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1. Introduction

Finite fields and finite rings are interesting algebraic concepts in modern
mathematics. These algebraic structures are being studied for both theoret-
ical and practical purposes. Because of their great algebraic properties and
finiteness, they are considered widely in modern applications. Polynomi-
als over these finite structures induce some more mathematical properties.
Some practical questions arise when we try to find polynomials effecting
permutations. Obviously, such questions lead to find their practical appli-
cations. Permutation polynomials have increasingly attracted the attention
of various researchers in the past couple of decades. As an introduction to
the subject the inspiring survey papers were given by Lidl and Mullen
[12, 10].

Various cryptographic applications, including a key exchange protocol
for public key cryptography based on permutation polynomials have been
proposed. Permutations of finite fields have become of considerable interest
in the construction of cryptographic systems for the secure transmission of
data. LetM be a message ( 0r an element of a finite field Fq) which is to be
sent securely from A to B. If P (x) is a permutation polynomial of Fq, then
A sends to B the field element N = P (M). Since P (x) is a bijection B can
obtain the original messageM by calculating P−1(N) = P−1(P (M)) =M .
P (x) should have a simple form so that ifM is a message, then N = P (M)
which is sent from A to B can be easily computed. Also P (x) must have the
property that without some secrete information (the key) that only A and
B know, P−1(x) will be hard or impossible to get, so that an unauthorized
receiver can not calculate P−1(N). At the same time, with knowledge of the
key, P−1(x) is easily obtained by B so that P−1(N) =M can be recovered
by B.

Permutation functions have been studied since the last century. In re-
cent years considerable attention has been given to their potential applica-
tions in public key cryptography. The importance of permutation functions
lies in the fact that they connect two essential components of the theory
of finite fields: combinatorics and algebra. The permutation property and
the applications in cryptography are of combinatorial nature and the use
of polynomials or rational functions for representing these combinatorial
objects allows powerful algebraic methods to be employed. It is the same
type of synthesis that has worked very successfully in the theory of error
correcting codes. One can hope for more generalization of the permutation
polynomial functions over finite rings and finite fields with the concept of
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invexity assumptions as in [13] and over ring as in [18]. Moreover it may
be interesting to study orthogonality properties of the permutation poly-
nomials too in the line of Chebyshevs polynomials or pseudo-Chebyshevs
polynomials in [7, 11, 21]. But here we restrict ourselves only to study the
behavior of certain permutation polynomials with respect to the random-
ness of the sequences they generated.

Definition 1.1. Assume f(x) = anx
n + ... + a1x + a0 is a polynomial of

degree n ≥ 1 modulo m, where an = 0 (mod m). If f(x) = ((anx
n + ...+

a1x+a0) mod m) forms a bijection F : {0, 1, ...,m−1}→ {0, 1, ...,m−1},
we say that f(x) is a permutation polynomial modulo m. The bijection
F is called the induced bijection of the polynomial f(x) modulo m.

Definition 1.2. If two permutation polynomial are equivalent modulo m,
we say they are equivalent permutation polynomial modulo m. It is ob-
vious that equivalent permutation polynomials modulo m induce the same
bijection over {0,1,...,m-1}.

Pinaki [9] related the number of permutation polynomials in,Fq[x] of de-
gree d ≤ q−2 to the solutions (x1, x2, ..., xq) of a system of linear equations
over Fq, with the added restriction that xi = 0 and xi = xj whenever i = j.
Using this he find an expression for the number of permutation polynomials
of degree p−2 in Fp[x] in terms of the permanent of a Vandermonde matrix
whose entries are the primitive pth roots of unity. This leads to nontrivial
bounds for the number of such permutation polynomials. Also he provided
some numerical examples to illustrate his method and indicated how the
results can be generalised to polynomials of other degrees.

Rivest [1], gave an exact characterization of permutation polynomials
modulo n = 2w, w ≥ 2. He also characterized polynomials defining Latin
squares modulo n = 2w.

Theorem 1.3. [1] Let P (x) = a0 + a1x+ ...+ adx
d be a polynomial with

integral coefficients. Then P (x) is a permutation polynomial modulo n =
2w, w ≥ 2, if and only if a1 is odd, (a2 + a4 + a6 + ...) is even, and (a3 +
a5 + a7 + ...) is even.

