
Stationary Boltzmann Equation: an approach
via Morse theory

Rafael Galeano Andrades
Universidad de Cartagena, Colombia

Joel Torres del Valle
Universidad de Antioquia, Colombia

Received : March 2020. Accepted : June 2021

Proyecciones Journal of Mathematics
Vol. 40, No 6, pp. 1473-1487, December 2021.
Universidad Católica del Norte
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Abstract

In this paper we study the unidimensional Stationary Boltzmann
Equation by an approach via Morse theory. We define a functional
J whose critical points coincide with the solutions of the Stationary
Boltzmann Equation. By the calculation of Morse index of J 00(0)h
and the critical groups C2(J, 0) and C2(J,∞) we prove that J has two
different critical points u1 and u2 different from 0, that is, solutions
of Boltzmann Equation.
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1. Introduction

Let us consider a dilute gas which is composed of a large number of molecules
moving in the space according to the classical mechanics and suppose that
such molecules are colliding in pairs from time to time. Let us disregard
all the external effects on the system. Thus, the motion of the particles is
completely specified by the given internal molecular forces. In this cases,
one is usually interested in knowing the number of molecules which at time
t have position x and velocity v within dxdv [8]. This quantity is measured
by η(t, x, v) = Nf(t, x, v)dxdv where the function f is called the density
function and N represents the total number of molecules in the system.
It is worth noting that due to the motion of the molecules and the colli-
sions between them, this quantity must change in time. For this data L.
Boltzmann derived a non-linear integral-differential equation modelling the
rate of change of f with time. Such equation is the so-called Boltzmann
Equation. The integral part of the equation contains the non-linearity
and reflects the effect of the collisions between molecules and the term v ∂u∂x
reflects the motion of molecules between collisions. In this manner, the
Boltzmann Equation describes the evolution of the one-particle distribu-
tion function f = f(x, v, t). For a further discussion we recommend the
reader to see the introduction of [8] paraphrased above.

The Boltzmann Equation can also be used to understand the evolution
of physical quantities such as energy, temperature, etc.

The problem of existence and uniqueness of solutions for the Boltzmann
Equation is still open but partial results have been obtained in the positive
direction.

When we consider the Boltzmann Equation independent from the time
we get the stationary problem which we will study here. Indeed, throughout
these pages we consider the problem of finding u : [a, b] × R+ → R+

satisfying the unidimensional Stationary Boltzmann Equation which
is given by:⎧⎪⎪⎨⎪⎪⎩

v
∂u

∂x
(x, v) = Q(u, u)(v) x ∈ (a, b), v ∈ (0,∞)

u(a, v) = u(b, v) = 0 v ∈ (0,∞)
(1.1)

where

Q(f, g)(v) =

(
Q(f, f)(v) if f = g,

0 if f 6= g.
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The operator in (1) is known as the operator collision and is given by

Q(u, u)(v) =

Z b

a

Z
|z|=1

q(z, |t− v|)[u(t0)u(v0)− u(t)u(v)]dtdz.(1.2)

Here v0, t0 are the speed of particles after the collision and u, t are the speed
given before the collision. We assume that q(z, |t − v|) is a non-negative
mensurable function satisfyingZ

|z|=1
q(z, |t− v|)dz ≥ q0z

ν and q(z, |t− v|) ≤ q1(1 + z)ν | cos θ|

for some constant q0, q1 and ν ∈ [0, 1] and limh→0
Q(h,h)
||h|| = 0.

The Stationary Boltzmann Equation has been studied as an approach
in L1 by the weak compactness method in [2] and [3]; the non-lineal func-
tional analysis methods, in particular; the non-lineal alternatives of Leray-
Schauder are studied in [7]. In [6] there are studied variational methods in
L2.

