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Abstract

We propose in this article some characterizations of the notion of
frame in 2(I;H). The first one is general, and depends on a proce-
dure of inserting a family of vectors instead of x in the definition of a
frame. This allows us to define the analysis, synthesis and frame op-
erator on the space 2(I;H) instead of H. The second one is specific
to 2(I;Ck) and relate it to the freeness of the finite set of compo-
nents of the frame. The third one concerns normalised tight frames
in 2(I;Ck). Afterwards, we give an example of a frame in 2(I;C2)
using another sufficient condition in dimension 2. We conclude with
some topological applications of these characterizations.
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1. Introduction

Frames introduced by Duffin and Shaeffer in [1] have recently received great
attention due to their wide range of applications in both mathematics and
engineering science.

The classical definition of the notion of a frame is that of a family of
vectors in a Hilbert space H that satisfy a double inequality involving the
scalar product and the norm maps. Specifically :

Definition 1. We say that a family u = {un}n∈I with un in H is a frame
if

∃A,B > 0,∀x ∈ H,Akxk2 ≤
X
n∈I

|hun, xi|2 ≤ Bkxk2

Remark 1. Bessel families are the families for which only the second in-
equality holds.

Frames have been generalized in different directions and notably in the
setting of Hilbert C*-modules.

In the definition of the notion of a frame given above, it could be ob-
served that the variable x belongs to a type of ”test space” H over which
we are testing the frame inequality.

Therefore, the definition of this notion could in theory be extendend in
many directions provided that we supply a good notion of a mathematical
object which is somehow ”dual” to that of a family of vectors, or general-
izations thereof.

Taking the ”duality” map to be :

({un}n∈I , x) 7→ {hun, xi}n∈I ,

where x belongs to the test space H, we get the classical notion of frame.
In the following section, we investigate the duality map :

({un}n∈I , {vn}n∈J) 7→ {hun, vmi}(n,m)∈I×J ,

where {vn}n∈J belongs to the test space 2(J ;H).
Proposition 3 of the next section says that generalizing the definition of

a frame naturally through this duality doesn’t bring any novelty. Neverthe-
less, this proposition allows us to define the analysis and frame operators on
the spaces 2(I × J,H); therefore enlarging the domains of these operators
as they are classically defined.
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The next sections are concerned with the case H = Ck or H = C2. We
find some expressions of the functions N (later defined) and prove some
characterizations of frames and normalized tight frames.

Finally, we answer some questions related to the topological nature of
the set of frames or normalized tight frames inside H = Ck.

2. Test space: from vectors to family of vectors

Let I,J be countably infinite sets and H = {Hi}i∈I a family of Hilbert
spaces.

We set : 2(I;H) = {u = {ui}i∈I ;ui ∈ Hi,
P

i∈I ||ui||2Hi
<∞}

We endow 2(I;H) with the pointwise scalar product :
hu, vi =P

i∈Ihui, viiHi

We recall the proof of the following proposition.

Proposition 1. 2(I;H) is a Hilbert space.

Proof.

• 2(I;H) is a vector space thanks to |a + b|2 ≤ 2(|a|2 + |b|2) and the
fact that Hi are vector spaces.

• h·, ·i is a scalar product because each h·, ·iHi is.

• Let’s show that 2(I,H) is complete. Let (u(n))n∈N be a Cauchy
sequence in 2(I,H). Let > 0. Let N ∈ N such that ∀n,m ≥
N, ||u(n) − u(m)||2 ≤ . Therefore, for i ∈ I fixed, we have : ∀n,m ≥
N, ||u(n)i −u

(m)
i ||2Hi

≤ , so {u(n)i }n∈N is a Cauchy sequence in Hi, so it
converges to a certain ui ∈ Hi, Hi being complete. Moreover, we have

for every finite subset P of I, ∀n,m ≥ N,
P

i∈I∩P ||u
(n)
i −u

(m)
i ||2Hi

≤ ,

and passing to the limit n→ +∞ : ∀m ≥ N,
P

i∈I∩P ||ui−u
(m)
i ||2Hi

≤
, valid for each finite subset P, so by setting u = {ui}i∈I we have :
∀m ≥ N, ||u−u(m)||2 ≤ , which proves the convergence of (u(n))n∈N
to u ∈ 2(I,H)

2

Remark 2. 2(I;H) is a (vector) subspace of the space of all families of
vectors of H indexed by i ∈ I.
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We fix the family {Hi}i∈I such that each Hi is equal to the same Hilbert
space H.
We define 2(J ;H) := 2(J ;H). It will be our test space in this
section.
The next proposition asserts that the natural generalization of the notion
of a frame obtained by changing the test space to 2(J,H); doesn’t bring
anything new. It is more generally formulated in the context of frames
associated with measurable spaces.

