2$. It is clear that $S^2 \cup \{\alpha\}$ is an ideal of S and S^2 is a proper subset of $S^2 \cup \{\alpha\}$. Then $S = S^2 \cup \{\alpha\}$ because S is a weak 0-simple semigroup. Now if $S^2 = S^3$, then the powers of S will be static, for every $n \geq 2$. Otherwise, if $S^2 \neq S^3$, then we let $u \in S^2 \setminus S^3$. We can write u = xy, for $x, y \in S$. According to $S = S^2 \cup \{\alpha\}$, there are three cases that can arise:

- (i) x and y belong to S^2 ;
- (*ii*) only one of x or y belongs to S^2 and the other one equals α ;
- (*iii*) $x = \alpha = y$.

But (i) and (ii) lead to $u \in S^3$, which is a contradiction. Thus only case (iii) can occur. So $u = \alpha^2$. Now the subset $S^3 \cup \{\alpha^2\}$ is an ideal of S such that

$$S^3 \subseteq S^3 \cup \{\alpha^2\} \subseteq S^2$$

Thus $S^2 = S^3 \cup \{\alpha^2\}$, and so $S = S^3 \cup \{\alpha, \alpha^2\}$, such that $\alpha^i \in S^i \setminus S^{i+1}$, for i = 1, 2. Again if $S^3 = S^4$, then the powers of S will be static, for every $n \geq 3$. Otherwise, if $S^3 \neq S^4$, then in a similar way, we can show $S^3 = S^4 \cup \{\alpha^3\}$, and so

$$S = S^4 \cup \{\alpha, \alpha^2, \alpha^3\},\$$

such that $\alpha^i \in S^i \setminus S^{i+1}$, for i = 1, 2, 3. Therefore by using induction, we have the following theorem.

Theorem 2.3. Let S is a weak 0-simple semigroup. Then one of the following statements holds:

- (i) $S^2 = S$, and so S is a 0-simple semigroup.
- (ii) There exists $n \ge 2$, such that $S^{n-1} \ne S^n$ and $S^n = S^{n+1}$. In this case, there exists $\alpha \in S$, such that $S^i = S^{i+1} \cup \{\alpha^i\}$, and $\alpha^i \in S^i \setminus S^{i+1}$, for $1 \le i \le n-1$. Also $S = S^{i+1} \cup \{\alpha, \alpha^2, ..., \alpha^i\}$, $1 \le i \le n-1$.
- (iii) $S^n \neq S^{n+1}$, for every $n \ge 1$. In this case, there exists $\alpha \in S$, such that for every $i \ge 1$,

$$S^i = S^{i+1} \cup \{\alpha^i\}.$$

Thus $S = S^{i+1} \cup \{\alpha, \alpha^2, ..., \alpha^i\}$, such that $\alpha^j \in S^j \setminus S^{j+1}, j \in \mathbb{N}$.

Note that if S is a weak 0-simple semigroup such that $S^2 \neq S$, then $|S \setminus S^2| = 1$. Since if $\alpha, \beta \in S \setminus S^2$, then $S^2 \cup \{\alpha\}$ and $S^2 \cup \{\beta\}$ are ideals of S such that $S^2 \subset S^2 \cup \{\alpha\}$ and $S^2 \subset S^2 \cup \{\beta\}$. Therefore $S^2 \cup \{\alpha\} = S = S^2 \cup \{\beta\}$, and so $\alpha = \beta$. By a similar argument, if $S^n \neq S^{n+1}$, then $|S^n \setminus S^{n+1}| = 1$.

Theorem 2.4. Let S is a weak 0-simple semigroup such that $S^2 \neq S$. Then S is a monogenic semigroup with zero.

Proof. Since $S^2 \neq S$, by Theorem 2.3, one of the following cases is held:

Case 1. There exists $n \ge 2$, such that $S^{n-1} \ne S^n$ and $S^n = S^{n+1}$, that is,

 $S^{n+1} = S^n \subset S^{n-1} \subset \ldots \subset S^2 \subset S.$

Let $S \setminus S^2 = \{\alpha\}$. Then $S = S^n \cup \{\alpha, \alpha^2, \dots, \alpha^{n-1}\}$. Let $0 \neq x \in S^m$, $m \geq n$. Then $x = x_1 x_2 \dots x_m$, such that $x_i \in S \setminus S^2 = \{\alpha\}, 1 \leq i \leq m$, that is $x = \alpha^m$. Hence

$$S^n = \{\alpha^n, \alpha^{n+1}, \alpha^{n+2}, \ldots\} \cup \{0\}$$

and

$$S^{n+1} = \{\alpha^{n+1}, \alpha^{n+2}, \alpha^{n+3}, \ldots\} \cup \{0\}.$$

Since $S^n = S^{n+1}$, there exits $j \ge 1$ such that $\alpha^n = \alpha^{n+j}$. Let r is the smallest natural number such that $\alpha^n = \alpha^{n+r}$. Then $S^n = \{\alpha^n, \alpha^{n+1}, \ldots, \alpha^{n+r-1}\} \cup \{0\}$, and so

$$S = \{\alpha, \alpha^2, \dots, \alpha^n, \alpha^{n+1}, \dots, \alpha^{n+r-1}\} \cup \{0\},\$$

which is a finite monogenic semigroup with zero of index n and period $r = |S^n|$.