In this paper we approach to the unidimensional Stationary Boltzmann
Equation via Morse theory. In this case we construct two different critical
groups which allows to conclude the existence of at least two non-trivial
generalized solutions of (1), understanding by generalized solution as u in
certain Banach space B defined below, and satisfying

−
Z b

a
vx

∂w

∂x

∂u

∂x
dx−

Z b

a
vxw

∂2u

∂x2
du = Q(u, u)(v)

Z b

a
w(x, v)dx

with w ∈ B,
∂2u

∂x2
∈ L1(a,b).

The approach we offer in this paper allows a simpler test than the
Leray-Schauder alternative and any tool with fix points.

We now describe our proof in general terms. In this paper we define a
functional

J(u) := −
Z b

a
vu

∂u

∂x
dx+ T (u)

with T (u)(x, v) ≥ 0 and T 0(u)w =
Z b

a
Q(u, u)(v)wdx+

Z b

a
v
∂u

∂x
wdx defined

in the Banach space
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B :=

(
u ∈ L∞(a, b) :

∂u

∂x
∈ L1(a, b),

∂2u

∂x2
∈ L1(a, b),

∂u

∂x
(x, v) ≥ 0, ∂u

∂v
(x, v) ≥ 0

)
with the norm

||u||B := max
(
||u||L∞(a,b),

°°°°∂u∂x
°°°°
L1(a,b)

)
, being

°°°°∂u∂x
°°°°
L1(a,b)

=

Z b

a

¯̄̄̄
v
∂u

∂x

¯̄̄̄
dx.

In this setting we prove that the critical points of J are solutions of (1).
Thus we are reduced to prove the existence of critical points of J . In this
case we show that:

1. J 00(u)hw = −
Z b

a
vh

∂w

∂x
dx, w, h ∈ B,

2. J 00(u) is invertible for u ∈ B,

3. the Morse index of J 00(0)hw is 2,

4. J satisfies the Palais-Smale conditions,

5. J is bounded below in ||u||B ≤ R.

Thus the existence of critical points of J follows.

2. Development

Definition 2.1. Let us define

B :=

(
u ∈ L∞(a, b) :

∂2u

∂x2
,
∂u

∂x
∈ L1(a, b),

∂u

∂x
(x, v) ≥ 0, ∂u

∂v
(x, v) ≥ 0

)
and the norm

||u||B = max

⎧⎨⎩||u||L∞(a,b),
°°°°∂u∂x

°°°°
L1(a,b)

,

°°°°°∂2u∂x2

°°°°°
L1(a,b)

⎫⎬⎭ ,

with °°°°∂u∂x
°°°°
L1(a,b)

=

Z b

a

¯̄̄̄
v
∂u

∂x

¯̄̄̄
dx.
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It follows that B endowed with the norm || · ||B is a Banach space.

Definition 2.2. We define the Banach space

B∗ =

(
w ∈ L∞(a, b) :

∂w

∂x
∈ L∞(a, b),

∂2w

∂x2
∈ L1(a, b)

)
with the norm

||u||B∗ = max

⎧⎨⎩||w||L∞(a,b),
°°°°∂w∂x

°°°°
L∞(a,b)

,

°°°°°∂2w∂x2

°°°°°
L∞(a,b)

⎫⎬⎭ .

It is worth noting that B∗ ⊂ B since L∞(a, b) ⊂ L1(a, b).

Lemma 2.3. Let u,w ∈ C2[a, b]. Then

1.
∂

∂x

∙
vxu

∂w

∂x

¸
= vu

∂w

∂x
+ vx

∂w

∂x

∂u

∂x
+ vxu

∂2w

∂x2
.(2.1)

2.
∂

∂x

∙
vxw

∂u

∂x

¸
= vw

∂u

∂x
+ vx

∂w

∂x

∂u

∂x
+ vxw

∂2u

∂x2
.(2.2)

Proof:

1.

∂

∂x

∙
vxu

∂w

∂x

¸
=

∂

∂x
[vxu]

∂w

∂x
+ vxu

∂2w

∂x2

=

∙
vu+ vx

∂u

∂x

¸
∂w

∂x
+ vxu

∂2w

∂x2

= vu
∂w

∂x
+ vx

∂w

∂x

∂u

∂x
+ vxu

∂2w

∂x2
.

