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1. Introduction

This article addresses discounted Markov decision processes (MDPs) de-
fined on Euclidean state and action spaces (see [12] and [13]). For this kind
of MDPs, this document proposes conditions on the components of the
Markov control model, which guarantee the application of Moreau-Yosida
regularization. This proposal is the first step to apply numerical methods
based on Moreau-Yosida regularization, for example, gradient method (see
[14] and [16]) or bundle methods (see [2]), in the context of MDPs. These
numerical methods should be applied to approximate the optimal policy of
MDPs.

The Moreau-Yosida regularization (see [4], [15] and [16]) is a way to
smooth a nonsmooth convex function with a minimum such that the smooth-
ing achieves the same minimum as the original function. It is also important
to observe that the Moreau-Yosida regularization is a powerful technique
to provide differentiability properties to the corresponding perturbed func-
tions (see [4], [8] and [15]). Moreover, it is worth mentioning that this type
of regularization has not yet been applied to MDPs.

The main idea of the methodology of the paper is the following: consid-
ering a discounted Markov decision process (named the original process or
the original model) that satisfies certain assumptions, the Moreau-Yosida
regularization is applied to its cost function, allowing the establishment
of a new MDP, designated the perturbed MDP. The perturbed MDP has
components that are identical to the original Markov control model; the
only difference lies in the cost function. Specifically, its cost function is
the cost function of the original model with an added quadratic function
(in fact, this kind of addition procedure is the core of the Moreau-Yosida
regularization).

Therefore, it should be noted that with this type of perturbation, al-
though the optimal value function in the original model is not necessarily
differentiable, the differentiability of the optimal value function in the per-
turbed MDP is guaranteed. Additionally, it is ensured that the optimal
value function and the optimal policy of both models are exactly alike.

This work is organized as follows. In Section 2, the Moreau-Yosida
regularization is presented. In Section 3, the way to perturb discounted
MDPs using the regularization of Moreau-Yosida and the main result are
given. Finally, Sections 4 and 5 provide an example and some final remarks.
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Notation. Let W be a Euclidean space. For any set B ⊆ W , a point
x ∈ B is called an interior point of B if there exists an open set U such
that x ∈ U ⊆ B. The interior of B is the set of all interior points of B
and is denoted by int(B). If x ∈ W , then k x k represents its Euclidean
norm, and xT represents its transpose (considering x as a column vector).
For x, y ∈ W , hx, yi denotes their (usual) inner product. When W = R,
the absolute value of x ∈W is denoted by | x |.

2. Moreau-Yosida Regularization

The theory presented in this section extends to two variables (denoted as x
and a), and some ideas on the Moreau-Yosida regularization approach are
given in [16].

Let X and A be nonempty Borel spaces of Rl and Rm (l and m are
positive integers), respectively. Suppose that A(x) ⊂ A is a (nonempty)
measurable set for all x ∈ X. Define K := {(x, a) | x ∈ X, a ∈ A(x)}. It is
assumed that K is a measurable subset of the product space X ×A.

Let G : K→ R be a Borel measurable function, and define

ψ(x) := infa∈A(x)G(x, a), x ∈ X.

Assumption 2.1. a) For each x ∈ X, A(x) is a compact and convex set.

b) xA(x) is a continuous multifunction.

c) G is a continuous function on K.

d) For each x ∈ X, G(x, ·) is a convex function on A(x).

e) There exists a unique measurable selector f∗ : X → A with f∗(x) ∈
A(x) such that ψ(x) = G(x, f∗(x)) for each x ∈ X.

Remark 2.2. Observe that under Assumptions 2.1 a) and c), there exists
a measurable selector f∗ such that ψ(x) = G(x, f∗(x)) for each x ∈ X
(see Proposition D5, p. 182 in [12]); in fact, in Assumption 2.1 e), the
uniqueness of this selector is required.

In all the sequel, it will be assumed that λ > 0 is fixed. Consider,
for each (x, a) ∈ K and b ∈ A(x), the following function: H(x, a, b) :=
G(x, b) + λ

2 k b− a k2 .
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Definition 2.3. For x ∈ X and a ∈ A(x), define the following functions:

Hx(a) := minb∈A(x)
n
H(x, a, b)

o
,bP (x, a) := argminb∈A(x)

n
H(x, a, b)

o
,where Hx and bP are called the

regularization of Moreau-Yosida of H and the proximal operator associated
with H, respectively.

Remark 2.4. a) Note that Hx(a) ≤ G(x, a) < +∞ for all (x, a) ∈ K.

b) Observe that under Assumption 2.1, since for each (x, a) ∈ K, H(x, a, ·)
is the sum of a convex function and a strictly convex one, H(x, a, ·)
is strictly convex. Consequently, the proximal operator bP (x, a) is
nonempty for each (x, a) ∈ K. In addition, observe that H(x, a, ·) is
a continuous function for each (x, a) ∈ K.