Proposition 2. LetX be a σ-finite measure space with positive measure µ
and {ux}x∈X a family in H such that ∀f ∈ H, x 7→ hux, fi is a measurable
function on X. The following are equivalent :

1. There exists constants A,B > 0 such that

∀f ∈ H : Akfk2 ≤
Z
X
|hux, fi|2dµ ≤ Bkfk2

(i.e. {ux}x∈X is a frame associated with the measure space (X,µ))

2. There exists constants A,B > 0 such that for each σ-finite measure
space (Y, ν) such that ν is a non-zero positive measure, and for all
f = {fy}y∈Y such that (x, y) 7→ hux, fyi is a measurable function on
X × Y and f ∈ 2(Y, ν;H), we have

A

Z
Y
kfyk2dν ≤

Z
X×Y

|hux, fyi|2dµ ≤ B

Z
Y
kfyk2dν

Proof. (1 ⇒ 2) This part follows immediately by integration and
Tonelli’s theorem.
(2⇒ 1) Take f ∈ H and D ⊂ Y a measurable subset of Y with 0 < ν(D) <
+∞. Then g = 1D

ν(D) ∈ 2(Y ) satisfy kgk2 = 1. Applying the hypothesis to
fy = g(y)f yields the result. 2

In the case of classical frames, this specializes to :

Proposition 3. Suppose that u = {un}n∈I with un ∈ H. Then the fol-
lowing are equivalent.

1. There exists A,B > 0 such that

∀x ∈ H,Akxk2 ≤
X
n∈I

|hun, xi|2 ≤ Bkxk2

(i.e. {uk}k∈N is a frame)



Some characterizations of frames in 2(I;H) and ... 1145

2. There exists A,B > 0 such that for all countably infinite sets J and
v = {vk}k∈J ∈ 2(J ;H)

A
X
k∈J

kvkk2 ≤
X

n∈I,k∈J
|hun, vki|2 ≤ B

X
k∈J

kvkk2

Proof. (1 ⇒ 2) Immediate through summation.
(2 ⇒ 1) Suppose there exists constants A,B > 0 such that :

A
X
k∈J

kvkk2 ≤
X

n∈I,k∈J
|hun, vki|2 ≤ B

X
k∈J

kvkk2

By choosing v such that vm = x for only one fixed index m and 0 for other
indices, we obtain :

Akxk2 ≤
X
n∈I

|hun, xi|2 ≤ Bkxk2

. 2

Based on this characterization, we can define, for a frame u ∈ 2(I;H)
with bounds A,B > 0 :

T : 2(I;H) → 2(I × J)
v = {vm}m∈I 7→ {hvm, uni}(m,n)∈I×J
T ∗ : 2(I × J) → 2(I;H)
{λm,n}(m,n)∈I×J 7→ {Pn∈J λm,nun}m∈I
S = T ∗T : 2(I;H) → 2(I;H)
v = {vm}m∈I 7→ {Pn∈Jhvm, uniun}m∈I

called respectively the analysis, synthesis and frame operators.
We have :

Akvk2 ≤ hSv, vi =
X

(m,n)∈I2
|hvm, uni|2 ≤ Bkvk2

which shows in particular that S is an invertible, positive definite operator
on 2(I,H).
In fact S is a diagonal operator, so its importance compared to the classical
frame operator is not yet clear.
Finally let’s set up some notation.
We set, for u = {un}n∈I with un ∈ H and x ∈ H\{0} :

N(u, x) =

P
n∈I |hun, xi|2
||x||2
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We also set, for u = {un}n∈I with un ∈ H and v ∈ 2(J ;H)\{0} :

N(u, v) =

P
n∈I,m∈J |hun, vmi|2

||v||2 =

P
n∈I,m∈J |hun, vmi|2P

m∈J ||vm||2

3. Rewriting of N in the case H = Ck

We will be writing in this section scalar products which may live in different
spaces.