Example 1.4. The following are permutation polynomials modulo n =
2w, w ≥ 1;
1. x(a+ bx) where a is odd and b is even.
2. x+ x2 + x4.
3. 1 + x+ x2 + ...+ xd, where d = 1(mod 4).
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Hollmann and Xiang [8] constructed a class of permutation polynomials

of F2m that are closely related to Dickson polynomials. Muratović-Ribić
[6] described some relations on the coefficients of a polynomial in terms
of the map that induces and used them to characterize the coefficients of
the inverse polynomials of some special classes of permutation polynomials.
Zhou [5] gave an explicit representation of the class of linear permutation
polynomials.

Cryptography requires the generation of keys for secured communica-
tion. One can think of generating secret keys using sequences of random
numbers. Permutations of elements of a finite ring will give sequences of
random numbers. Let R[x] denote the set of all polynomials over the ring or
field R. All the elements or polynomials of this ring cannot be permutation
polynomials.

Let P (x) = a0 + a1x+ a2x
2 + ...+ amx

m be a polynomial of degree m
over a ring R. There will be as many choices as the order of the ring for
each coefficient ai. So, in case of the rings Zn, we see that there are n

m+1

polynomials of degree m. Some of them will be permutation polynomials
depending both on n and coefficients. The structures and various properties
of permutation polynomials are explained in detail in [19, 3, 4, 20, 2, 14].

We may also consider the permuted values of 0, 1, ..., n − 1 got via a
permutation polynomial P (x) and define a sequence yk by

yk = P (k) mod n, 0 ≤ k ≤ n− 1
and yk = P (k mod n) mod n for k ≥ n.

For example, with P (x) = x+ x2+ x4, we obtain the sequence (0, 3, 6,
13, 4, 15, 10, 9 ,8 ,11, 14, 5, 12, 7 ,2 ,1) over Z16.

Sequences got this way have not been investigated much with respect
to randomness. It seems reasonable to expect the sequences thus obtained
to exhibit a good degree of randomness since values of P (x) for any two
consecutive integers in Zn are highly independent of their prior positions.
Here we make some preliminary studies in this direction and present some
experimental and computational work, got by carrying out three among
several well-known statistical tests on these sequences to decide whether
any of them can be considered as good pseudorandom generators. The
various properties of and statistical tests of random sequences are explained
in detail in [16, 15].
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2. Statistical tests

A sequence of numbers generated by some or the other way, can not be
trusted to judge by ourselves whether it is random or not. Some unbiased
mechanical tests must be applied. Every sequence that is to be used ex-
tensively should be tested carefully. If a sequence behaves randomly with
respect to tests T1, T2, ..., Tn , we can not be sure in general that it will
not be a failure when it is subjected to a further test Tn+1. Yet each test
gives us more and more confidence in the randomness of the sequence. In
practice, we apply different kinds of statistical tests to sequence.

Many statistical tests require that our data follow a normal distribution.
Some times this is not the case. In some instances, it is possible to transform
the data to make them follow a normal distribution. Sometimes it is not
possible or the sample size might be so small that it is difficult to ascertain
whether or not the data a normally distributed. In such cases, it is necessary
to use a statistical test that does not require the data to follow a particular
distribution. Such a test is called a non-parametric or distribution free
test. The runs test and sign test are examples of such a test.

The runs test counts the number of runs that formed due to the appear-
ance of the numbers less than or greater than the mean of the sequence.
Originally tests are made on runs up and down at once; A run up would be
followed by a run down, then another run up, and so on.It is noted that the
run test does not depend on the uniform distribution of the x0is but only on
the fact that xi = xj occurs with probability zero when i = j. Therefore
this test can be applied to many types of random sequences.

The sign test is used to test the null hypothesis that the median of a
distribution is equal to some value. It can be used for ordered categorial
data where a numerical scale is inappropriate but where it is possible to
rank the observations.

Several statistical tests are available to determine the extent to which
a given sequence exhibits randomness. Indeed, a given sequence may pass
some tests very well whereas failing some other tests. We tested the se-
quences using three tests.

