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1. Introduction

Let p be a probability measure on a metric space X. The Hausdorff multi-
fractal spectrum function, f,,, and the packing multifractal spectrum func-
tion, F},, of the measure u are defined respectively by

fule) =dimpg(E(a)) and Fj(o) =dimp(E(a)) for a >0,

log (u(B(a:,r)))

E(a) = {= € suppy; lim Tog T =a,,

where

and suppp is the topological support of p.

During the past 25 years there has been an enormous interest in com-
puting the multifractal spectra of measures in the mathematical literature.
Particularly, the multifractal spectra of various classes of measures in Eu-
clidean space R"™ exhibiting some degree of self-similarity have been com-
puted rigorously. The reader can be referred to the paper [9], the textbooks
[7, 11] and the references therein. Some heuristic arguments using
tech- niques of statistical mechanics (see [8]) show that the singularity
spectrum should be finite on a compact interval, noted by Dom(u), and
is expected to be the Legendre transform conjugate of the 7,-function,
given by

i) = limy —— log <sup {;uw(m@-,r))‘z})

where the supremum is taken over all centered packing (B (x4, r)) _of suppp.
1
That is, for all @ € Dom(u),

(1.1) fula) = qigff{{oaq 4 Tﬂ(q)} ().

The multifractal formalism (1.1) has been proved rigorously for ran-
dom and non-random self-similar measures, for self-conformal measures,
for self-affine measures and for Moran measures. We notice that the proofs
of the multifractal formalism (1.1) in the above-mentioned references (see
for example [3, 9, 13] and references therein) are all based on the same
key idea. The upper bound for f,(a) is obtained by a standard covering
argu- ment, involving Besicovitch’s covering theorem or Vitali’s covering
theorem.
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However, its lower bound is usually much harder to prove and is related to
the existence of an auxiliary measure (Gibbs measures) which is supported
by the set to be analyzed. In an attempt to develop a general theoretical
framework for studying the multifractal structure of arbitrary measures,
Olsen [9], Pesin [11] and Peyriere [12] suggested various ways of
defining measures analogous to those of Gibbs measures in very general
settings. For an arbitrary Borel probability measure p on R”, they
introduced two parameter families of measures,

{Hz’t; q,t € R} and {Pg’t; q,t € R},

based on certain generalizations of the Hausdorff measure and of the pack-
ing measure. For ¢,t € R, E C R" and § > 0, write

i -en gt o} 1

where the supremum is taken over all centered J-packing of E. Moreover
we can set PZ’; (0) = 0. Also, we define

HZ”%(E) = inf {Z M(B(aci,ri)>q(2ri>t} , E=0,

where the infinimum is taken over all centered J-covering of E. Moreover
we can set H Z”%(@) = 0. Especially, we have the conventions 0?9 = oo for
q<0and0?=0 for g >0.

The packing and Hausdorff pre-measures are defined respectively by

—=q,t . ==t —=q,t —=q,t
Pl (E):gg Pls(E) and H, (E):?;%)HZ’(;(E).

The function Fﬁ’t is not necessarily countably subadditive, also the set func-

tion ﬁZ’t is not necessarily monotone. For these reasons, Olsen introduced
the packing and Hausdorff measures denoted respectively by P?* and H*
are defined as following
PU(E) = inf PYE) and HYYE) = sup HY'(F).
,u() EQUZE:; /L('l) ,u() FCE ,u()
The functions H;{’t and Pg’t are metric outer measures and thus mea-

sures on the Borel family of subsets of R™. It is easy to see that Pﬁ’t < FZ’t.
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Moreover, by using Besicovitch’s theorem, there exists an integer £ € N,
such that H?' < P2 (see [9]). The measure Hi' is a multifractal gener-
alization of the centered Hausdorff measure, whereas P/‘j’t is a multifractal
generalization of the packing measure. In fact, in the case when ¢t > 0,
Hg”‘/ = H! and Pg’t = P!, where H' denotes the t-dimensional centered
Hausdorff measure and P? denotes the t-dimensional packing measure.

The measures Hg’t and Pg’t and the pre-measure ?Z’t assign in the usual
way a multifractal dimension to each subset E of R™. They are respectively
denoted by b, (E), BL(E) and Af(F) and satisfy

b (E) = inf {t eR; HI'(E)= o}, BY(E) = inf {t €R; PY(E)= 0},

R . 54t _
AY(E) = int {t < R: P(E) =0},

The number b (F) is an obvious multifractal analogue of the Hausdorff
dimension dimpy(E) of E whereas Bi(FE) and Af(FE) are obvious multi-
fractal analogues of the packing dimension dimp(FE) and the pre-packing
dimension A(E) of E respectively. In fact, it follows immediately from the
definitions that

dimg (E) = b%(E), dimp(E) = B)(E) and A(E) = A)(E).