Definition 2. Let u ∈ 2(I;Ck). We define the Gramian matrix of {ui}i=1···k
as the matrix U whose i,j-th component is Ui,j = hui, uji. This matrix is
well defined because u ∈ 2(I,Ck) implies that each component ui is in
2(I).

Proposition 4. For u, v ∈ 2(I;Ck)\{0} and x ∈ H\{0}, we have

N(u, x) =

Pk
i,j=1hui, ujixjxi

||x||2 =
||Pk

i=1 x
iui||22(I)

||x||2(3.1)

N(u, v) =

Pk
i,j=1hui, ujihvj , viiPk

j=1 ||vj ||2
=
Tr (UV )

Tr (V )
(3.2)

where U and V denote the Gramian matrices of {ui}i=1···k and {vi}i=1···k
respectively.

Proof. We set un = (u
1
n, · · · , ukn), vn = (v1n, · · · , vkn) and x = (x1, · · · , xk).

So hun, xi =
Pk

i=1 u
i
nx

i and hun, vmi =
Pk

i=1 u
i
nv

i
m.

We then haveP
n∈I |hun, xi|2 =

P
n∈I

Pk
i,j=1 u

i
nx

iujnxj =
Pk

i,j=1

P
n∈I(u

i
nu

j
n)(xixj)

=
Pk

i,j=1(
P

n∈I u
i
nu

j
n)xjxi =

Pk
i,j=1hui, ujixjxi

= ||Pk
i=1 x

iui||22(I)
In the same way, we find thatP

n,m∈I |hun, vmi|2 =
P

n,m∈I
Pk

i,j=1 u
i
nv

i
mu

j
nvjm

=
Pk

i,j=1

P
n,m∈I(u

i
nu

j
n)(vimv

j
m)

=
Pk

i,j=1(
P

n∈I u
i
nu

j
n)(
P

m∈I v
j
mv

i
m)

=
Pk

i,j=1hui, ujihvj , vii
We also have
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P
n∈I ||un||2 =

P
n∈I

Pk
i=1 |uin|2

=
Pk

i=1

P
n∈I |uin|2

=
Pk

i=1 ||ui||2
Finally, the equality involving the trace is a direct calculation 2

4. Second and third characterizations

Remark 3. If u ∈ 2(I,H)\{0}, then it is necessarily a Bessel family due
to the Cauchy-Schwarz inequality. Therefore we have :

u is a frame ⇔ ∃K > 0,∀x ∈ H\{0},K ≤ N(u, x)

We have the following characterization

Theorem 1. Suppose u ∈ 2(I;Ck)\{0}. Then :

u is a frame⇔ {ui}i=1···k is free

Proof. (⇒) First let’s suppose that u is a frame. For the sake of con-
tradiction, suppose that {ui}i=1···k is dependant. So there exists λ1 · · · , λk
not all zero such that

Pk
i=1 λiu

i = 0. We then have N(u, λ) = 0 using Nux,
which is a contradiction. Hence, {ui}i=1···k is free.
(⇐) Suppose that {ui}i=1···k is free. In this case, the nonnegative continu-
ous function N(u, x) of the second variable restricted to the unit sphere of
Ck has a global minimum, the unit sphere being compact. This minimum
is nonnegative and different from 0 because {ui}i=1···k is free. Let’s denote
it by K > 0. We then have for x ∈ H\{0} : N(u, x) = N(u, x

||x||) ≥ K by
homogeneity of N in the second variable. 2

Remark 4. This theorem has been proved in [3] in the case of a finite
family u = {un}n=1···m (see proposition 1.4.3 p.19).

Another short proof of the direction (⇐) of the theorem is given below.
We denote by U the Gramian matrix of {ui}i=1···k.
Suppose that {ui}i=1···k is free. So the Gramian matrix is invertible, i.e.
det(U) 6= 0. The matrix U is a positive semidefinite matrix, so the condition
det(U) 6= 0 is equivalent to the fact that all the eingenvalues of U satisfy
λ > 0. Now, using (3.2), we have :

∀v ∈ 2(I,Ck)\{0} : N(u, v) = Tr (UV )

Tr (V )
≥ λk(U) > 0
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where V denotes the Gramian matrix of {vi}i=1···k and λk(U) is the smallest
eigenvalue of U (see [4] for a trace inequality from which this one could be
easily derived).