Lemma 2.5. Suppose that Assumption 2.1 holds. Then, bP (x, a) is a unit
set, that is, bP (x, a) = {P (x, a)}, with P : K → A, and the function
H(x, a, ·) has a unique minimum in A(x) for each (x, a) ∈ K. In particular,bP (x, f∗(x)) = {P (x, f∗(x))} = {f∗(x)} for each x ∈ X; i.e., f∗(x) is the
unique minimum for the function H(x, f∗(x), ·) for each x ∈ X. Further-
more, G(x, f∗(x)) = Hx(f

∗(x)) for each x ∈ X.

Proof. Let x ∈ X be fixed. H(x, a, ·) is a strictly convex function (see
Remark 2.4 a)); thus, for each a ∈ A(x), using Theorem 2.6, p. 41 in [16],
H(x, a, ·) has a unique minimum in A(x) for each a ∈ A(x). Hence, bP (x, a)
is a unit set, let us say, bP (x, a) = {P (x, a)}. In particular, H(x, f∗(x), ·)
has a unique minimum in A(x). Now, observe that

G(x, f∗(x)) ≤ G(x,P (x, f∗(x)))

≤ G(x,P (x, f∗(x))) +
λ

2
k P (x, f∗(x))− f∗(x) k2

= min
b∈A(x)

n
H(x, f∗(x), b)

o
= Hx(f

∗(x)).(2.1)

Using Remark 2.4 a), it is obtained that

Hx(f
∗(x)) ≤ G(x, f∗(x)).(2.2)

Then, (1) and (2) imply that G(x, f∗(x)) = Hx(f
∗(x)) and thatbP (x, f∗(x)) = {f∗(x)}. Since x is arbitrary, the proof of Lemma 2.5 is

finished. 2



A Moreau-Yosida regularization for Markov decision processes 121

Lemma 2.6. Suppose that Assumption 2.1 holds. Then, for each x ∈ X,
both functions Hx(·) and P (x, ·) are continuous.

Proof. Let x ∈ X be fixed. Under Assumption 2.1, the hypothesis
of Theorem 17.31, p. 570 in [1] holds. Consequently, the following state-
ments are valid: (i) Hx is a continuous function; (ii) bP (x, a) is a nonempty
compact set, in fact, bP (x, a) = {P (x, a)} for each a ∈ A(x); and (iii)
the multifunction a bP (x, a) is upper semicontinuous because A is trivially
Hausdorff. Then, for each closed set F ⊂ A, {a ∈ A(x) | P (x, a) ∈ F} =n
a ∈ A(x) | bP (x, a) ∩ F 6= ∅o is closed in A. Hence, P (x, ·) is a continuous
function (see Theorem 8.3, p. 79 in [7]). Since x is arbitrary, the proof of
Lemma 2.5 is concluded. 2

Lemma 2.7. Suppose that Assumption 2.1 is fulfilled. Then, the gradient
of the function Hx(·), denoted by ∇Hx(·), is given by ∇Hx(a) = λ(a −
P (x, a)) for all a ∈ int(A(x)) and x ∈ X.

Proof. Let x ∈ X, a ∈ int(A(x)) and a direction d ∈ Rm with k d k= 1
be fixed. Consider t ∈ R+ − {0}; then, using the definition of Hx (see
Definition 2.3), it follows that

Hx(a+ td)−Hx(a)

t
=

1

t

"
min
b∈A(x)

½
G(x, b) +

λ

2
k b− a− td k2

¾

− min
ω∈A(x)

½
G(x, ω) +

λ

2
k ω − a k2

¾#
.

Now, since Hx(a) ≤ G(x, P (x, a + td)) +
λ

2
k P (x, a + td) − a k2, it is

obtained that

Hx(a+ td)−Hx(a)

t
≥ 1

t

∙
G(x, P (x, a+ td)) +

λ

2
k P (x, a+ td)− a− td k2

− G(x, P (x, a+ td))− λ

2
k P (x, a+ td)− a k2

¸
.

Equivalently,
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Hx(a+ td)−Hx(a)

t
≥ λ

2t

h
k P (x, a+ td)− a− td k2 − k P (x, a+ td)− a k2

i
=

λ

2t

h
k P (x, a+ td)− P (x, a) + P (x, a)− a− td k2

− k P (x, a+ td)− P (x, a) + P (x, a)− a k2
i
.(2.3)

By simple computations and the polarization identity (see [9]), it follows
that

λ

2t

h
k ρ+ η k2 − k ρ+ ϕ k2

i
=

λ

2t

h
k η k2 − k ϕ k2

i
− λ hρ, di ,(2.4)

where ρ := P (x, a+td)−P (x, a), η := P (x, a)−a−td and ϕ := P (x, a)−a.
Substituting (4) in (3), it follows that