2.1. Runs test

A run is a sequence of identical occurrences preceded and followed by
different occurrences or by none at all. In general, a random process lists
the elements involved in some sequence. The runs test will consider them
in two different types of occurrences. As we move along the sequence, we
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observe the groups of two types of occurrences alternatively. Each group of
the same occurrence in a continued pattern is called a run. The test counts
the number of such runs and the number of occurrences of each type.

A test of runs would use the following symbols if it contained just two
kinds of occurrences.

n1 = number of occurrences of type1.
n2 = number of occurrences of type 2.

r = number of runs.

If there are too many types of occurrences in a sequence, we classify
them into just two kinds (by using some criteria), say A and B. In the
tests done, we put all numbers less than the mean as type A and those that
are greater than or equal to the mean as type B.

Let n1 = number of A’s
n2 = number of B’s
r = number of runs.

The number of runs, r is a statistic with its own special sampling dis-
tribution and its own test. Obviously, runs may be of differing lengths, and
various numbers of runs can occur in one sample. In general, too few or
too many runs in a sample indicate that something other than chance was
at work when the elements are selected. A one-sample runs test, then, is
based on the idea that too few or too many runs show that the elements
are not chosen randomly.

The mean of the sampling distribution of the r statistic, µr, is given by

µr =
2n1n2
n1+n2

+ 1

The standard error of the r statistic can be calculated using the formula,

σr =

r
2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1)

In the one-sample runs test, the sampling distribution of r can be closely
approximated by the normal distribution if either n1 or n2 is larger than
20. So we can use the normal approximation in such cases.

Next, we use the following equation to standardize the sample r statistic

z = r−µr
σr
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The purpose of testing is not to question the computed value of the

sample statistic but to make a judgment about the difference between that
sample statistic and a hypothesized population parameter. We set a sig-
nificance level α for the testing hypothesis. This α is the confidence level
with which we accept or reject the random sequence as a truly random one.
Here, we set α = 0.05. i.e., we use the 5 percent level of significance. In
this case, whenever a random number sequence passes the test, we accept
it with 95 percent probability that it is truly random. The higher the sig-
nificance level we use for testing randomness, the higher is the probability
of rejecting the sequence, when it is true. Almost all runs tests are two-
tailed because the question to be answered is whether there are too many
or too few runs. The critical values for z, in this case, are ±1.96. That
is, the z−values must lie between −1.96 and +1.96 for the sequence to be
considered random with 95 percent confidence. Since n1 = n2 = m/2, de-
pending on the permutation polynomial we use, and the ring we consider,
the fluctuation of positions of the values of the polynomial as we move
from 0 to m− 1 will give us the number of runs, r. Here we consider a few
permutation polynomials over some rings Zm, where m = 2w. We observe
that the number of runs r is sufficiently close to m/2 in almost all cases.
i.e., the number of runs is approximately 50 percent of m, which is neither
too few nor too many.

Also, we look at the lengths of the runs and the number of derangements
of ring elements due to the permutations. The maximum run length indi-
cates the maximum length of the sequence carried over, without fluctuating
about the mean.

Here, the same set of permutation polynomials are chosen for different
Zn’s with n = 2w.
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Over the ring Z64:

Permutation Polynomials Number of z Maximum of Number of
runs run lengths displacements

x(2x+ 1) 31 -0.504 8 56

x+ x2 + x4 27 -1.512 11 56

1 + x+ x2 + x4 27 -1.512 11 64

1 + x+ x2 + x3 + x4 + x5 35 0.504 3 64

1 + x+ 2x2 + x3 + x5 35 0.504 6 64

x+ 3x2 + x3 + x4 + x5 39 1.512 5 56

1 + x+ x2 + + x9 35 0.504 4 64

1 + x+ x2 + + x13 39 1.512 3 64

Here, all the polynomials pass the runs test with 95 percent confidence
with z values lying between±1.96. Polynomials x+x2+x4 and 1+x+x2+x4
give sequences with lesser number of runs and larger values for a maximum
of run lengths than other polynomials. Polynomials are having no constant
term fix all multiples of 8 and move the other 56 numbers. Polynomials
with a constant term derange all the numbers.