2.

∂

∂x

∙
vxw

∂u

∂x

¸
=

∂

∂x
[vxw]

∂u

∂x
+ vxw

∂

∂x

∙
∂u

∂x

¸
=

∙
vw + vx

∂w

∂x

¸
∂u

∂x
+ vxw

∂2u

∂x2

= vw
∂u

∂x
+ vx

∂w

∂x

∂u

∂x
+ vxw

∂2u

∂x2
.
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2

Lemma 2.4. Let u,w ∈ B be such that u(a, v) = u(b, v) = w(a, v) =
w(b, v) = 0. Then

1.

0 =

Z b

a
vu

∂w

∂x
dx+

Z b

a
vx

∂w

∂x

∂u

∂x
dx+

Z b

a
vxu

∂2w

∂x2
dx.(2.3)

2.

0 =

Z b

a
vw

∂u

∂x
dx+

Z b

a
vx

∂w

∂x

∂u

∂x
dx+

Z b

a
vxw

∂2u

∂x2
dx.(2.4)

Proof: If u ∈ B,w ∈ B then there exists a sequence (un) ∈ C2[a, b] such
that un → u in B and (wn) ∈ C2[a, b] such that wn → w in B. ThenR b

a vu
∂w
∂x dx +

R b
a vx

∂w
∂x

∂u
∂xdx+

R b
a vxu

∂2u
∂x2 dx

=
R b
a v(u− un)

∂w
∂x dx

+
R b
a vx

∂w
∂x

h
∂u
∂x −

∂un
∂x

i
dx

+
R b
a vx(u− un)dx

∂2w
∂x2

dx

+
R b
a vun

∂w
∂x dx

+
R b
a vx

∂w
∂x

∂un
∂x dx+

R b
a vxun

∂2w
∂x2 dx

=
R b
a

∂
∂x

³
vxun

∂w
∂x

´
dx

= 0.

The other computation is similar. 2

Remark 2.5. Let B0 =
©
u ∈ B : Q(u, u) ∈ L1(a, b)

ª
. Thus B0 is a sub-

space of B. If w ∈ B, by multiplying (1) per w, we find that

v
∂u

∂x
w(x, v) = w(x, v)Q(u, u)(v).

ThenZ b

a
v
∂u

∂x
w(x, v)dx =

Z b

a
Q(u, u)(v)w(x, v)dx = Q(u, u)(v)

Z b

a
w(x, v)dx.

By Lemma 2.4 we have

−
Z b

a
vx

∂w

∂x

∂u

∂x
dx−

Z b

a
vxw

∂2u

∂x2
dx = Q(u, u)(v)

Z b

a
w(x, v)dx.(2.5)
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Those u ∈ B which satisfy (2.5) are called generalized solutions of
(1.1).

Definition 2.6. Let us define the functional

J(u) := −
Z b

a
vu

∂u

∂x
dx+ T (u)(x, v)

with T (u)(x, v) ≥ 0 and

T 0(u)w =
Z b

a
Q(u, u)(v)wdx+

Z b

a
v
∂u

∂x
wdx

with u ∈ B,w ∈ B∗, w(a, v) = w(b, v) = 0.

Lemma 2.7.

J 0(u)w = −
Z b

a
vu

∂w

∂x
dx+

Z b

a
Q(u, u)(v)wdx.(2.6)

Proof: Let us compute J(u+w)− J(u):

J(u+ w)− J(u) = −
Z b

a
v(u+ w)

∂(u+ w)

∂x
dx+ T (u+ w)

+

Z b

a
vu

∂u

∂x
dx− T (u)

= −
Z b

a
(vu+ vw)

µ
∂u

∂x
+

∂w

∂x

¶
dx+

Z b

a
vu

∂u

∂x
dx

+T (u+ w)− T (u)

= −
Z b

a
vu

∂u

∂x
dx−

Z b

a
vu

∂w

∂x
dx−

Z b

a
vw

∂u

∂x
dx

−
Z b

a
vw

∂w

∂x
dx+

Z b

a
vu

∂u

∂x
dx+ T (u+w)− T (u).