Definition 3. We say that a family u = {un}n∈I in H is a normalised tight
frame if

∀x ∈ H\{0},
P

n∈I |hun, xi|2
||x||2 = 1

We have the following characterization

Theorem 2. Suppose u ∈ 2(I;Ck)\{0}. Then

u is a normalised tight frame⇔ U = Id

where U is the Gramian matrix of {ui}i=1···k

Proof. (⇒) Suppose u is a normalised tight frame. Then : ∀x ∈
Ck\{0} : N(u, x) = 1. By choosing xi = 1 for one index i and 0 otherwise,
we have : ∀i = 1 · · · k : ||ui|| = 1. Next, by picking two indices i and j
and choosing xi =

1√
2
and xj =

1√
2
and 0 otherwise, we have <(hui, uji) =

0. Choosing this time xi =
1√
2
and xj =

i√
2
and 0 otherwise, we have

=(hui, uji) = 0 and so hui, uji = 0. This means that U = Id.
(⇐) Suppose U = Id. Then by Pythagoras’ theorem,

∀x ∈ Ck\{0} : N(u, x) = ||Pk
i=1 x

iui||2
||x||2 =

||x||2
||x||2 = 1

which means that u is a normalised tight frame 2

Remark 5. This theorem has been proved in [3] in the case of a finite
family u = {un}n=1···m (see proposition 1.4.7 p.21).

If k = 2, a necessary and sufficient condition for u ∈ 2(I;C2)\{0} to be
a frame is that the determinant of the Gramian matrix is (strictly) positive,
that is ||u1||||u2|| > |hu1, u2i|. In the next section, we are going to prove in
another way a sufficient condition for u ∈ 2(I;C2)\{0} to be a frame.

5. Sufficient condition for a family in C2 to be a frame

Proposition 5. Let u ∈ 2(I;C2)\{0}. We set u = (u1, u2). A sufficient
condition for u to be a frame is

min(||u1||2, ||u2||2) > |hu1, u2i|
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Proof. We have for all non-zero v :

N(u, v) =

P2

i,j=1
hui,ujihvj ,viiP2

j=1
||vj ||2

= ||u1||2||v1||2+||u2||2||v2||2+2Re(hu1,u2ihv2,v1i)
||v1||2+||v2||2

If ||u1||2 ≤ ||u2||2, we have :
||u1||2||v1||2+||u2||2||v2||2

||v1||2+||v2||2 = ||u1||2(||v1||2+||v2||2)
||v1||2+||v2||2 + ||v2||2(||u2||2−||u1||2)

||v1||2+||v2||2
≥ ||u1||2
= min(||u1||2, ||u2||2)

By symmetry, the same lower bound is obtained if ||u1||2 ≥ ||u2||2.
By using the inequality

2|Re(ahv2, v1i)| ≤ 2|ahv2, v1i| ≤ 2|a|||v1||||v2|| ≤ |a|(||v1||2 + ||v2||2)

valid for all a ∈ C, we then obtain
||u1||2||v1||2+||u2||2||v2||2+2Re(hu1,u2ihv2,v1i)

||v1||2+||v2||2 ≥ min(||u1||2, ||u2||2)− |hu1, u2i|
The quantity min(||u1||2, ||u2||2)− |hu1, u2i| being strictly positive, the

characterization of section 2 shows that u is a frame 2

Example 1. Let’s give an example of a frame in C2 using the previous
criterion.
We’ll define two families of complex numbers (sequences of numbers for
simplicity) u1 and u2 that satisfy the previous criterion and that are square
summable.
We take u1n =

1
ne
2πian and u2n =

1
ne
2πibn with a, b reals such that a − b is

not an integer. u1 and u2 are square summable with sum π2

6 .

|hu1, u2i| = |Pn∈N
1
n2 e

2πi(a−b)n| < P
n∈N

1
n2 =

π2

6 by the strict triangle

inequality, the equality case being excluded because {e2πi(a−b)n}n∈N are
not positively proportional due to the conditions required on a and b.
From this, we deduce that u = (u1, u2) is a frame in C2.

6. Topological properties of frames in 2(I,Ck)

Proposition 6. Let’s denote by F the set of frames in 2(I,Ck).
Then F is open, path-connected and dense.