Over the ring Z128:

Permutation Polynomials Number of z Maximum of Number of
runs run lengths displacements

x(2x+ 1) 63 -0.355 11 112

x+ x2 + x4 51 -2.485 7 120

1 + x+ x2 + x4 47 -3.195 7 128

1 + x+ x2 + x3 + x4 + x5 59 -1.065 5 128

1 + x+ 2x2 + x3 + x5 71 1.065 5 128

x+ 3x2 + x3 + x4 + x5 59 -1.065 7 120

1 + x+ x2 + + x9 55 -1.775 9 128

1 + x+ x2 + + x13 63 -0.355 6 128

In this ring, polynomials x+x2+x4 and 1+x+x2+x4 fail to pass the
test with our level of confidence. The polynomial x(2x + 1) has 63 runs,
which is comparatively more than some other polynomials, but it has a run
of length 11(maximum in the list). Whereas, 1 + x+ 2x2 + x3 + x5 has 71
runs but the maximum run length is just 5.
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Over the ring Z2048:

Permutation Polynomials Number of z Maximum of Number of
runs run lengths displacements

x(2x+ 1) 1023 -0.088 45 1984

x+ x2 + x4 1011 -0.597 13 2016

1 + x+ x2 + x4 1007 -0.796 13 2048

1 + x+ x2 + x3 + x4 + x5 1011 -0.619 10 2048

1 + x+ 2x2 + x3 + x5 975 -2.210 13 2048

x+ 3x2 + x3 + x4 + x5 1063 1.68 9 2016

1 + x+ x2 + + x9 1039 0.619 9 2048

1 + x+ x2 + + x13 1043 0.796 17 2048

When m = 2048, the polynomial 1+x+2x2+x3+x5 gives the z value
outside the region of acceptance. The polynomial x(2x + 1) has z value
much closer to 0, and it has the maximum run length 45, which is much
greater than the other values in the list. Also, this polynomial fixes more
number of points than the other polynomials.

Over the ring Z8192:

Permutation Polynomials Number of z Maximum of Number of
runs run lengths displacements

x(2x+ 1) 4095 -0.044 91 8064

x+ x2 + x4 4035 -1.359 16 8128

1 + x+ x2 + x4 4039 -1.282 16 8192

1 + x+ x2 + x3 + x4 + x5 4039 -1.282 11 8192

1 + x+ 2x2 + x3 + x5 4091 -0.133 10 8192

x+ 3x2 + x3 + x4 + x5 4099 0.044 13 8128

1 + x+ x2 + + x9 4079 -0.398 18 8192

1 + x+ x2 + + x13 4107 0.221 12 8192

In this ring, all polynomials pass the test. Here again the maximum run
length is much more in case of x(2x+ 1) than that of other polynomials.

Since n1 = n2 = m/2, depending on the permutation polynomial we
use, and the ring we consider, the fluctuation of positions of the values of
the polynomial as we move from 0 to m − 1 will give us the number of
runs, r. We observe that the number of runs r is sufficiently close to m/2
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in almost all cases. i.e., the number of runs is approximately 50 percent of
m, which is neither too few nor too many. Also, the maximum run lengths
are very small compared to n in case of all the polynomials in all the rings.

Remark 2.1. From the last 4 tables, we observe that some points of the
rings are fixed only if the permutation polynomials have no constant term.
i.e., if 0 is shifted due to the action of a permutation polynomial, then all
other elements of the ring are displaced from their positions. Also, the
displaced numbers are multiples of 8 (may not be all multiples of 8), as we
consider the rings of order m = 2w in our examples. For the permutation
polynomial x(2x + 1) the z value gets closer to 0, as we increase m. This
is a remarkable polynomial and is used in the RC6 block cipher. It seems
to steadily improve in being more random as m increases.

A binomial f(x) = a2x
2 + a1x is a permutation polynomial modulo p

d,
whenever a2 ≡ 0(mod p) and a1 = 0(mod p), where p is a prime and d ≥ 1.

Example 2.2. 14x2+5x modulo 343(= 73) and 33x2+15x modulo 121(=
112).

The above two binomials pass the runs test with z = −0.162 and z =
−0.091 respectively. 14x2+5x gives a sequence modulo 343, with 171 runs
and maximum run length being 7, whereas 33x2 + 15x gives a sequence
modulo 121, with 61 runs and maximum run length 7. Also, both these
polynomials fix only 0.