Then

J 0(u)w = −
Z b

a
vu

∂w

∂x
dx−

Z b

a
vw

∂u

∂x
dx+

Z b

a
Q(u, u)(v)wdx+

Z b

a
v
∂u

∂x
wdx.

2
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That is to say

J 0(u)w = −
Z b

a
vu

∂w

∂x
dx+

Z b

a
Q(u, u)(v)wdx.

2

Remark 2.8. By the use of Lemma 2.4 in the equation (8), we have

J 0(u)w =
Z b

a
vx

∂w

∂x

∂u

∂x
dx+

Z b

a
vxu

∂2w

∂x2
dx+

Z b

a
Q(u, u)(v)wdx

2

Since
∂w

∂x
∈ L∞(a, b) ⊂ L1(a, b), if u is a critical point of J , then

−
Z b

a
vx

∂w

∂x

∂u

∂x
dx =

Z b

a
vxu

∂2w

∂x2
dx+

Z b

a
Q(u, u)(v)wdx

That is to say, u is a generalized solution of (1).

We will show that if u is a generalized solution of (1), then u is a
critical point of J , i.e., we will show that the generalized solutions of (1)
are precisely the critical points of J .

Lemma 2.9. Let h ∈ B∗ be such that h(a, v) = h(b, v) = 0,

Z b

a
wdx = 1,

and Q(0, 0)(h) = 0. Then

J 00(0)hw = −
Z b

a
vh

∂w

∂x
dx.(2.7)

Proof: Let us compute J 0(u+ h)w − J 0(u)w:

J 0(u+ h)w − J 0(u)w = −
Z b

a
v(u+ h)

∂w

∂x
dx+

Z b

a
Q(u+ h, u+ h)(v)wdx

+

Z b

a
vu

∂w

∂x
dx−

Z b

a
Q(u, u)(v)wdx

= −
Z b

a
vu

∂w

∂x
dx−

Z b

a
vh

∂w

∂x
dx+

Z b

a
vu

∂w

∂x
dx

+[Q(u+ h, u+ h)(v)−Q(u, u)(v)]

Z b

a
wdx

= −
Z b

a
vh

∂w

∂x
dx+Q(h, h)(v)

Z b

a
wdx.
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We conclude that

J 00(0)hw = −
Z b

a
vh

∂w

∂x
dx.

2

Lemma 2.10. J 00(0) is invertible for h(x, v) ≥ 0, ∂w
∂x
≥ 0 and ||h||B∗ ≤ 1,

||w||B∗ ≤ 1. Also 0 is a non-degenerated critical point of J .

Proof: Notice that

|J 00(u)hw| =
¯̄̄̄
¯
Z b

a
vh

∂w

∂x
dx

¯̄̄̄
¯ .

Since h ∈ L∞(a, b) there exists M > 0 such that |h(x, v)| > M a. e.
x ∈ (a, b), then

|J 00(u)hw| > M

Z b

a
v
∂w

∂x
dx =M

°°°°∂w∂x
°°°°
L1(a,b)

> M ||w||B, a. e. x ∈ (a, b)

that is to say J 00(u)hw is invertible in u ∈ B. In particular, J 00 is invertible
in u = 0 ∈ B, then, 0 is a non-degenerated critical point of J . 2

3. Morse index

Theorem 3.1. The Morse index of J 00(0)hw is 2 and the critical group of
J in 0 is given by C2(J, 0) = Z.

Proof: We recall that

J 00(0)hw = −
Z b

a
vh

∂w

∂x
dx.