Case 2. $S^n \neq S^{n+1}$, for every $n \ge 1$. That is,

$$\ldots \subset S^n \subset S^{n-1} \subset \ldots \subset S^2 \subset S.$$

In this case, by Theorem 2.3(iii), there exists $\alpha \in S$ such that $S = S^{i+1} \cup \{\alpha, \alpha^2, ..., \alpha^i\}$, for every $i \geq 1$, which implies S is an infinite monogenic semigroup with zero.

From Theorems 2.3 and 2.4, we have the following corollary.

Corollary 2.5. For a semigroup S the following statements are equivalent:

- (i) S is a weak 0-simple semigroup such that is not 0-simple;
- (ii) S is an infinite monogenic semigroup with zero or is a finite monogenic semigroup with zero of index n (n > 1) and period r.

Now we give examples of weak simple semigroups and weak 0-simple semigroups.

Example 2.6. Let $S = \langle a \rangle = \{a^i | i \ge 1\}$, is an infinite monogenic semigroup. Then only ideals of S, are powers of S, and so S is a weak simple semigroup. Also

$$\dots \underset{\neq}{\subset} S^4 \underset{\neq}{\subset} S^3 \underset{\neq}{\subset} S^2 \underset{\neq}{\subset} S.$$

That is, the chain of subsemigroups of S is not static.

If we add zero to the above infinite monogenic semigroup, then the made semigroup is weak 0-simple, such that the chain of subsemigroups of S is not static.

Example 2.7. Let $S = \langle b \rangle = \{b, b^2, ..., b^m, b^{m+1}, ..., b^{m+r-2}, b^{m+r-1}\}$, is a finite monogenic semigroup, of index m, and period r. Obviously,

$$\begin{split} S^2 = &< b >^2 = \{b^2, b^3, ..., b^m, b^{m+1}, ..., b^{m+r-2}, b^{m+r-1}\}, \\ S^3 = &< b >^3 = \{b^3, ..., b^m, b^{m+1}, ..., b^{m+r-2}, b^{m+r-1}\}, \\ &\vdots \\ S^m = &< b >^m = \{b^m, b^{m+1}, ..., b^{m+r-2}, b^{m+r-1}\}, \\ S^{m+1} = S^m. \end{split}$$

Thus $S^{m+1} = S^m \underset{\neq}{\subset} S^{m-1} \underset{\neq}{\subset} \ldots \underset{\neq}{\subset} S^2 \underset{\neq}{\subset} S$. Also every ideal of S is a power of S. Therefore S is a weak simple semigroup, such that the powers of S will be static, for every $k \ge m$. In this case, S^m is a group.

Notice that the converse of Theorem 2.3 is not true in general, that is, if there exists a semigroup S with zero, such that satisfies in condition (ii) or condition (iii) of Theorem 2.3, then S necessity is not weak 0-simple semigroup. See the following example.

Example 2.8. Let $B = \{\beta_1, \beta_2, ...\}$, that can be finite or infinite. Define:

$$\begin{aligned} \beta_i \cdot \beta_i &= \beta_i^2 = \beta_i, \qquad \forall i \ge 1; \\ \beta_i \cdot \beta_k &= \beta_k \cdot \beta_i = \beta_i, \qquad \forall i, k \in \mathbf{N}, i < k \end{aligned}$$

Obviously, B is a semigroup. Now let T is a weak 0-simple semigroup, which θ is its zero. Consider $S = T \cup B$, with the following operation:

If two elements are in T or B, then the operation is the same operation T and B respectively. Also,

$$\begin{aligned} \beta_{i} \cdot t &= t \cdot \beta_{i} = \beta_{i}, \quad \forall \beta_{i} \in B, \forall t \in T, t \neq \theta; \\ \beta_{i} \cdot \theta &= \theta \cdot \beta_{i} = \theta, \quad \forall \beta_{i} \in B. \end{aligned}$$