Hx(a+ td)−Hx(a)

t
≥ λ

2t

£
k P (x, a)− a− td k2 − k P (x, a)− a k2

¤
− λhP (x, a+ td)− P (x, a), di
=

λ

2t

£
k P (x, a)− a k2 −2thP (x, a)− a, di+ t2 k d k2

− k P (x, a)− a k2
− λhP (x, a+ td)− P (x, a), di
= λha− P (x, a), di+ λ

2
t− λhP (x, a+ td)− P (x, a), di.(2.5)

Now, since P (x, ·) is a continuous function (see Lemma 2.5), taking
lim inf when t goes to 0 yields that P (x, a + td) → P (x, a). Then, from
inequality (5), it follows that

lim inf
t→0

Hx(a+ td)−Hx(a)

t
≥ λha− P (x, a), di.(2.6)

On the other hand, since Hx(a + td) ≤ G(x,P (x, a)) +
λ

2
k P (x, a) −

a− td k2, it follows that

Hx(a+ td)−Hx(a)

t
=

1

t

"
min
b∈A(x)

½
G(x, b) +

λ

2
k b− a− td k2

¾

− min
ω∈A(x)

½
G(x, ω) +

λ

2
k ω − a k2

¾#
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≤ 1

t

∙
G(x, P (x, a)) +

λ

2
k P (x, a)− a− td k2

− G(x, P (x, a))− λ

2
k P (x, a)− a k2

¸
=

λ

2t

h
k P (x, a)− a− td k2 − k P (x, a)− a k2

i
= λha− P (x, a), di+ λ

2
t− λhP (x, a+ td)− P (x, a), di.

Then, in the last inequality, taking lim sup as t→ 0 implies that

lim sup
t→0

Hx(a+ td)−Hx(a)

t
≤ λha− P (x, a), di.(2.7)

Then, from inequalities (6) and (7), it is obtained that

λha− P (x, a), di ≤ lim inf
t→0

Hx(a+ td)−Hx(a)

t

≤ lim sup
t→0

Hx(a+ td)−Hx(a)

t

≤ λha− P (x, a), di.

Therefore, ∇Hx(a) = λ(a − P (x, a)). Since a, d and x are arbitrary,
result follows. 2

A direct consequence of Lemma 2.7 is the following result.

Corollary 2.8. Suppose that Assumption 2.1 holds and the partial deriva-
tive with respect to a of the function P (x, a), denoted by D(P (x, a)), exists
for x ∈ X and a ∈ int(A). Then, the Hessian matrix H(Hx(·)) is given by

H (Hx(a)) = λ(Im×m−D(P (x, a))), for each a ∈ int(A(x)) with x ∈ X.
Here, Im×m is the identity matrix of order m, and D(P (x, a)) is the matrix

with entries
∂P i(x, a)

∂aj
, i.e., D(P (x, a)) :=

"
∂P i(x, a)

∂aj

#n,m
i,j

with P (x, a) =

(P 1(x, a), P 2(x, a), . . . , Pm(x, a)) and a = (a1, a2, . . . , am).

3. The Moreau-Yosida Regularization Applied to MDPs

3.1. Discounted Markov Decision Processes

Now, the preliminary Markov decision process context is briefly presented
(see [12]). Let (X,A, {A(x) | x ∈ X}, Q, c) be a Markov control model that
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consists of the state space X, the control or action space A, the admissible
sets A(x), x ∈ X, the transition law Q, and the cost-per-stage function
c. The sets X and A are assumed to be Borel spaces of Rl and Rm,
respectively. For each x ∈ X, A(x) is a nonempty measurable subset of
A, and A(x) denotes the set of feasible actions in the state x ∈ X. Define
K := {(x, a) | x ∈ X, a ∈ A(x)}, which is assumed to be a measurable
subset of X × A. The transition law Q is a stochastic kernel on X given
K, and the cost-per-stage function c : K→ R is measurable.

Definition 3.1. For each t = 0, 1, . . ., define the space Ht of admissible
histories up to time t as H0 = X, and Ht = K×Ht−1, for t = 1, 2, . . .. A
policy is defined as a sequence π = {πt, t = 0, 1, . . .} of stochastic kernels,
defined on A given Ht (see [13]). In this paper, the set of policies will
be denoted by Π. In particular, a stationary policy is of the form π =
{f, f, . . .}, where f is defined as a measurable function f : X → A such
that f(x) ∈ A(x) for all x ∈ X. The set of all stationary policies will be
denoted by F.

For each π ∈ Π and an initial state x ∈ X, let

V(π, x) = Eπ
x

∙ ∞P
t=0

αtc(xt, at)

¸
,be the total expected discounted cost, when

the policy π is applied, given the initial state x. The constant α ∈ (0, 1)
is a given discount factor fixed. The sequence of consecutive states and
corresponding actions will be denoted by {xt} and {at}, respectively, and
Eπ
x denotes the expected value with respect to the probability measure P

π
x ,

which is defined on a canonical measurable space (Ω, F ) induced by the
Ionescu-Tulcea Theorem (see [12]).