Let us take x = X + V , v = X − V , since v ∈ (0,∞), then X ≥ V > 0
thus x+ v = 2X,

X =
x+ v

2
⇒ dX =

1

2
dx and x− v = 2V ⇒ V =

x− v

2
.

By the Chain rule

∂w

∂x
=

∂w

∂X

∂X

∂x
+

∂w

∂V

∂V

∂x
=
1

2

∂w

∂X
+
1

2

∂w

∂V
.
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Then

J 00(0)hw = −
Z b−V

a−V
(X − V )h(X,V )2

∙
1

2

∂w

∂X
+
1

2

∂w

∂V

¸
dX

= −
Z b−V

a−V
Xh(X,V )

∙
∂w

∂X
+

∂w

∂V

¸
dX

+

Z b−V

a−V
V h(X,V )

∙
∂w

∂X
+

∂w

∂V

¸
dX

= −
Z b−V

a−V
Xh(X,V )

∂w

∂X
dX −

Z b−V

a−V
Xh(X,V )

∂w

∂V
dX

+

Z b−V

a−V
V h(X,V )

∂w

∂X
dX +

Z b−V

a−V
V h(X,V )

∂w

∂V
dX.

Let

X∗ =

sZ b−V

a−V
Xh(X,V )

∂w

∂X
dX, Y ∗ =

sZ b−V

a−V
Xh(X,V )

∂w

∂V
dX

and note that

Z b−V

a−V
V h(X,V )

∙
∂w

∂X
+

∂w

∂V

¸
dX =

Z b−V

a−V
V h(X,V )

∂w

∂X
dX +

Z b−V

a−V
V h(X,V )

∂w

∂V
dX

= −J 00(0)hw +
Z b−V

a−V
V h(X,V )

∂w

∂V
dX.

Then

J 00(0)hw = −X∗2 − Y ∗
2 − J 00(0)hw +

Z b−V

a−V
V h(X,V )

∂w

∂V
dX

= −1
2
X∗2 − 1

2
Y ∗

2
+
1

2

Z b−V

a−V
V h(X,V )

∂w

∂V
dX.

Now

1

2

Z b−V

a−V
V h(X,V )

∂w

∂V
dX ≥ 0, V, h(X,V ),

∂w

∂V
≥ 0.

Then the Morse index of J 00(0)hw is 2. So, we conclude that
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C2(J, 0) = δ22Z = Z

being C2(J, 0) the critical group of J in 0. 2

Theorem 3.2. C2(J,∞) = 0, then J has a critical point u 6= 0.

Proof: We divide the proof in two claims. The first one is to show that J
is bounded below and the second consist in proving that J satisfies Palais-
Smale conditions.

Claim 1. J is bounded below.
Indeed,

J(u) = −
Z b

a
vu

∂u

∂x
dx+ T (u)(x, v), v ≥ 0, ∂u

∂x
≥ 0.

Since u ∈ L∞(a, b), there exists M ≥ 0 such that −M ≤ u ≤ M p.c.t.
x ∈ [a, b].

−Mv
∂u

∂x
≤ uv

∂u

∂x
≤Mv

∂u

∂x
.

By taking the right part of the inequality we get

−Mv
∂u

∂x
≤ −uv∂u

∂x

−M
Z b

a
v
∂u

∂x
dx ≤ −

Z b

a
uv

∂u

∂x
dx+ T (u)(x, v)

J(u) ≥ −
Z b

a
uv

∂u

∂x
dx ≥ −M

Z b

a
v
∂u

∂x
dx.

Since

°°°°∂u∂x
°°°°
L1(a,b)

≤ ||u||B we have

−||u||B ≤ −
°°°°∂u∂x

°°°°
L1(a,b)

.

Claim 2. J satisfies the conditions of Palais-Smale. In fact

J 0(u)w = −
Z b

a
vu

∂w

∂x
dx+

Z b

a
Q(u, u)(v)wdx = I(u)(w) + L(u).