Clearly, S is a semigroup, such that $S^m = T^m \cup B$, for every $m \ge 1$. Since T is a weak 0-simple semigroup, there exists α in T, such that $T = T^2 \cup \{\alpha\}$. Therefore

$$S = T \cup B = S^2 \cup \{\alpha\},\$$

which $\alpha \notin S^2$. Now if T is a semigroup as Example 2.6, which the chain of subsemigroups of T is not static, then we have $S^i = S^{i+1} \cup \{\alpha^i\}$, for every $i \geq 1$. Then

$$S = S^{i+1} \cup \{\alpha^1, \alpha^2, \dots, \alpha^i\}, \quad \alpha^j \in S^j \setminus S^{j+1}, \quad \forall j \ge 1.$$

Therefore S satisfies in condition (*iii*) of Theorem 2.3, but S is not weak 0-simple semigroup, because $B \cup \{\theta\}$ is an ideal of S, which is not as a power of S.

Also if T is a semigroup as Example 2.7, which the chain of subsemigroups of T is static, then S satisfies in condition (*ii*) of Theorem 2.3, but S is not weak 0-simple semigroup, because $B \cup \{\theta\}$ is an ideal of S, which is not as a power of S.

Recall from [2] that an equivalence \mathcal{J} on S is defined by the rule that $a\mathcal{J}b$, for $a, b \in S$, if and only if $S^1aS^1 = S^1bS^1$. Also, the \mathcal{J} -class containing the element a is denoted by J_a .

Theorem 2.9. Let S is a weak 0-simple semigroup. Then one of the following statements holds:

- (i) $J_a = \{a\}$, for every $a \in S$.
- (*ii*) There exists $n \ge 1$ such that for every $a, b \in S^n \setminus \{0\}$, $a\mathcal{J}b$ and for every $a \in S \setminus S^n$, $J_a = \{a\}$.

Proof. By Theorem 2.3, one of the following cases holds:

Case 1. $S^2 = S$, and so S is a 0-simple. Since $S^1 a S^1$ is a non zero ideal of S, for every $a \in S \setminus \{0\}$, $S^1 a S^1 = S$, and so $a\mathcal{J}b$, for every $a, b \in S^2 \setminus \{0\} = S \setminus \{0\}$. In this case $S \setminus S^2 = \emptyset$. Hence (*ii*) is satisfied.

Case 2. There exists $n \ge 2$, such that $S^{n-1} \ne S^n$ and $S^n = S^{n+1}$, that is,

$$S^{n+1} = S^n \subset S^{n-1} \subset \ldots \subset S^2 \subset S.$$

Now $S^1 a S^1 \subseteq S^1 S^n S^1 \subseteq S^n$, for every $a \in S^n \setminus \{0\}$, and so by assumption $S^1 a S^1 = S^n$. Therefore $a \mathcal{J} b$, for every $a, b \in S^n \setminus \{0\}$. Also $S \setminus S^n = \{\alpha, \alpha^2, \ldots, \alpha^{n-1}\}$, such that $\alpha^i \in S^i \setminus S^{i+1}$, $1 \leq i \leq n-1$. Hence $S^1 \alpha^i S^1 \neq S^1 \alpha^j S^1$, for every $1 \leq i \neq j \leq n-1$, and so $\alpha^i \mathcal{J} \alpha^j$, for every $1 \leq i \neq j \leq n-1$. Therefore $J_a = \{a\}$, for every $a \in S \setminus S^n$, and so (*ii*) is satisfied.

Case 3. $S^n \neq S^{n+1}$, for every $n \ge 1$. That is,

$$\ldots \subset S^n \subset S^{n-1} \subset \ldots \subset S^2 \subset S.$$

In this case, by Theorem 2.3(iii), S is an infinite monogenic semigroup with zero, and so $S^1aS^1 \neq S^1bS^1$, for every $a \neq b \in S$, that is $J_a = \{a\}$, for every $a \in S$. Therefore (i) is satisfied. \Box

The converse of Theorem 2.9 is not true, see the following example.

Example 2.10. Consider S with the following table:

	0	a	b	c
0	0	0	0	0
a	0	b	0	0
b	0	0	a	0
c	0	0	0	0

Indeed, $S^2 = \{0, a, b\}$, $a\mathcal{J}b$ and $J_c = \{c\}$. Therefore condition (*ii*) of Theorem 2.9, for n = 2 is satisfied. But $I = \{0, c\}$ is a non zero ideal of S, which is not equals with no powers of S, because $S^n = S^{n+1}$, for every $n \geq 2$.

Theorem 2.11. Let S is a weak 0-simple semigroup. Then for every $0 \neq a \in S$, there exists $m \ge 1$, such that $SaS = S^m$.