Definition 3.2. A policy π∗ is optimal if V (π∗, x) = υ∗(x) for all x ∈ X,
where υ∗(x) := π ∈ ΠinfV (π, x), x ∈ X.

υ∗ is called the optimal value function.

Definition 3.3. Let : X → [1,+∞) be a measurable function that will
be referred to as a weight function. If u is a real-valued function on X,
define its -norm as

k u k := supx∈X
| u(x) |
(x)

. Let B (X) be the normed linear space of

-bounded measurable functions u on X.

Assumption 3.4. a) For each x ∈ X, A(x) is a compact set.
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b) The transition law Q is strongly continuous, i.e.,

θ(x, a) :=

Z
X
u(y)Q(dy|x, a), for (x, a) ∈ K,

is a continuous function and bounded on K for each u ∈ B(X),
which denotes the Banach space of real-valued bounded measurable
functions u on X with the supremum norm k u k:= supx∈X | u(x) |.

c) c is a continuous function on K.

d) There exist nonnegative constants k̂ and δ, with 1 ≤ δ <
1

α
and a

weight function : X → [1,+∞), such that
supa∈A(x) | c(x, a) |≤ k̂ (x), and

supa∈A(x)
R

(y)Q(dy|x, a) ≤ δ (x), for all x ∈ X.

e) For every state x ∈ X, the function 0(x, a) :=
R
X (y)Q(dy | x, a) is a

continuous function in a ∈ A(x).

Definition 3.5. The value iteration functions are defined as:

Vn(x) = min
a∈A(x)

½
c(x, a) + α

Z
X
Vn−1(y)Q(dy|x, a)

¾
,(3.1)

for all x ∈ X and n = 1, 2, . . ., with V0(·) = 0.

The proof of the following lemma can be found in Theorem 8.3.6, p. 47
in [13].

Lemma 3.6. Suppose that Assumption 3.4 is fulfilled. Then,

a) The optimal value function υ∗ ∈ B (X) is a solution of

υ∗(x) = min
a∈A(x)

∙
c(x, a) + α

Z
X
υ∗(y)Q(dy|x, a)

¸
(3.2)

for each x ∈ X.

b) There exists a selector f∗ ∈ F such that, in (9), the minimum is at-
tained, i.e.,

υ∗(x) = c(x, f∗(x)) + α

Z
X
υ∗(y)Q(dy|x, f∗(x)),(3.3)

for all x ∈ X, and f∗ is optimal.
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c) Vn ∈ B (X), n = 1, 2, . . ., and {Vn} converges pointwise to υ∗. More-
over, for each n = 1, 2, . . . there exists fn ∈ F such that
Vn(x) = c(x, fn(x)) + α

R
X Vn−1(y)Q(dy|x, fn(x)), for all x ∈ X,

where fn is called the minimizer of the value iteration functions.

3.2. Application to MDPs

Let M = (X,A, {A(x)|x ∈ X}, Q, c) be a fixed Markov control model.
M will be referred to as the original model, and it will be assumed that
M satisfies Assumption 3.4. Optimal value function, optimal policy, value
iteration function and minimizers of the value iteration functions will be
denoted for υ∗, f∗, Vn, and fn, n = 0, 1, 2, . . ., respectively.

Now, let us define the following MDP with the Markov control model
given by Mλ := (X,A, {A(x)|x ∈ X}, Q, cλ), where cλ(x, a) := c(x, a) +
λ/2 k a − f∗(x) k2 , (x, a) ∈ K, f∗ is a fixed optimal policy and c is the
cost function of the original model M . Note that both MDPs; M and Mλ,
are equal except for the cost function. Moreover, observe that the set F of
stationary policies is the same for both models (in fact, the set Π of the
all admissible policies is the same for both models). The MDP Mλ will be
referred to as the perturbed model.

In modelMλ, the total expected discounted cost, when the policy π ∈ Π
is applied and the initial state is x ∈ X, is defined by

W(π, x) = Eπ
x

∙ ∞P
t=0

αtcλ(xt, at)

¸
,

and the corresponding optimal value function is given by
ω∗(x) = infπ∈ΠW (π, x), x ∈ X.

Remark 3.7. Under Assumption 3.4, observe that for each x ∈ X,W (π, x) <
+∞ when π = {f∗, f∗, . . .}, where f∗ is the optimal policy from original
model M .