Next, for ¢ € R, we define the dimension functions b, B, and A, by

bu(a) = b (supp 1), Bu(q) = Bi(supp i) and Ay (q) = Af (supp ).

It is well known that the functions b,, B, and A, are decreasing and
B,,, A, are convex and satisfying b, < B,, < A,,.

One of the main importance of the multifractal measures Hg’t and Pgﬂ
and the corresponding dimension functions b,, B,, and A, is due to the
fact that the multifractal spectra functions f, and F), are bounded above
by the Legendre transforms of b, and B,,, respectively, i.e.,

dimpg(E(a)) < b, (a) and dimp(F(a)) < Bj(a) forall a>0.

These inequalities may be viewed as rigorous versions of the multifractal
formalism. Furthermore, for many natural families of measures we have

dimpg(E(a)) = b/ (a) and dimp(E(a)) = B),(a) for some «a >0,



Another example of the mutual singularity of multifractal measures 21

see for example [3, 9, 10, 13]. It is clear by comparing the definitions of
the measures szt and Pﬁ”t, and definition of the 7,-function which
appears in the multifractal formalism that b,(¢) and B,(q) are
mathematically rigor- ous versions of 7,(¢), and that the one-parameter
families

{Hz’b“(‘”; q€ R} and {PS’BH(‘D; qe€ R},

play the role of the auxiliary measures {4,; ¢ € R}. In particular, we would
expect that the measures {Hz’b*‘(q); q € R} and {PE’B“(q); q €< R} have

similar properties to those of the auxiliary measures {14; ¢ € R}. This
has been proved rigorously for self-similar, quasi self-similar, self-conformal
measures and for arbitrary measures, see for example [3, 9, 10] and refer-
ences therein.

Let us mention that the interest of mathematicians in singularly con-
tinuous measures and probability distributions were fairly weak, which can
be explained, on the one hand, by the absence of adequate analytic appara-
tus for specification and investigation of these measures, and, on the other
hand, by a widespread opinion about the absence of applications of these
measures. Due to the fractal explosion and a deep connection between the
theory of fractals and singular measures, the situation has radically changed
in the last years. The multifractal and the fractal analysis allows one to
perform a certain classification of these measures. Therefore, Olsen in [9],
posed the following two questions:

Question 1: Let p,q € R and assume that b, is differentiable at p and ¢
with b),(p) # b),(q). Then, the following problem remains open:

Hﬁ»bu (») 1 H37b/t(4)

suppu suppp

Question 2: Let p,q € R and assume that B, is differentiable at p and ¢
with By, (p) # B,,(q). Then, the following problem remains open:

pﬁ,Bu (») L pg7B,L(q)

suppp [suppp

In [6, 9], the authors discussed these questions and provided some examples
of the mutual singularity of multifractal Hausdorff and packing measures
for graph directed self-similar measures in R"™ with totally disconnected
support, cookie-cutter measures [9], for some homogeneous Moran measures
[6] and for self-similar measures satisfying the significantly weaker open set
condition [4, 5]. In this paper, we give another example for which the
multifractal Hausdorff and packing measures are mutually singular.
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2. Main result

2.1. Moran set

Let recall the class of homogeneous Moran sets. One consider {nj}i>1 a
sequence of positive integers and {1, },>1 a sequence of positive real vectors
with

ng
V= (bk1sbrzs - bk ) s D brg <1, keN.
=1

Let Dy = ), and for any k > 1, set
Dm,k‘ :{(Zm72m+1>72k)7 1 SZJ Snja mSJ Sk} and Dk:Dl,k

We also define D = U Dy. Ifo = (01,...,0%) € Di,0 = (61,...,0,) €
k>0
Di41,m, we denote 0 x 0 = (01,...,0%,01,...,0m).

Definition 2.1. Let I be a closed interval such that |I| = 1.We say the
collection F' = {I,,o € D} of closed subsets of I fulfills the Moran structure
if it satisfies the following conditions (MSC):

(a) Iy =1

(b) For all k > 0 and 0 € Dy, Ios1, Iox2, - - ., Iysn,,, are subintervals of I,
and satisfy

oxi V15 =0,  whenever i # j (A° denotes the interior of A.)
|Ia*j| .
(c) For any k > 1,0 € D1, by = AR 1 < j < ng where |A| denotes
g

the diameter of A.