2.2. The sign test

Many statistical tests require that our data follow a normal distribution.
Sometimes that is not the case. In some instances it is possible to trans-
form the data to make them follow a normal distribution; in others, this
is not possible, or the sample size might be so small that it is difficult to
ascertain whether or not the data is normally distributed. In such cases,
it is necessary to use a statistical test that does not require the data to
follow a particular distribution. Such a test is called a non-parametric or
distribution-free test. The sign test is an example of one of these.[17]

The sign test is used to test the null hypothesis that the median of a
distribution is equal to some value. It can be used
a) in place of a one-sample t-test
b) in place of a paired t-test
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c) for ordered categorial data where a numerical scale is inappropriate but
where it is possible to rank the observations.

Let the observations in a sample of size n be {x1, x2, ..., xn}. Suppose
that r+ of the observations are greater than M and r− are smaller than
M . Values of x which are exactly equal to M are ignored; the sum r++ r−

may, therefore, be less than n and we will denote it by n0. Under the
null hypothesis, we would expect half the x’s to be above the median and
half below. Therefore, under the null hypothesis both r+ and r− follow a
binomial distribution with p = 1

2 and n = n0.
The test procedure is as follows:

1. Choose r = max(r−, r+).
2. Use tables of the binomial distribution to find the probability of ob-
serving a value of r or higher assuming p = 1

2 and n = n0. If the test is
one-sided, this is the p-value.
3. If the test is a two-sided test, double the probability obtained in (2) to
obtain the p-value.

Example 2.3. The table below shows the hours of relief provided by anal-
gesic drugs in 12 patients suffering from arthritis.

Case Drug A Drug B

1 2.0 3.5

2 3.6 5.7

3 2.6 2.9

4 2.6 2.4

5 7.3 9.9

6 3.4 3.3

7 14.9 16.7

8 6.6 6.0

9 2.3 3.8

10 2.0 4.0

11 6.8 9.1

12 8.5 20.9

In this case our null hypothesis is that the median difference is zero.
Our actual differences (Drug B-Drug A) are:
+1.5, +2.1, +0.3, -0.2, +2.6, -0.1, +1.8, -0.6, +1.5, +2.0, +2.3, +12.4
Our actual median difference is 1.65 hours. We have r+ = 9, r− = 3,
n = 12, r = max(r−, r+) = 9. Therefore our two-sided p-value (from
binomial tables) is p = 0.146.
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2.3. Wilcoxon Signed Rank Sum Test

The Wilcoxon signed rank sum test is another example of a non-parametric
or distribution free test, which is used to test the null hypothesis that the
median of a distribution is equal to some value. [17]

Case 1: Paired data
1. State the null hypothesis - in this case, it is that the median difference,
M , is equal to zero.
2. Calculate each paired difference, di = xi − yi, where xi, yi are the pairs
of observations.
3. Rank the dis, ignoring the signs (i.e. assign rank 1 to the smallest |di|,
rank 2 to the next etc.)
4. Label each rank with its sign, according to the sign of di.
5. Calculate W+, the sum of the ranks of the positive dis, and W−, the
sum of the ranks of the negative dis. (As a check the total, W

+ +W−,

should be equal to n(n+1)
2 , where n is the number of pairs of observations

in the sample).

Case 2: Single set of observations

1. State the null hypothesis - the median value is equal to some value
M .

2. Calculate the difference between each observation and the hypothe-
sised median, di = xi −M .

3. Apply Steps 3-5 as above in Case 1.

Under the null hypothesis, we would expect the distribution of the dif-
ferences to be approximately symmetric around zero and the distribution
of positives and negatives to be distributed at random among the ranks.
Under this assumption, it is possible to work out the exact probability of
every possible outcome for W .

To carry out the test, we proceed as follows:
Choose W = min(W−,W+).
Use tables of critical values for the Wilcoxon signed rank sum test to find
the probability of observing a value of W. Most tables give both one-sided
and two-sided p-values. If not, double the one-sided p-value to obtain the
two-sided p-value.
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If the number of observations/pairs is such that n(n+1)

2 is large enough

(> 20), a normal approximation can be used with µW = n(n+1)
2 , σW =q

n(n+1)(2n+1)
24 .

There are two types of tied observations that may arise when using the
Wilcoxon signed rank test:

1. Observations in the sample may be exactly equal to M (i.e. 0 in
the case of paired differences). Ignore such observations and adjust n
accordingly.