Notation 3.8. a) Define the functionsG(x, a) := c(x, a)+α
R
X υ∗(y)Q(dy|x, a)

and
Gn(x, a) := c(x, a) + α

R
X Vn−1(y)Q(dy|x, a), n = 1, 2, . . ., for each

(x, a) ∈ K. Consequently, H(x, f∗(x), b) = G(x, b) + λ
2 k b− f∗(x) k2

for each x ∈ X and b ∈ A(x).

b) Evaluating f∗ in Hx, bP and Hn
x , which were given in Definition 2.3,

yields the following

Hx(f
∗(x)) = minb∈A(x)

n
c(x, b) + α

R
X υ∗(y)Q(dy|x, b) + λ

2 k b− f∗(x) k2
o
,
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bP (x, f∗(x)) = argminb∈A(x)
n
c(x, b) + α

R
X υ∗(y)Q(dy|x, b) + λ

2 k b− f∗(x) k2
o
,

for each x ∈ X. Moreover, for each n = 1, 2, . . . and x ∈ X,

Hn
x(f

∗(x)) = minb∈A(x)
n
c(x, b) + α

R
X Vn−1(y)Q(dy|x, b) + λ

2 k b− f∗(x) k2
o
.

It is important to mention that in the rest of the paper, we will work in
the context of discounted MDPs described in Subsections 3.1 and 3.2, and
we only deal with functions G and Gn defined in Notation 3.8 and with the
Moreau-Yosida regularization of H, the proximal operator of H and Hn

x (·)
defined by them.

3.3. Convexity and Differentiability in the Perturbed Model

In this section, under convexity assumptions on the components of the
Markov control model, it is obtained a version of the Moreau-Yosida regu-
larization for MDPs, see Theorem 3.13.

Assumption 3.9. a) A(x) is a convex set for each x ∈ X, and the multi-
function xA(x) is continuous.

b) Assume that G(x, ·) and Gn(x, ·) are convex functions for each x ∈ X
and n = 1, 2, . . ..

c) The integrals:

Z
Vn(y)Q(dy | ·, ·), n = 1, 2, . . . ,(3.4)

and

Z
υ∗(y)Q(dy | ·, ·)(3.5)

are finite and continuous functions on K.

Remark 3.10. a) There are conditions in [6] (see Assumption 1 and ei-
ther Condition 1 (C1) or Condition 2 (C2) in [6]) that, under suitable
and light modifications of conditions C1 or C2, obtain the result that
Gn(x, ·) and G(x, ·) are convex functions for each x ∈ X (see also the
proof of Lemma 6.2 in the same reference [6]).
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b) For bounded models (i.e., MDPs with bounded cost functions and com-
pact admissible action sets), the continuity of integrals (11) and (12)
follows directly from the strong continuity of the transition law Q. If,
moreover, the multifunction xA(x) is continuous, then the continuity
of Vn, n = 1, 2, . . ., and υ∗ is an immediate consequence of Proposi-
tion D.3(c) p. 130 in [11] using the continuity of the cost function c
and of the integrals (11) and (12), and equations (8) and (9).

The proof of the following theorem is direct.

Theorem 3.11. Suppose that Assumptions 3.4 and 3.9 hold. Then,
H(x, f∗(x), ·) is a strictly convex function for each x ∈ X.

Theorem 3.12. Suppose that Assumption 3.9 holds. Then, P (x, f∗(x)) =
f∗(x) for each x ∈ X, i.e., f∗ is the unique optimal policy of the perturbed
model Mλ. Moreover, G(x, f

∗(x)) = Hx(f
∗(x)) for each x ∈ X.

Proof. Let x ∈ X be fixed. Lemma 2.5 implies that bP (x, f∗(x)) =
{f∗(x)}, i.e., P (x, f∗(x)) = f∗(x), and that G(x, f∗(x)) = Hx(f

∗(x)). It
only remains to prove that f∗ is the optimal policy for model Mλ. Ob-
serve that W (f∗, x) = V (f∗, x) = υ∗(x). It is easy to verify that for each
π ∈ Π, W (π, x) ≥ V (π, x) ≥ υ∗(x). Then, it follows that for each π ∈ Π,
W (π, x) ≥ W (f∗, x). Therefore, w∗(·) = υ∗(·) = W (f∗, ·), and f∗ is op-
timal for W . Now, uniqueness of f∗ will be proven by contradiction. In
this way, it is assumed that h ∈ F is an optimal policy for W , and it is
assumed, without loss of generality, that function h is not equal to f in the
fixed state x. From (1), noting that w∗(·) = υ∗(·), it is obtained that

w∗(x) = G(x, f∗(x))

< G(x, h(x)) +
λ

2
k f∗(x)− h(x) k2

= c(x, h(x)) +
λ

2
k f∗(x)− h(x) k2 +α

Z
X
υ∗(y)Q(dy|x, h(x))

= c(x, h(x)) +
λ

2
k f∗(x)− h(x) k2 +α

Z
X
w∗(y)Q(dy|x, h(x)).

Consequently, w∗(x) < cλ(x, h(x)) +α
R
X w∗(y)Q(dy|x, h(x)), i.e., h(x)

does not satisfy equation (10); which is a contradiction of the optimality of
h. Therefore, f∗ is the unique optimal policy of the perturbed model Mλ.
Since x is arbitrary, result follows. 2
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Theorem 3.13. Suppose that Assumptions 3.4 and 3.9 are fulfilled. If
a ∈ int(A(x)), then ∇Hx(a) = λ(a − P (x, a)). In particular, if f∗(x) ∈
int(A(x)), it is obtained that ∇Hx(f

∗(x)) = 0, for each x ∈ X, where 0
represents the zero vector in Rm.