Proof. Let $0 \neq a \in S$. If $SaS = \{0\}$, then $I = \{\alpha | S\alpha S = \{0\}\}$ is a nonzero ideal of S. Since S is a weak 0-simple semigroup, there exists $n \geq 1$, such that $I = S^n$. But $SIS = \{0\}$, by definition I. Then $S^{n+2} = \{0\}$, which is a contradiction. Therefore $SaS \neq \{0\}$. Since SaS is an ideal of S, there exists $m \geq 1$, such that $SaS = S^m$. \Box

Theorem 2.12. The semigroup S is weak 0-simple if and only if for every $n \ge 1$, $S^n \ne \{0\}$, and for every $0 \ne a \in S$ there exists $m \ge 1$, such that $SaS = S^m$.

Proof. Necessity. It is obvious by definition and Theorem 2.11.

Sufficiency. Let I is a non zero ideal of S. Then for every $0 \neq a \in I$, there exists $m_a \in \mathbf{N}$, such that $S^1 a S^1 = S^{m_a}$. Therefore $I = \bigcup_{a \in I} S^{m_a}$. Let $m = min\{m_a | a \in I\}$. Then $I = S^m$, and so S is a weak 0-simple semigroup. \Box

Lemma 2.13. Let S is a semigroup with zero, such that for every $0 \neq a \in S$, there exists $m \geq 1$, such that $SaS = S^m$. If A is a non-empty and non-zero subset of S, then there exists $m \geq 1$, such that $SAS = S^m$.

Proof. By assumption we have for every $0 \neq a \in A$, there exists $m_a \geq 1$, such that $SaS = S^{m_a}$. Thus $SAS = \bigcup_{a \in A} SaS = \bigcup_{0 \neq a \in A} S^{m_a}$. Let $m = min\{m_a | a \in A\}$. Then $\bigcup_{0 \neq a \in A} S^{m_a} = S^m$, and so $SAS = S^m$, as required. \Box

Theorem 2.14. Let S is a weak 0-simple semigroup, such that $S^{n+1} = S^n$, for $n \ge 1$. Then S^n is a 0-simple semigroup.

Proof. We must show the only non-zero ideal of S^n is S^n . Let A is a non-zero ideal of S^n . Since S is a weak 0-simple semigroup, by Theorem 2.11, for every $0 \neq a \in S$ there exists $m \geq 1$, such that $SaS = S^m$. Thus $SAS = S^k$, for $k \geq 1$, by Lemma 2.13. Therefore $S^nAS^n = S^{k+2n-2}$. Since $k + 2n - 2 \geq n$, from equality $S^n = S^{n+1}$, we obtain $S^nAS^n = S^{k+2n-2} = S^n$. But $S^n = S^nAS^n \subseteq A$, because A is an ideal of S. Thus $S^n = A$, that is, the only non-zero ideal of S^n is S^n , and so S^n is a 0-simple semigroup, as required.

Notice that, since in a finite weak 0-simple semigroup, the chain of powers of S is static, thus in these semigroups there exists a power of S, such that is a 0-simple semigroup.

For a semigroup S, the set of all idempotents of S is denoted by E(S).

Lemma 2.15. Let S is a weak 0-simple semigroup, such that $E(S) \neq \{0\}$. Let $SeS = S^m$, for $0 \neq e \in E(S)$ and $m \in \mathbb{N}$. Then the chain of powers of S is static, for every $k \geq m$, and so S^m is 0-simple.

Proof. Since S is a weak 0-simple semigroup, for $0 \neq e \in E(S)$ there exists $m \geq 1$, such that $SeS = S^m$, by Theorem 2.11. Indeed $e \in S^n$, for every $n \geq 1$. Then $S^m = SeS \subseteq S^k$, for every $k \geq 3$. If m = 1 or m = 2, then obviously the converse of inclusion is satisfied, and so $S^m = S^k$, for every $k \geq 3$. Thus $S^m = S^{m+1}$. Now if $m \geq 3$, since above inclusion is satisfied, for every $k \geq 3$, thus for k = m + 1, is satisfied too, that is $S^m \subseteq S^{m+1}$, and so $S^m = S^{m+1}$. Therefore the chain of powers of S is static, for every $k \geq m$, and so S^m is 0-simple, by Theorem 2.14.

Lemma 2.16. Let S is a weak 0-simple semigroup, such that $E(S) \neq \{0\}$. Let $SE(S)S = S^m$, for $m \in \mathbb{N}$. Then the chain of powers of S is static, for every $k \geq m$, and so S^m is 0-simple.

Proof. Since S is a weak 0-simple semigroup, there exists $m \ge 1$ such that $SE(S)S = S^m$, by Lemma 2.13. Since $E(S) \subseteq S^n$, for every $n \ge 1$, therefore $S^m = SE(S)S \subseteq S^k$, for every $k \ge 3$. Now by using a similar argument as in the proof of Lemma 2.15, we obtain the result. \Box

Recall from [2] that an element a of semigroup S is called *regular* if a = axa, for some $x \in S$. If all elements of S are regular, we say that S is a regular semigroup.