Let us see that
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i) u→ −
Z b

a
vu

∂w

∂x
dx = I(u) is invertible.

ii) u→
Z b

a
Q(u, u)(v)wdx is compact.

These conditions allow us to conclude that J satisfies that conditions of
Palais-Smale.

i) Z b

a
vu

∂w

∂x
dx ≤ v(b− a)||u||L∞(a,b)

°°°°∂w∂x
°°°°
L1(a,b)

that is to say

−v(b− a)||u||L∞(a,b)
°°°°∂w∂x

°°°°
L1(a,b)

≤ −
Z b

a
vu

∂w

∂x
dx

−v(b− a)||u||L1(a,b)||w||B∗ ≤ I(u); ||u||B ≥ ||u||L1(a,b)
−v(b− a)||u||B||u||B∗ ≤ I(u); −||u||L1(a,b) ≥ −||u||B.

This implies that u is invertible.

ii) Applying Dunford-Pettis we get

F =

(
Q(u, u)(v) ∈ L1(0,∞) :

Z b

a
Q(u, u)(v)wdx <∞, w ∈ L∞(a, b)

)
.

Since

Q(u, u)(v) :=

Z b

a

Z
|z|=1

q(z, |t− v|)[u(t0)u(v0)− u(t)u(v)]dtdz

with q(z, |t − v|) ≥ 0 here, it holds that v0 + t0 = v + t. There exist
constants k, k0 such that v0 = kv and t0 = k0t. Then

Q(u, u)(v) :=

Z b

a

Z
|z|=1

q(z, |t− z|)[u(k0t)u(kv)− u(t)u(v)]dtdv

=

Z
|z|=1

u(v)q(z, |t− v|)dz
Z b

a
u(t)dt

−
Z
|z|=1

u(v)q(z, |t− v|)dz
Z b

a
u(t)dt
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=

Z
|z|=1

u(v)q(z, |t− v|)dz
Z b

a
u(t)dt

−
Z
|z|=1

u(v)q(z, |t− v|)dz
Z b

a
u(t)dt

being u(v) = u(kv) and u(t) = u(k0t). Now

Z
|z|=1

u(v)q(z, |t− v|))dz ≤
Z
|z|=1

u(v)q1(1 + z)ν | cos θ|dz

≤ u(v)

Z
|z|=1

q1(1 + z)ν | cos θ|dz

≤ u(v)

Z 1

−1
q1(1 + z)νdz

= u(v)q1

Z 1

−1
(1 + z)νdz

= u(v)

"
2ν+1

ν + 1

#
in the same way we obtain thatZ 1

−1

u(v)

v
q(z, |t− v|)dz ≤ u(v)

v

2ν+1

ν + 1
.

If L = (b−a)2ν+1
r+1 u(v) and L0 = (b−a)2ν+1

ν+1 u(v). Then

Q(u, u)(v) = L||u||L∞(a,b) − L0||u||L∞(a,b)
≤ L||u||L∞(a,b).

If b− a = δ > 0, thenZ b

a
Q(u, u)(v)wdx ≤ NLδ||u||L∞ .

There exists a closed set ρ ⊂ (a, b) such that for any > 0, (a, b)−ρ) ≤
∗ impliesZ

(a,b)−ρ
Q(u, u)w(v)dx ≤ Q(u, u)(v) ∗ ≤ L||u||L∞N ∗.

The operator

u 7→
Z b

a
Q(u, u)(v)wdx

is compact.
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Thus C2(J,∞) = δ20Z2 = O. Since C2(J, 0) = Z and C2(J,∞) = O, we
deduce that J has a critical point u 6= 0. 2

4. Conclusion

We proved that C2(J, 0) = Z and that J is bounded below, and that J
satisfies the Palais-Smale conditions, then J has a critical point u1 6= 0.
Since the Morse index of J 00(0)hw is 2, there exists a second critical point
u2 6= 0. These critical points, as proved above, are generalized solutions of
the unidimensional Stationary Boltzmann Equation.
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