Let F' be a collection of closed subintervals of I having homogeneous

Moran structure. The set E(F) = ﬂ U I, is called an homogeneous
k>0 0€Dy,
Moran set determined by F'.

Let Fy = {I5,0 € Dy}, and F' = Ug>o Fi. The elements of Fj, are
called the basic elements of order k of the Moran set £ and the elements
of I are called the basic elements of the Moran set E.

Remark 2.1. If lim sup |I,| > 0, then E contains interior points. Thus

n—-+oo o€Dy,
the measure and dimension properties will be trivial. We assume therefore
lim sup |I,| =0.

n—+05ep,
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Suppose that the set I, the sequences {ny} and {¢y} are given, we
denote by M =: M (I,{ny},{¢r}) the class of the Moran sets satisfying the
(MSC) and call the Moran class associated with the triplet (I, {ng}, {¢x})-

Now let O = {a1,as,...,a,,} and forw € ON .= {s159- -sk---,8 € O},
write

W = w|, = s152- - - s, then |wy| = k.

We also denote by |wg|,, the number of occurrences of the letter a; in wg.

Given a probability vector v = (v1,72,...,7%m), we say w has frequency
. . Wkl a, .
vector 7, if khm & =; > 0, for every a; € O. It is easy see that
——+00
m m
Z|wk|a¢:k and Z*yjzl.
i=1 j=1

For v = (71,72, ...,vm) , we consider the set

(’),IY\I: {w—{sk}k>1; sp € O, lim %—Pyi,lgigm}.
= k—+oo k
From now on, suppose m; € N,Ifor 1 <i<mand; = (bi1,bi2,- -, bim,;)
be a positive real vector with %bij < 1. For w € (’),17\1, in the Moran
construction above, for any k]; 1 if s = a; take np = m;. Then

we construct the Moran set relting to w € (’)}/\I and we denote it by
E(w)={I,{nk},{¢x}}. From [13], we have

dimpg F(w) = liminfd; and dimp F(w) = limsupdy

k—+o0 k—4o00
where dj, satisfies the equation
k n;

(2.1) [1> b =1.

i=1j=1

It follows from (2.1) that

m ng |wk|%‘
I1 (Z b‘j;) = 1.
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Now taking the logarithms, the lower and upper limits respectively as k
tends to infinity, we get

dimgE(w) =dimpE(w) =d

where the number d satisfies the following equation

> ilos [ S0 ) =
i=1 j=1

Suppose I, € Fi, k > 1, and let Iss1, Ios2, - - -5 Lyen,, be the ng 1 basic
intervals of order k 4 1 contained in [, arranged from the left to the right.
For all 1 < j < mgy1 — 1, let dist (Ig*j,la*(j_,_l)) > Ag |I,|, where {Ag} is
a sequence of positive reals. We set A = ét;fl Ag.

2.2. Moran measure

Now we will define a Borel probability measure on the Moran set E(w).
Given P,, = (pi1pi2 - Pim;), 1 < i < m be probability vectors, i.e.,

m;
p¢j>Oandeij:1,for1§i§m.
j=1

Next, for £k > 1, 0 € Dy, we know that ¢ = o109---0, € Dy where
or € {1,2,...,m;}, if sp = a;. For 0 = 01030y, consider o (a;) as
follows: let wg = s1---sg, 61 < €2 < €l be the occurrences of the

letter a; in wg, then o (a;) = ¢ 0¢, "+ 0c o

lwkla

. By convention, we write
T

0 (ai) = 0, 0iy *** Ojjuy,|, » Where oy, € {1,2,...,m;} for 1 <7 < m. In fact,
O(ay) * O(az) * *** * O(a,,) 18 & rearrangement of o = oy --- . We make the
convention that o(a;) = () if |wg|, = 0. From now on, we consider

Po(a;) = Pioin " ‘piai|wk|ai7 I1<i<m.

m
It is easy to see that Z Hpa(ai) = 1 for every k£ > 1. We make the
€Dy, i=1
convention that

pa(ai) =1if O’(ai) = @
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Let 1 be a mass distribution on E(w), such that for any I, € F, o € Dy,

% (IU) = Po(a1)Po(az) " " Po(am) and M ( Z 1, )