Proof. Let x ∈ X be fixed. From Lemma 2.7, it is obtained that
∇Hx(a) = λ(a−P (x, a)) for each a ∈ int(A(x)). In particular,∇Hx(f

∗(x)) =
λ(f∗(x)− f∗(x)) = 0. Hence, the arbitrariness of x implies Theorem 3.13.
2

4. Example

In this section, one example will be presented to illustrate the theory de-
veloped in the previous sections. It is also relevant to note that in Example
4.1, validity of Assumptions 3.4 and 3.9 is given in detail.

Example 4.1. LetX = A = Rl andA(x) = [− | x1 |, | x1 |]×[− | x2 |, | x2 |]×
· · · × [− | xl |, | xl |] for all xT = (x1, x2, . . . , xl) ∈ X. The transition law is
given by

xt+1 = xt + at + ξt, for each t = 0, 1, . . . , with x0 = x ∈ X,

where {ξt} is a sequence of i.i.d column random vectors with values in
S = Rl. Let ξ be a generic element of the sequence {ξt}. Assume that ξ has
a standard multivariate normal distribution with density ∆. Furthermore,
it is assumed that α ∈ (0, 1/4). The cost function is given by

c(x,a)=k x k2 + k a k2, (x,a) ∈ K.

Remark 4.2. The standard linear-quadratic problem is unconstrained,
that is, A(x) ≡ A = Rl (see [3]). The selection of the compact control
sets A(x) = [− | x1 |, | x1 |]× [− | x2 |, | x2 |]× · · · × [− | xl |, | xl |], x ∈ X,
was made in order to satisfy Assumption 3.4 a) and, in fact, it is directly
seen that fn(x), f

∗(x) ∈ int (A(x)) for all x ∈ X and n ≥ 1 (see Lemma
4.5, below).

Lemma 4.3. Example 4.1 satisfies Assumption 3.4.

Proof. Assumption 3.4 is verified in the next steps:

a) Observe that A(x) is clearly a compact set for all x ∈ X.
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b) Let u ∈ B(X), then for each (x,a) ∈ K:

θ(x,a) :=

Z
X
u(y)Q(dy | x,a)

=

Z
Rl

u(x+ a+ s)∆(s)ds.

Since density ∆ is a continuous and bounded function, then, as a con-
sequence of the dominated convergence theorem (see [17]), transition
law Q is strongly continuous.

c) Clearly, cost function c is a continuous function on K.

d) It is easily verified that k̂ = 1, δ = 4 and (x) = 3 k x k2 +1, x ∈ X,
satisfy Assumption 3.4 d).

e) Taking (·) as in the previous step d), it is obtained that for each
(x,a) ∈ K,

0(x,a) =

Z
X

(y)Q(dy | x,a)

=

Z
Rl

(x+ a+ s)∆(s)ds

=

Z
Rl

h
3 k x+ a+ s k2 +1

i
∆(s)ds.

It implies that 0(x,a) = 3 k x + a k2 +4, (x,a) ∈ K. Therefore,
0(x, ·) is a continuous function on A(x) for each x ∈ X.

2

Lemma 4.4. Example 4.1 satisfies Assumption 3.9.

Proof. Assumption 3.9 will be verified in the following steps.

a) It will be proven that the multifunction xA(x) is lower semicontinuous
(l.s.c.). To this end, assume that {xn = (x1,n, x2,n, . . . , xl,n)} ⊂ X is
a sequence convergent to x = (x1, x2, . . . , xl) ∈ X, and let a ∈ A(x).
The proof will proceed by cases. For the first case, suppose that a is
in the boundary of A(x), i.e., a = (a1, a2, . . . , xi, . . . , al) for some i ∈
{1, 2, . . . , l} with aj ∈ [− | xj |, | xj |] for all j 6= i, and j = 1, 2, . . . , l.
In this case, consider an = (a1, a2, . . . , xi,n, . . . , al). Then, observe
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that an → a as n→∞. For the second case, consider a ∈ int(A(x)).
Hence, there exists βi ∈ (0, 1) such that ai = −βi | xi | +(1−βi) | xi |
for all i = 1, 2, . . . , l. Taking ai,n = −βi,n | xi,n | +(1 − βi,n) | xi,n |,
then ai,n → ai as n → ∞ for all i = 1, 2, . . . , l; in other words,
an → a when n goes to infinity. According to the previous cases, it
is concluded that the multifunction xA(x) is l.s.c. Now, it will be
proven that the multifunction is upper semicontinuous (u.s.c.). Let
xn → x ∈ X and an ∈ A(xn). Then, − | xi,n |≤ ai,n ≤| xi,n | for
all i = 1, 2, . . . , l. Taking the limit as n → ∞, it is obtained that
− | xi |≤ lim inf ai,n ≤ lim sup ai,n ≤| xi | for all i = 1, 2, . . . , l. Then,
sequence {an} has a limit point in A(x) defined by lim infn→∞ ai,n
or by lim supn→∞ ai,n. Therefore, multifunction xA(x) is u.s.c. and
hence continuous.