Corollary 2.17. Every regular weak 0-simple semigroup is a 0-simple semigroup.

Proof. Let S is a regular weak 0-simple semigroup. Then for every $a \in S$, there exists $x \in S$, such that a = axa, and so a = a(xa)(xa). Since $xa \in E(S)$, therefore $a = a(xa)(xa) \in SE(S)S$, and so $S \subseteq SE(S)S$. Obviously, the converse of inclusion is satisfied. Thus S = SE(S)S, and so S is 0-simple, by Lemma 2.16, as required.

3. Completely Weak (0-) Simple Semigroups

In this section by using the natural partial order relation on the idempotents of a semigroup, we define completely weak simple semigroups and completely weak 0-simple semigroups. Then we prove some results of these semigroups and give equivalences of them.

Among idempotents in an arbitrary semigroup, there is a natural partial order relation defined by the rule that $e \leq f$ if and only if ef = fe = e. It is easy to verify that the given relation is a partial order relation. If S is a semigroup with zero, then the defining properties of a zero element immediately imply that 0 is the unique minimum idempotent. The idempotents that are minimal within the set of non-zero idempotents are called *primitive*. Thus a primitive idempotent e has the property that

$$ef = fe = f \neq 0 \Longrightarrow e = f.$$

Recall from [2] that the semigroup S is called *completely simple* if it is simple and $(E(S), \leq)$ has a primitive idempotent. Also, the semigroup Siscalledcompletely0-simpleifitis0-simpleand(E(S), \leq) has a primitive idempotent.

Definition 3.1. We say that the semigroup S is completely weak simple if S is a weak simple and $(E(S), \leq)$ has a primitive idempotent.

Definition 3.2. We say that the semigroup S is completely weak 0-simple if S is a weak 0-simple and $(E(S), \leq)$ has a primitive idempotent.

Since in every finite weak simple semigroup, every element has a power which is idempotent, $E(S) \neq \emptyset$. Also since $|E(S)| < \infty$, E(S) has a primitive idempotent. Therefore every finite weak simple semigroup is completely weak simple.

In every finite weak 0-simple semigroup, if $E(S) \neq \{0\}$, then by using a similar argument as in the finite weak simple semigroup, we can conclude that every finite weak 0-simple semigroup is completely weak 0-simple.

Notice that if S is a completely weak 0-simple semigroup, then S is not an infinite monogenic semigroup. Now similar to Theorem 2.3 we have the following theorem.

Theorem 3.3. Let S is a completely weak 0-simple semigroup. Then one of the following statements holds:

- (i) $S^2 = S$, and so S is a completely 0-simple semigroup.
- (ii) There exists $n \ge 2$, such that $S^{n-1} \ne S^n$ and $S^n = S^{n+1}$. In this case, $S^n \setminus \{0\}$ is a group, and S^n is a completely 0-simple semigroup.

Recall from [2] that an equivalence \mathcal{L} on S is defined by the rule that $a\mathcal{L}b$, for $a, b \in S$, if and only if $S^1a = S^1b$. Similarly, an equivalence \mathcal{R} on S is defined by the rule that $a\mathcal{R}b$, for $a, b \in S$, if and only if $aS^1 = bS^1$, and the join $\mathcal{L} \vee \mathcal{R}$ is denoted by \mathcal{D} . Also the \mathcal{L} -class [\mathcal{R} -class, \mathcal{D} -class] containing the element a is denoted by L_a [R_a, D_a].

Lemma 3.4. Let S is a completely weak 0-simple semigroup and e is a primitive idempotent. Then,

- (i) $R_e = eS \setminus \{0\}.$
- (*ii*) $L_e = Se \setminus \{0\}.$

Proof. We prove (i), the proof (ii) is similar. If $a \in R_e$, it is clear that $a \neq 0$. Since e is a left identity element for R_e , $ea = a \in eS \setminus \{0\}$, and so $R_e \subseteq eS \setminus \{0\}$. Now let $a = es \in eS \setminus \{0\}$. Then $ea = e^2s = es = a$. Since S is a weak 0-simple semigroup, there exist $t, z \in S$, such that e = zat, by Theorem 2.11. Now by using a similar argument as in the proof of [2, Lemma 3.2.4], we obtain the result.