Proof. F is open because theorem 1 implies that F = (det ◦G)−1(R∗),
where the continuous function G sends u ∈ 2(I,H) to the Gramian matrix
of {ui}i=1···k.
Let’s prove the path-connectedness of F . Let u, v ∈ 2(I,Ck) be two
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frames. We take {ai}i=1···k a finite independant set of families in 2(I)
satisfying span({ai}i=1···k) ∩ span({ui}i=1···k ∪ {vi}i=1···k) = {0} (this is
possible because 2(I) is infinite dimensional).
We define the continuous paths(

γ1 : [0, 1]→ 2(I,Ck)
γ2 : [0, 1]→ 2(I,Ck)

by γ1(t) = tu+ (1− t)a and γ2(t) = tv + (1− t)a respectively.
We have γ1(1) = u and γ2(1) = v.
We are going to show that ∀t ∈ [0, 1] : γ1(t) and γ2(t) are frames, which
will prove this part of the proposition after composing γ1 with the inverse
path of γ2. By symmetry, we’ll show it only for γ1.
Consider λ1, · · · , λk ∈ C such that :

Pk
i=1 λiγ

i
1(t) = 0. It follows thatPk

i=1 λitu
i = −Pk

i=1 λi(1 − t)ai ∈ span({ai}i=1···k) ∩ span({ui}i=1···k) =
{0}. Now, since {ui}i=1···k is free, we have ∀i = 1 · · · k : λi = 0.
∀i = 1 · · · k : ait = ui + t(vi − ui). Let A(t) be the determinant of the
Gramian of {ait}i=1···k. Clearly, A(t) is a polynomial in t which satisfies
A(0) 6= 0 and A(1) 6= 0 (theorem 1), so degA ≥ 1 or A(t) is a nonzero
constant. Therefore A(t) 6= 0 except for a finite number of t’s. We choose
a continuous path γ : [0, 1] → C such that γ(0) = 0, γ(1) = 1 and γ(t)
avoids the roots of A for all t ∈ [0, 1]. Thus bt : [0, 1]→ aγ(t) is a continuous

path from u to v. To prove the density of F , let’s consider u ∈ 2(I,Ck).
Let’s take a finite independant set of families in 2(I) : {ai}i=1···k (this is
possible because 2(I) is infinite dimensional). For each real number t, we
define vt ∈ 2(I,Ck) by : ∀i = 1 · · · k : vit = ui+ t(ai− ui). Let V (t) be the
determinant of the Gramian of {vit}i=1···k. Clearly, V (t) is a polynomial in
t which satisfies V (1) 6= 0 (theorem 1). Therefore V (t) 6= 0 except for a
finite number of t’s. Moreover,

||vt−u||22(I,Ck) =
kX
i=1

||vit−ui||22(I) =
kX
i=1

|t|2||ai−ui||22(I) → 0 when t → 0

Hence, there exists t ∈ R such that vt is near enough to u and V (t) 6= 0,
hence vt is a frame. 2

Proposition 7. Let’s denote by F∗ the set of normalised tight frames in
2(I,Ck).
Then F∗ is closed and path-connected.
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Proof. F∗ is closed because theorem 2 implies that F∗ = G−1(Id),
where the continuous function G sends u ∈ 2(I,H) to the Gramian matrix
of {ui}i=1···k.
Let’s prove the path-connectedness of F∗. Let u, v ∈ 2(I,Ck) be two
normalised tight frames. We take {ai}i=1···k a finite orthonormal set of
families in 2(I) such that ai is orthogonal to uj and vj for each i and j
(this is possible because 2(I) is infinite dimensional).
We define the continuous paths(

γ1 : [0, 1]→ 2(I,Ck)
γ2 : [0, 1]→ 2(I,Ck)

by γ1(t) =
tu+(1−t)a√
2t2−2t+1 and γ2(t) =

tv+(1−t)a√
2t2−2t+1 respectively.

We have γ1(1) = u and γ2(1) = v.
We are going to show that ∀t ∈ [0, 1] : γ1(t) and γ2(t) are normalised tight
frames, which will prove this part of the proposition after composing γ1
with the inverse path of γ2. By symmetry, we’ll show it only for γ1. But
we have obviously that hγ1(t)i, γ1(t)ii = 1 and hγ1(t)i, γ1(t)ji = 0, which
shows that the Gramian matrix of γ1(t) is Id, so we can conclude using
theorem 2. 2
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