b) Clearly, this example satisfies Assumption 1 and C2 in [6]. Then, G
and Gn are convex functions on A(x) for all x ∈ X, and the optimal
policy f∗ is unique.

c) Now, the finiteness and the continuity of
R
υ∗(y)Q(dy | ·, ·) will be

verified. Taking π = {f, f, . . .} with f(x) = −x, x ∈ X, it is obtained
that

V (f,x) =k x k2 + 2α

1− α
< +∞, x ∈ X.(4.1)

Consequently, by (13), it follows that

0 ≤ υ∗(x) ≤k x k2 + 2α

1− α
(4.2)

x ∈ X. Then, for each (x,a) ∈K,

Z
υ∗(y)Q(dy | x,a) =

Z
IX(s)υ

∗(x+ a+ s)∆(s)ds

≤
Z
IX(s)

∙
k x+ a+ s k2 + 2α

1− α

¸
∆(s)ds

= k x+ a k2 +1 + α

1− α
< +∞.
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Consider {(xn,an)} a sequence in K such that (xn,an)→ (x,a) ∈ K
when n goes to infinity. Let bL be a positive number such that for
each n = 1, 2, . . .

0 ≤k xn k2≤ bL and 0 ≤k an k2≤ bL.(4.3)

From (14), for each n = 1, 2, . . . and s ∈ S, it is obtained that 0 ≤
υ∗(s)∆(s − xn − an) ≤ hn(s), where hn(s) =

∙
k s k2 + 2α

1− α

¸
∆(s −

xn − an), s ∈ S. Then, from (15), it yields that

0 ≤
Z
X
hn(s)ds =

Z
X

∙
k s k2 + 2α

1− α

¸
∆(s− xn − an)ds

=

Z
X

∙
k xn + an + s k2 +

2α

1− α

¸
∆(s)ds

= k xn + an k2 +
1 + α

1− α

≤ 4bL+ 1 + α

1− α
< +∞,

for each n = 1, 2, . . .. Furthermore, observe that {hn} converge point-
wise to the function

h(s) =

∙
k s k2 + 2α

1− α

¸
∆(s− x− a),

and

0≤ hn(s) ≤ e−2bL ∙k s k2 + 2α

1− α

¸
∆(s), s ∈ S, n = 1, 2, . . . .

Now, by using the dominated convergence theorem (see [17]), it fol-
lows that

R
hn(s)ds→

R
h(s)ds, when n goes to infinity. On the other

hand, due to the continuity of∆, it follows that υ∗(s)∆(s−xn−an)→
υ∗(s)∆(s− x− a), as n→∞. Applying the dominated convergence
theorem again, it is obtained that

lim
n→∞

Z
υ∗(y)Q(dy | xn,an) = lim

n→∞

Z
IX(s)υ

∗(s)∆(s− xn − an)ds

=

Z
IX(s)υ

∗(s)∆(s− x− a)ds

=

Z
υ∗(y)Q(dy | x,a),
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i.e.,
R
υ∗(y)Q(dy | x,a) is a continuous function on K. In an analo-

gous way,
R
Vn(y)Q(dy | ·, ·) is finite and continuous on K for each

n = 1, 2, . . ..

2

Lemma 4.5. In Example 4.1, fn(x) and f
∗(x) are in the int(A(x)) for all

x ∈ X and n ≥ 1.

Proof. Let x ∈ X be fixed. First, it will be proven that fn(x) ∈
int(A(x)), n ≥ 1. Applying the value iteration algorithm (see Lemma 3.6
c)), it is obtained that for n ≥ 0,

Vn+1(x) = min
a∈A(x)

n
aT (I + αKn)a+ x

T (I + αKn)x+ 2αx
TKna+ αθn + αβn

o
,

(4.4)

with V0(x) = 0, where Kn is a positive semidefinite and symmetric matrix
and {θn}, {βn} are sequences of nonnegative real numbers. Define g(a) =
aT (I + αKn)a + 2αx

TKna for each a ∈ A(x) (see (16)). Then, observe
that g is a quadratic form with a minimum a∗ = −αxTKn (I + αKn)

−1 and
k a∗ k≤k x k. The last assertion is verified via the following inequalities:

k a∗ k = k −αKn (I + αKn)
−1 x k

≤ k αKn (I + αKn)
−1 kk x k

= k ((I + αKn)− I) (I + αKn)
−1 kk x k

= k I − (I + αKn)
−1 kk x k≤k x k .