Lemma 3.5. Let S is a completely weak 0-simple semigroup. Then there exists $n \ge 1$, such that for every $a_1, a_2, ..., a_n \in S$, if $a_1a_2...a_n \ne 0$, then

- (i) $R_{a_1a_2...a_n} = (a_1a_2...a_nS) \setminus \{0\}.$
- (*ii*) $L_{a_1a_2...a_n} = (Sa_1a_2...a_n) \setminus \{0\}.$

Proof. (i) Let e is a primitive idempotent. Then there exists $n \geq 1$, such that $SeS = S^n$, by Theorem 2.11. Now let $a_1, a_2, ..., a_n \in S$, such that $a_1a_2...a_n \neq 0$ and $u \in (a_1a_2...a_nS) \setminus \{0\}$. Since $SeS = S^n$, there exist $z, t \in S$, such that $a_1a_2...a_n = zet$, and so for some $v \in S$, u = zev. Thus $e\mathcal{R}et$ and $e\mathcal{R}ev$, by Lemma 3.4, and so $ev\mathcal{R}et$. Since \mathcal{R} is a left congruence, we obtain $zev\mathcal{R}zet$, that is $u\mathcal{R}a_1a_2...a_n$, and so $u \in R_{a_1a_2...a_n}$. Therefore $(a_1a_2...a_nS) \setminus \{0\} \subseteq R_{a_1a_2...a_n}$, hence

 $(3.1) \quad [(a_1a_2...a_nS) \setminus \{0\}] \setminus \{a_1a_2...a_n\} \subseteq [R_{a_1a_2...a_n} \setminus \{a_1a_2...a_n\}].$

Now let $c \in R_{a_1a_2...a_n} \setminus \{a_1a_2...a_n\}$. Then there exists $x \in S$, such that $c = a_1a_2...a_nx$. Thus $c \in [(a_1a_2...a_nS) \setminus \{0\}] \setminus \{a_1a_2...a_n\}$, and so

 $(3.2) \qquad R_{a_1a_2...a_n} \setminus \{a_1a_2...a_n\} \subseteq [(a_1a_2...a_nS) \setminus \{0\}] \setminus \{a_1a_2...a_n\}.$

Therefore $R_{a_1a_2...a_n} \setminus \{a_1a_2...a_n\} = [(a_1a_2...a_nS) \setminus \{0\}] \setminus \{a_1a_2...a_n\}$, by (1) and (2). Hence $R_{a_1a_2...a_n} = a_1...a_nS \setminus \{0\}$, as required.

(ii) It is similar to the proof of (i).

Theorem 3.6. Let S is a completely weak 0-simple semigroup. Then there exists $n \ge 1$, such that S^n is completely 0-simple.

Proof. Since S is a completely weak 0-simple semigroup, by Lemma 3.5, there exists $n \ge 1$, such that for every $a_1, a_2, ..., a_n \in S$, if $a_1a_2...a_n \ne 0$, then

- (i) $R_{a_1a_2...a_n} = (a_1a_2...a_nS) \setminus \{0\}.$
- (*ii*) $L_{a_1a_2...a_n} = (Sa_1a_2...a_n) \setminus \{0\}.$

Let $x = a_1...a_n$ and $y = b_1...b_n$ are a non-zero elements of S^n . Then $a_1...a_nSb_1...b_n \neq \{0\}$, since otherwise, if $a_1...a_nSb_1...b_n = \{0\}$, then, by

Theorem 2.11, there exist $m_1, m_2 \in \mathbf{N}$, such that $Sa_1...a_n S = S^{m_1}$ and $Sb_1...b_n S = S^{m_2}$. Then

$$S^{m_1+m_2} = (Sa_1...a_nS)(Sb_1...b_nS) = S(a_1...a_nS^2b_1...b_n)S$$
$$\subseteq S(a_1...a_nSb_1...b_n)S = \{0\},$$

and so $S^{m_1+m_2} = \{0\}$, which is a contradiction. Thus $a_1...a_nSb_1...b_n \neq \{0\}$, and so there exists $u \in S$, such that

$$(a_1...a_n)u(b_1...b_n) = d \neq 0.$$

Since $R_{b_1b_2...b_n} = (b_1...b_nS) \setminus \{0\}$, there exists $k \in S$, such that $b_1...b_nk = b_1...b_n$. Thus $b_1...b_nk^m = b_1...b_n$, for every $m \ge 1$. Also since $R_{a_1a_2...a_n} = (a_1a_2...a_nS) \setminus \{0\}$ and $d \in (a_1a_2...a_nS) \setminus \{0\}$, there exists $l \in S$, such that

$$a_1...a_n = dl = (a_1...a_n)u(b_1...b_n)l = (a_1...a_n)u(b_1...b_n)k^n l = dk^n l.$$