€Dy,

Since p is related with w, we denote it by pu(w). In this case p(w) is
called Moran measure on F(w). By the construction of the set E(w), we
m

write bg(q,) = bioyy *- .biUi|Wk|ai for 1 < ¢ < m, then |I,| = Hbg(ai) and
i=1
|wr|

m
#F, = H m; “'. In the next, for simplicity we denote E(w) by E, and

=1
p(w) by p.
Now one consider an auxiliary function 3 as follows: for every ¢ € R
and k > 1, there is a unique number Fi(q) such that

Z P |Ia|6k(q) =1

geDy,

Thus, we prove by a simple calculation that

|wklq,
H (Zpgjbﬂk(q ) -1

i=1

Now taking the logarithms, the lower and upper limits respectively when
k tends to infinity, we obtain

lim inf B (q) = limsup B(q) = B(q)

k—+o00 k—+o00

where ((q) satisfies the equation

(2.2) Z% log (qu by )

The following result describes some properties of the function (.

Proposition 2.1. [13] For all ¢ € R, the function /3 satisfies the
following statements

1. B(0) = lim dy=d, B(1) =
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2. B(q) is strictly decreasing, and lirjgl B(q) = L.
g—Foo

3. B(q) is convex in q, and is strictly convex if and only if the quantity
log pi;

is not the same for all 1 < j <m;,i=1,2,...,m.
IOgbZ‘j

Our main result is the following.

Theorem 2.1. Suppose that A > 0. Then, for all p,q € R with 3'(p) #
B'(q) we have

Hﬁ’ﬁ(p) n Hgﬁ(q) and pﬁﬁ(p) n pgﬂ(q) on E.

3. Proof of the main result

Let u be a Borel probability measure on R"™ and a > 1, we write

L /L(B(.’E, ar))
Dq(p) = hr;a \s(l)lp (xessligw —M (B(x,r)) ) .

We will now say that the measure p satisfies the doubling condition if
there exists @ > 1 such that Dg(p) < oco. It is easily seen that the exact
value of the parameter a is unimportant: D,(u) < oo, for some a > 1 if and
only if D,(p) < oo, for all @ > 1. In particular, if u satisfies the doubling
condition then Hl%t < P;j’t.

Given ¢ € R, it follows from [13, Proposition 3.1] that there
exists a probability measure v, supported by E such that for any £ >
1 and og € Dy,

1 (Tog) [T |
> pllo) 1o

€Dy,

Vg (IUO) =

However, in [13] it is shown that

log ,u(B(J:, ,,,))

— / —
im = B0, vy s

which implies that v, <E(—B’(q))> = 1. We therefore infer that if p,q € R
with #/(p) # §/(q), then
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(3.1) vp L v

Next, we present some tools, as well as lemmas, which will be used in
the proof of our main result.

Lemma 3.1. We have

0 < liminf Z w (1) |1, |f3(‘1 < limsup Z w(I,) |1, |/J’(q < 4o00.
k—+o0 o€Dy, k—+oc0 €Dy

Proof. By a simple calculation, we can get 5(q) — 5k(q) = O(%) By using
(2.1), we get

Z“ )9 |1, |Bq)_|1 |ﬁ(q —Br(a) >
UGDk

k(B(a)—Br(a))
<min{bl-j;l <j<m;,l1<i< m})

9

which implies that

iminf » p (L) |1y Pt
o€Dy

The proof of the

limsup Y p(I) |1y 7@ < 4.
k—o0 c€Dy,

is identical to the proof of the statement in the first part and is therefore
omitted.

Lemma 3.2. There exists a constant K > 0 such that for any ¢ € R

K v (E) < HYPW(E).

Proof. For convenience of presentation let I,,(x) be the nth-level basic set of

E containing the point z. Fix § > 0 and let (B (Tn,Tn) ) be a centered
neN
d-covering of E. For each n we can choose o(n) € Dy, for any k > 1 such
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that z,, € I5(,). Since A > 0, then for each n € N we can find hy,, ¢, € N
such that