2. Two or more observations/differences may be equal. If so, average the

ranks across the tied observations and reduce the variance by t3−t
48 for

each group of t tied ranks.

Example 2.4. Consider the example 2.3.
In this case the null hypothesis is that the median difference is zero.
The actual differences (Drug B - Drug A) are:
+1.5, +2.1, +0.3, -0.2, +2.6, -0.1, +1.8, -0.6, +1.5, +2.0, +2.3, +12.4
The actual median difference is 1.65 hours.

Ranking the differences and affixing a sign to each rank (steps 3 and 4
above):
Difference 0.1 0.2 0.3 0.6 1.5 1.5 1.8 2.0 2.1 2.3 2.6 12.4

Rank 1 2 3 4 5.5 5.5 7 8 9 10 11 12

Sign - - + - + + + + + + + +

Calculating W+ and W− gives:

W− = 1 + 2 + 4 = 7
W+ = 3 + 5.5 + 7 + 8 + 9 + 10 + 11 + 12 = 71
We have n(n+1)

2 = 12×13
2 = 78 =W− +W+

W = max(W−,W+) = 71.

We can use a normal approximation in this case. We have one group of
2 tied ranks, so we must reduce the variance by 8−2

48 = 0.125. We get

z =
71− 12×13

4q
12×13×25

24 − 0.125
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=

71− 39√
126.5− 0.125

= 2.511

This gives a two-sided p-value of p = 0.012. There is a strong evidence
that Drug B provides more relief than Drug A.

Test of Random sequences: To apply the sign test in SPSS, we took
two sequences together: one is the original sequence of the elements of Zn,
in the natural order, and the other is the sequence of the permuted values.
i.e., we consider the first sequence to be (xi), where xi = i, for
i = 0, 1, 2, ..., n − 1 and the second sequence being (yi = P (xi)), for i =
0, 1, 2, ..., n− 1, where P is a permutation polynomial over the ring Zn.

It can be observed from the tables of the test that all polynomials have a
sufficiently good number of both positive and negative differences (yi−xi).
Under the null hypothesis, we expect half the x’s to be above the median
and half below.

From the tables, we can also observe that the distribution of the dif-
ferences is approximately symmetric around zero, and the distribution of
positives and negatives is random among the ranks, in all the cases.

The tests are tabulated for different rings as follows:

The Sign test:

1. Over the Ring Z64:

Polynomails Negative Positive Ties Z Asymptotic
Differences Differences significance

x+ x2 + x4 26 30 8 -0.401 0.688

x+ 3x2 + x3 + x4 + x5 29 27 8 -0.134 0.894

x(2x+ 1) 19 37 8 -2.272 0.023

1 + x+ x2 + x4 27 37 0 -1.125 0.261

1 + x+ x2 + x3 + x4 + x5 31 33 0 -0.125 0.901

1 + x+ x2 + ...+ x9 30 34 0 -0.375 0.708

1 + x+ x2 + ...+ x13 31 33 0 -0.125 0.901

1 + x+ 2x2 + x3 + x5 20 44 0 -2.875 0.004
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2. Over the Ring Z128:

Polynomails Negative Positive Ties Z Asymptotic
Differences Differences significance

x+ x2 + x4 54 66 8 -1.004 0.315

x+ 3x2 + x3 + x4 + x5 69 51 8 -1.552 0.121

x(2x+ 1) 43 69 16 -2.362 0.018

1 + x+ x2 + x4 55 73 0 -1.503 0.133

1 + x+ x2 + x3 + x4 + x5 71 57 0 -1.149 0.251

1 + x+ x2 + ...+ x9 62 62 0 -0.265 0.791

1 + x+ x2 + ...+ x13 62 66 0 -0.265 0.791

1 + x+ 2x2 + x3 + x5 71 57 0 -1.149 0.251

3. Over the Ring Z2048:

Polynomails Negative Positive Ties Z Asymptotic
Differences Differences significance