The second inequality is obtained because (I + αKn)
−1 and I are non-

negative, definite and symmetric matrices with an application of Exer-
cise 2.2-10 in [5] p. 57. Consequently, since the Hessian matrix of the
quadratic form g is positive semidefinite and symmetric, it follows that
a∗ = fn(x) ∈ int(A(x)) is the unique minimum for each n ≥ 1.

Then, substituting a∗ = −αxTKn (I + αKn)
−1 in (16), it is obtained

that

Vn+1(x) = xT (I + αKn)x+ αθn + αβn + min
a∈A(x)

n
aT (I + αKn)a+ 2αx

TKna
o

= xT (I + αKn)x+ αθn + αβn
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+
³
−αxTKn (I + αKn)

−1
´
(I + αKn)

³
−α (I + αKn)

−1Knx
´

+ 2αxTKn

³
−α (I + αKn)

−1Knx
´

= xT (I + αKn)x+ αθn + αβn − α2xTKn (I + αKn)
−1Knx

= xT
³
I + α

³
Kn − αKn (I + αKn)

−1Kn

´´
x+ αθn + αβn.

Equivalently, for n ≥ 0,

Vn+1(x) = x
TKn+1x+Dn+1,

where Kn+1 = I+α
³
Kn − αKn (I + αKn)

−1Kn

´
and Dn+1 = αθn+αβn.

On the other hand, from Lemma 3.6 c), it follows that {Vn} converges
pointwise to υ∗. Then, there exist a positive semidefinite and symmetric
matrix K and real numbers θ and α, such that Kn → K, θn → θ, αn → α.
Consequently,

υ∗(x) = min
a∈A(x)

n
aT (I + αK)a+ xT (I + αK)x+ 2αxTKa+ αθ + αβ

o
= xT

³
I + α

³
K − αK (I + αK)−1K

´´
x+ αθ + αβ

= xTKx+D,(4.5)

whereK satisfies the Ricatti’s equationK = I+α
³
K − αK (I + αK)−1K

´
and D = αθ + αβ is a positive number.

Finally, using (17) and proceeding in a similar way to the previous case,
it is possible to prove that f∗(x) ∈ int(A(x)). Since x is arbitrary, result
follows. 2

Theorem 4.6. In Example 4.1, the gradient of Hx is given by

∇Hx(a) = λ
³
a− (λIa− 2αKx) (2I + 2αK + λI)−1

´
for each (x,a) ∈ K, where K is a matrix positive semidefinite and symmet-

ric that satisfies the Ricatti’s equationK = I+α
³
K − αK (I + αK)−1K

´
.

Furthermore, f∗(x) = −αxTK (I + αK)−1 , x ∈ X.

Proof. Let (x,a) ∈ K be fixed. Then, substituting (17) in Hx(a) (see
Definition 2.3 and Remark 3.8 a)), it is obtained that

Hx(a) = min
b∈A(x)

½
xTx+ bTb+ αE [υ∗ (x+ b+ ξ)] +

λ

2
(b− a)T (b− a)

¾
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= min
b∈A(x)

n
xTx+ bTb+ αE

h
(x+ b+ ξ)T K (x+ b+ ξ) +D

i
+

λ

2
(b− a)T (b− a)

¾
= min

b∈A(x)

n
xTx+ bTb+ α (x+ b)T K (x+ b) + ασ2 + αD

+
λ

2
(b− a)T (b− a)

¾
,(4.6)

where K is a matrix positive semidefinite and symmetric that satisfies the

Ricatti’s equation K = I + α
³
K − αK (I + αK)−1K

´
and D = αθ + αβ

is a positive number. Then, minimizer b∗ of (18), satisfies the following
equation:

2Ib∗ + 2αK(x+ b∗) + λI(b∗ − a) = 0.
This implies that

b∗ = (λIa− 2αKx) (2I + 2αK + λI)−1 .

Therefore,

P (x,a) = (λIa− 2αKx) (2I + 2αK + λI)−1 .

Finally, by Theorem 3.13, it results that

∇Hx(a) = λ
³
a− (λIa− 2αKx) (2I + 2αK + λI)−1

´
and

∇Hx(f∗(x)) = λ
³
f∗(x)− (λIf∗(x)− 2αKx) (2I + 2αK + λI)−1

´
= 0.

Then, the optimal policy is given by

f∗(x) = −αxTK (I + αK)−1 .

2

5. Final Remarks

For suitable discounted MDPs, a procedure to perturb the corresponding
cost function by adding a convenient quadratic function was found. It is
also significant to mention that if the cost function is not differentiable,
then for the perturbed cost function, the answer regarding this property is
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positive; that is, the perturbed cost function is differentiable. Moreover, the
optimal policies for the original model and the perturbed one are the same.
For future work, the authors will seek to develop an algorithm to calculate
the optimal policy and the optimal value function for the perturbed model
by applying Lipschitzian gradient methods in the context of Moreau-Yosida
regularization (see [14]). In addition to considering alternative methods as
regularized Bellman operators (see [10]) to complement the methodology
of Moreau-Yosida regularization.
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