Lowimesr] <70 < [Toyna| and - AlLgje,| <o

Lo(n)t ’
which implies that

(32)l(n) hnt1 (Tn) € B (Tn,mn) and  EN B(zn,7n) € Iom),4+1(Tn)-

So,
ve(E) < ZVQ (Tn,7n))
< qu (Ia(n)wn—H (évn))
q B(q)
_ ¥ J (Ia(n)|€n+1 (:Bn)) o(n )\£n+1’
m S nl)! |1
UeD[nJrl
q B(a)
If B(q) > 0, then
Lot " < (28 (2r,)%9.
Moreover, if 3(q) < 0, one has for sy, 11 = a;
’Ia(n)MnJrl‘ = bijo (Lo()tn|s J=1,2,..,m
since
Lot | = min {bigi 1 < j < mi, 1< <m}- [Ty,

then

2A ‘

<
2r, < 2A ’Ig(n)wn = min{b;;;1 <j<my,1<i<m}

|€n+1’ .
Which implies that

Ba) _ (min{bj;1 <j<my1<i<m}\’@
Lymjts1] S( by A }) (2r)(.
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Thus we proved the following inequality

B(q)
(3.4) ’Ia(n)|€n+1’ <1 (2r,)P9
where ¢; is a suitable constant. If ¢ < 0, using (3.2), we obtain

(3.5) b (Totoyiesn (@) < 41 (B ()

For the case g > 0, since the measure p satisfies the doubling condition
(see [14, Proposition 3.2]), there exists a constant A > 0 such that

iz (fo—<n>|en+1(wn))q < (

(3.6)
From (3.5) and (3.6), there exists a constant ¢z such that

p (B (wn,0))

q
(3.7) i (o ipsa ()" < €2 11 (B (n,70))".
Now combining (3.3), (3.4) and (3.7), we obtain
vo(E) < kicica S (Blwn, mn))? (2r)7 9.
Consequently
TT 75 TT 75
K vy(E) < LS (B) <H(E) < HIPO(EB)
-1
where K = (klclcg) , which achieves the proof of Lemma 3.2.

Lemma 3.3. There exists a constant K > 0 such that for any ¢ € R

PIPD(E) <K vy (E).
Proof. Let F be a closed subset of E. For 6 > 0 write
B(F,8) — {ac e B dist(x, F) < 5}.

Since F' is closed, B(F,d) \, F for § \, 0. Then for all € > 0, there exists
do satisfying

uq(B(F, 5)) <v(F)+e,  V0<6<d.
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Fix 6 > 0 and let (B(xn, ’I“n)) be a centered d-packing of F'. For each

integer n, choose o(n) € Dy, for :;Lny k > 1 such that z,, € I5(,) and pick
hn, £, € N such that

Ia(n)|hn+1‘ <r, < ‘Ia(n)|hn and A ‘Ia(n)wn-i—l) <r, <A ‘IU(H)Wn .

Observing that

Lom)hnt1 (Tn) € B (2n,m)  and  EN B (xn,70) € Iomye,+1()-
By using the same technics as that in Lemma 3.2, there exists ¢1,¢2 > 0
such that

B(a) q

(2r,)" @ < & ’ o(n) |hn+1‘ and 1 (B (2n,7m0))! < G2 p (Ia(n)\hvz—l—l(xn)) :

Thus,

8(a)
Zu (2 7a))? (2ra)* @ < Clczzu( i1 (@) o]

(9)

IN

CEDY # (ot 1o 2’1 lhnﬂ‘

S w(Le)! |7

UEDthrl

xS () L7

G'G'Dthrl

k118 ZVq( )| +1 an))
K qu( (Tp, T )
K v,(B(F.6) <K (uq(F) + z-:)

K(Vq(E) + E) where K = k1¢10.

IN

IN

IA

IN

It results that

PR < & (Vq(E) + 5).
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Letting € | 0, now yields
PeA@ (B) < PLY(E) < K v,(E).

Which complete the proof of Lemma 3.3.

Let us now prove our main theorem.

Proof of Theorem 2.1. By using Lemma 3.2, Lemma 3.3 and since p
satisfies the doubling condition, one has

K v, < HPW < phl) < Ky, on E.

It results that

and

Finally, the result follows from (3.1).

Remark 3.1. The results of Theorem 2.1 hold if we replace the multifrac-
tal Hausdorff and packing measures by the multifractal Hewitt-Stromberg
measures (see [1, 2] for the precise definitions), which in particular provides
an answer to [2, Questions 4 and 5].

Remark 3.2. It follows from Lemma 3.2 and Lemma 3.3 that

bu(q) = Bu(q) = Au(q) = Blg), VgeR.

It is also instructive to consider the special case ¢ = 0. In particular, we
have

dimp (E) = dimp(E) = A(E) = 5(0) = d.
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