x+ x2 + x4 966 1050 32 -1.849 0.065

x+ 3x2 + x3 + x4 + x5 1021 995 32 -0.557 0.578

x(2x+ 1) 931 1053 64 -2.717 0.007

1 + x+ x2 + x4 967 1081 0 -2.497 0.013

1 + x+ x2 + x3 + x4 + x5 1007 1041 0 -0.729 0.466

4. Over the Ring Z8192:

Polynomails Negative Positive Ties Z Asymptotic
Differences Differences significance

x+ x2 + x4 4158 4032 2 -1.381 0.167

x+ 3x2 + x3 + x4 + x5 4133 4056 3 -0.840 0.401

x(2x+ 1) 4113 4077 2 -0.387 0.699

1 + x+ x2 + x4 4160 4032 0 -1.403 0.161

1 + x+ x2 + x3 + x4 + x5 4088 4104 0 -0.166 0.868
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The Signed Rank Sum test:

1. Over the Ring Z64:

Polynomails Negative ranks Positive Ranks Z Asymptotic
Sum/Mean Sum/Mean significance

x+ x2 + x4 750/28.85 846/28.20 -0.392 0.695

x+ 3x2 + x3 + x4 + x5 843/29.07 753/27.89 -0.367 0.713

x(2x+ 1) 721/37.95 875/23.65 -0.630 0.529

1 + x+ x2 + x4 986/36.52 1094/29.57 -0.361 0.718

1 + x+ x2 + x3 + x4 + x5 1073/34.61 1007/30.52 -0.221 0.825

1 + x+ x2 + ...+ x9 1071/35.70 1009/29.68 -0.208 0.836

1 + x+ x2 + ...+ x13 1080/34.84 1000/30.30 -0.268 0.789

1 + x+ 2x2 + x3 + x5 825/41.25 1255/28.52 -1.444 0.149

2. Over the Ring Z128:

Polynomails Negative ranks Positive Ranks Z Asymptotic
Sum/Mean Sum/Mean significance

x+ x2 + x4 3482/64.48 3778/57.24 -0.388 0.698

x+ 3x2 + x3 + x4 + x5 3677/53.29 3583/70.25 -0.123 0.902

x(2x+ 1) 2976/69.21 3352/48.58 -0.546 0.585

1 + x+ x2 + x4 3950/71.82 4306/58.99 -0.423 0.672

1 + x+ x2 + x3 + x4 + x5 4315/60.77 3941/69.14 -0.445 0.656

1 + x+ x2 + ...+ x9 4190/67.58 4066/61.61 -0.147 0.883

1 + x+ x2 + ...+ x13 4190/67.58 4066/61.61 -0.147 0.883

1 + x+ 2x2 + x3 + x5 4315/60.77 3941/69.14 -0.445 0.656

3. Over the Ring Z2084:

Polynomails Negative ranks Positive Ranks Z Asymptotic
Sum/Mean Sum/Mean significance

x+ x2 + x4 1008359/1043.85 1024777/975.98 -0.314 0.753

x+ 3x2 + x3 + x4 + x5 1016028/995.3 1017108/1022.22 -0.021 0.984

x(2x+ 1) 973313/1045.45 995807/945.69 -0.441 0.659

1 + x+ x2 + x4 1039829/1075.31 1058347/979.04 -0.346 0.729

1 + x+ x2 + x3 + x4 + x5 1043123/1035.87 1055053/1013.50 -0.223 0.824
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4. Over the Ring Z8192:

Polynomails Negative ranks Positive Ranks Z Asymptotic
Sum/Mean Sum/Mean significance

x+ x2 + x4 17028928/4095.46 16513231/4095.54 -1.205 0.228

x+ 3x2 + x3 + x4 + x5 16924632/4095.00 16609302/4095.00 -0.737 0.461

x(2x+ 1) 16898594/4108.58 16643539/4082.30 -0.596 0.551

1 + x+ x2 + x4 17042236/4096.69 16516327/4096.31 -1.228 0.219

1 + x+ x2 + x3 + x4 + x5 16858284/4123.85 16700258/4069.26 -0.369 0.712

Conclusion

The sequences of numbers obtained by permutation polynomials over some
small finite rings are tested for randomness. The run test, sign test and
Wilcoxon Signed Rank test show significant results in case of all polynomi-
als, which we tested. These type of random sequences may be considered
for key generation applicable in ccryptography. In future, the permutation
polynomials over finite fields may be suitably used for key generation to
achieve high security.
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