Therefore $(a_1...a_n, d) \in \mathcal{R}^{S^n}$. Similarly, we can show $(d, b_1...b_n) \in \mathcal{L}^{S^n}$, and so

$$(a_1...a_n, b_1...b_n) \in \mathcal{L}^{S^n} \circ \mathcal{R}^{S^n} = \mathcal{D}^{S^n}$$

Thus $S^n \setminus \{0\}$ and $\{0\}$ are \mathcal{D}^{S^n} -classes, in S^n . Since $E(S) \setminus \{0\} \subseteq S^n\{0\}$ and S has a primitive idempotent, \mathcal{D}^{S^n} -class $S^n \setminus \{0\}$ has a regular element, and so $S^n \setminus \{0\}$ is regular. Since $\{0\}$ is regular, tS^n is regular. Let $a \in S^n$. Then there exists $x \in S^n$, such that a = axa, and so a = a(xa)(xa). Since $xa \in E(S)$, therefore $a = a(xa)(xa) \in S^n E(S)S^n$, and so $S^n \subseteq S^n E(S)S^n$. Obviously, the converse of inclusion is satisfied. Thus $S^n = S^n E(S)S^n$, and so $S^n = S^{n+1}$, that is S^n is 0-simple. Since S has a primitive idempotent and $E(S) \subseteq S^n$, S^n is completely 0-simple. \Box

By using a similar argument as in the proof of Theorem 3.6, for every completely weak simple semigroup S, there exists $n \ge 1$, such that S^n is completely simple and $E(S) \subseteq S^n$. Since every idempotent is primitive, in every completely simple semigroup, thus every idempotent is primitive, in every completely weak simple semigroup.

Lemma 3.7. For a regular semigroup S, the following statements are equivalent:

- (i) S has only one idempotent;
- (ii) S is cancellative;
- (iii) S is a group.

Proof. $(i) \Rightarrow (ii)$. Since S is regular, for every $a \in S$, there exists $x \in S$, such that a = axa. Then ax and xa are idempotent. Thus for every $a \in S$, there exists $x \in S$ such that ax = xa = e and ae = ea = a. Now let ac = bc, for $a, b, c \in S$. Thus there exists $x \in S$ such that cx = e. Therefore acx = bcx implies that a = b. Similarly, ca = cb implies that a = b, and so S is cancellative, as required.

 $(ii) \Rightarrow (iii)$. Since S is regular and cancellative, for every $a \in S$, there exists $x \in S$ such that axa = a and xax = x. Let xa = e. Then xax = x implies that xaxe = xe, and so ax = e. Therefore ax = xa = e, and so $a^2x = a$ and $ax^2 = x$. Now $a^2xb = ab$, implies that a(xb) = b, for every $b \in S$. Also $bax^2 = bx$ implies that bax = b, and so (bx)a = b, for every $b \in S$. Therefore aS = Sa = S, for every $a \in S$, that is S is a group.

 $(iii) \Rightarrow (i)$. It is obvious.

Corollary 3.8. (i) Let S is a weak simple semigroup, such that |E(S)| = 1. Then there exists $n \ge 1$, such that S^n is a group.

(ii) Let S is a completely weak simple semigroup, such that is cancellable. Then there exists $n \ge 1$, such that S^n is a group.

Proof. (i). Let S is a weak simple semigroup, such that |E(S)| = 1. Then S has a primitive element, and so S is a completely weak simple semigroup. Since Theorem 3.6 is also true, for every completely weak simple semigroup, therefore there exists $n \ge 1$, such that S^n is completely simple, and so S^n is regular. Since $E(S) \subseteq S^n$ and |E(S)| = 1, S^n is a group, by Lemma 3.7.

(ii). Since Theorem 3.6 is also true, for every completely weak simple semigroup, therefore there exists $n \ge 1$, such that S^n is completely simple, and so S^n is regular. Since S is cancellative, S^n is also cancellative, and so S^n is a group, by Lemma 3.7.

Notice that every theorem that said for (completely) weak 0-simple semigroup, satisfies for (completely) weak simple semigroup, too.

Recall from [2] that for a and b in semigroup S, $L_a \leq L_b$ $(R_a \leq R_b)$ if $S^1 a \subseteq S^1 b$ $(aS^1 \subseteq bS^1)$. Thus we may regard S/\mathcal{L} (S/\mathcal{R}) as a partially ordered set. The semigroup S satisfies *condition min_L* (min_R) according to the partially ordered set S/\mathcal{L} (S/\mathcal{R}) satisfies the minimal condition. In a semigroup S, an ideal minimal within the set of all non-zero ideals is called 0-minimal.

A semigroup S is called *group-bound* if every element a in S has a power a^n $(n \ge 1)$ lying in a subgroup of S.

Theorem 3.9. Let S is a weak 0-simple semigroup. Then the following statements are equivalent:

- (i) S is a completely weak 0-simple semigroup;
- (ii) there exists $n \ge 1$, such that S^n is completely 0-simple;
- (iii) there exists $n \ge 1$, such that S^n is group-bound and simple;
- (iv) there exists $n \ge 1$, such that S^n is simple and satisfies in conditions $\min_{R^{S^n}}$ and $\min_{L^{S^n}}$;
- (v) there exists $n \ge 1$, such that S^n is simple and contains at least one left 0-minimal ideal that is simple and contains at least one right 0-minimal ideal that is simple.

Proof. $(i) \Rightarrow (ii)$. Since S is a weak 0-simple semigroup, there exists $n \ge 1$, such that S^n is completely 0-simple, by Theorem 3.6, and so (ii) is satisfied.

 $(ii) \Rightarrow (i)$. Since $E(S) \subseteq S^n$, for every $n \ge 1$, S has a primitive idempotent, and so S completely weak 0-simple, as required.

Statements (*ii*), (*iii*), (*iv*) and (*v*) are equivalent, by [2, Theorem 3.2.11]. \Box

A semigroup S is called *completely regular* if every element a of S lies in a subgroup of S (see [2]).

Similarly, we can show the following theorem for weak simple semigroup.

Theorem 3.10. Let S is a weak simple semigroup. Then the following statements are equivalent:

- (i) S is a completely weak simple semigroup;
- (ii) there exists $n \ge 1$, such that S^n is completely simple;
- (iii) there exists $n \ge 1$, such that S^n is completely regular and simple;

- (iv) there exists $n \ge 1$, such that S^n is simple and satisfies in conditions $\min_{B^{S^n}}$ and $\min_{L^{S^n}}$;
- (v) there exists $n \ge 1$, such that S^n is simple and contains at least one left minimal ideal that is simple and contains at least one right minimal ideal that is simple.

Recall from [2] that a semigroup S has the weak cancelation property if for all a, b, c in S, ca = cb and ac = bc imply that a = b.

Theorem 3.11. Let S is a semigroup, such that if $A^n = S^n$, for ideal A of S and $n \ge 1$, then there exists $m \ge 1$, such that $A = S^m$. Then the following statements are equivalent:

- (i) S is a completely weak simple semigroup;
- (ii) there exists $n \ge 1$, such that S^n is completely simple;
- (iii) there exists $n \ge 1$, such that S^n is regular and has the weak cancelation property;
- (iv) there exists $n \ge 1$, such that S^n is regular and for every $a, b \in S^n$, aba = a implies bab = b;
- (v) there exists $n \ge 1$, such that S^n is regular and every idempotent in S is primitive.

Proof. Statements (ii), (iii), (iv) and (v) are equivalent, by [2, Theorem 3.2.11].

 $(i) \Rightarrow (ii)$. Since Theorem 3.6 is also true, for every completely weak simple semigroup, therefore there exists $n \ge 1$, such that S^n is completely simple, as required.

 $(ii) \Rightarrow (i)$. It is sufficient to show S is weak simple. Let A is an ideal of S. Then $S^n A^n S^n \subseteq A^n$, that is A^n is an ideal of S^n . Thus $A^n = S^n$, because S^n is simple. Now by assumption, there exists $m \ge 1$, such that $A = S^m$. Thus the powers of S, are the only ideals of S, and so S is weak simple. \Box

Theorem 3.12. Let S is a semigroup, such that if $A^n = S^n$, for ideal A of S and $n \ge 1$, then there exists $m \ge 1$, such that $A = S^m$. Then the following statements are equivalent:

- (i) S is a completely weak simple semigroup;
- (ii) there exists $n \ge 1$, such that S^n is completely simple;
- (iii) there exists $n \ge 1$, such that S^n is completely regular and for every $x, y \in S^n, xx^{-1} = (xyx)(xyx)^{-1};$
- (iv) there exists $n \ge 1$, such that S^n is completely regular and simple.

Proof. $(i) \Leftrightarrow (ii)$ is satisfied, by Theorem 3.11.

Statements (*ii*), (*iii*) and (*iv*) are equivalent, by [2, Proposition 4.1.2]. \Box

References

- [1] P. M. Higgins, *Techniques of semigroup theory.* Oxford: Oxford University, 1992.
- [2] J. M. Howie, *Fundamentals of semigroup theory.* London: Oxford University Press, 1995.
- [3] M. Kilp, U. Knauer and A. Mikhalev, *Monoids, Acts and Categorie.* Berlin: Walter de Gruyter, 2000.

Leila Nouri

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran e-mail: Leila_Nouri@math.usb.ac.ir and

Hossein Mohammadzadeh Saany Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran e-mail: hmsdm@math.usb.ac.ir Corresponding author