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1. Introduction

The following general Volterra functional integral equation (VFIE) is con-
sidered

y(t) = g(t) + b(t)y(θ(t)) +

Z t

t0
k1(t, s)y(s)ds

+

Z θ(t)

t0
k2(t, s)y(s)ds, t ∈ I := (t0, T ] = (t0, tf ],

y(t) = φ(t), t ∈ Iθ := [θ(t0), t0], tf = T,(1.1)

where 0 < q < 1 (θ(t) is the function which related to q), and k1(t, s) and
k2(t, s) are assumed to be continuous functions on their respective domains
D := {(t, s) : t0 ≤ s ≤ t ≤ T, t ∈ I} and Dθ := {(t, s) : θ(t0) ≤ s ≤ θ(t), t ∈
I} (for more explanation see [1]).
The hp variant of the discontinuous Galerkin technique for the numerical
solution of delay differential equations (DDEs) with nonlinear vanishing
delays was introduced in [2]. In [3], the existence, uniqueness of solutions
for VFIEs with the time delay were analyzed. Huang et al. [4] studied the
superconvergence of the discontinuous Galerkin solutions for DDEs with
proportional vanishing at t = 0.

Additionally many papers manage the Bezier curves. In [5] and [6],
authors utilized the Bezier curves in approximating functions. For solving
differential equations (DEs) numerically, authors in [7] proposed the utiliza-
tion of Bezier curves. Also, to solve delay differential equation, the Bezier
control points strategy is utilized (see [8]). Some other uses of the Bezier
functions are found in (see [9]). In the present work, we use the proposed
method in [9] for solving VFIE.

The outline of this sequel is as follow: In Section 2, problem statement
is stated. Explanation of the problem is explained in Section 3. Also, error
estimation based on residual error function is presented in Section 4. Some
numerical results are provided in Section 5. Also, a remark is stated about
fractional Bagley-Torvik equation. Finally, Section 6 will give a conclusion
briefly.
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2. Problem Statement

For finding an approximate solution of Eq. (1.1), one may consider the
following y(t):

y(t) ∼= yn(t) =
nX
i=0

ciBi,n(t), t0 ≤ t ≤ tf , n ≥ 1,(2.1)

where

Br,n(
t− t0
h

) =

Ã
n

r

!
1

hn
(tf − t)n−r(t− t0)

r, t0 ≤ t ≤ tf , 0 ≤ i ≤ n,

h = tf − t0,

and ci, i = 0, 1, . . . , n are the unknown control points. In this paper, one
may utilize Bezier curve for solving VFIE. This technique is applied in
[10], [11] for solving optimal control of problems (OCPs) and some linear
OCPs with pantograph delays. The convergence of the proposed technique
is proven in this sequel.
By substituting y(t) in (1.1), one may define

fobjective =
nX
i=0

c2i , t ∈ [t0, tf ],(2.2)

Now, our goal is to solve the following problem to find the values cr, for
r = 0, 1, . . . , n.

min fobjective

s.t. y(t) = g(t) + b(t)y(θ(t)) +

Z t

t0
k1(t, s)y(s)ds

+

Z θ(t)

t0
k2(t, s)y(s)ds, t ∈ I := (t0, T ],

y(t) = φ(t), t ∈ Iθ := [θ(t0), t0],(2.3)

where ”s.t.” is abbreviation of ”such that”.
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3. Explanation of the problem

Now, the following problem is considered

(Dy)(t) = y(t)− g(t) + b(t)y(θ(t))

+

Z t

0
k1(t, s)y(s)ds+

Z θ(t)

0
k2(t, s)y(s)ds,

yn(t) =
nX
i=0

ciBi,n(t), 0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ 0.

Without loss of generality, one may consider t0 = 0. Firstly, we have

(Dyn)(t) =
nX
i=0

ciBi,n(t)− g(t)

+ b(t)
nX
i=0

ciBi,n(θ(t))

+

Z t

0
k1(t, s)

nX
i=0

ciBi,n(s)ds

+

Z θ(t)

0
k2(t, s)

nX
i=0

ciBi,n(s)ds

=
nX
i=0

ci

⎛⎝Bi,n(t) + b(t)Bi,n(θ(t))

+

Z t

0
k1(t, s)Bi,n(s)ds

+

Z θ(t)

0
k2(t, s)Bi,n(s)ds

⎞⎠
− g(t)

=
nX
i=0

ciαi(t)− g(t),

where αi =

⎛⎝Bi,n(t) + b(t)Bi,n(θ(t))
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+
R t
0 k1(t, s)Bi,n(s)ds+

R θ(t)
0 k2(t, s)Bi,n(s)ds

⎞⎠, i = 0, 1, 2, . . . , n. Now, the
following real function is defined

J = J(c0, c1, . . . , cn) =

Z tf

0
(Dyn)

2(t)dt,

according to the above equations, we have

minJ(C)

s.t. I(C) =
nX
i=0

ci(
nX

k=0

ckBk,n(−
j

n
))− φ(− j

n
),

j = 0, 1, . . . , n,(3.1)

where C = (c0, c1, . . . , cn). There are various techniques for solving this
problem, such as the Newton’s method, the gradient descent, the conjugate-
gradient technique and the Lagrange technique. Here, the Lagrange-multiplier
method is considered to solve the problem (3.1). By the Lagrange function,
one may have the following form of

L = J(C) + µI(C),

Hence

∂L

∂ci
= 2

Z tf

0
(Dyn)(t)

∂(Dyn)(t)

∂ci
dt+ µ

∂I(C)

∂ci

= 2

⎛⎝ nX
j=0

cj

Z tf

0
αj(t)αi(t)dt

−
Z tf

0
g(t)αi(t)dt

⎞⎠
+ µ

nX
k=0

ckBk,n(−
i

n
),

∂L

∂µ
= I(C),(3.2)
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As we known, a necessary condition (3.1) is
that

(
∂L
∂ci
= 0, 0 ≤ i ≤ n,

∂L
∂µ = 0,

(3.3)

For simplification, one may define

(f, g) =

Z tf

0
f(t)g(t)dt,(3.4)

Combining Eqs. (3.2)-(3.4), we have

nX
j=0

2cj(αj , αi) + µ
nX

k=0

ckBk,n(−
i

n
) = 2(g, αi),

0 ≤ i ≤ n,
nX
i=0

ciBi,n(t) = φ(t), t ≤ 0,(3.5)

we can rewrite Eq. (3.5) as the following form

nX
i=0

ciBi,n(−
j

n
) = φ(− j

n
), −n ≤ j ≤ 0.

Now, we write

GC̃ = F,(3.6)

G =

⎡⎢⎢⎣
2(α0, α0) 2(α1, α0) . . . 2(αn, α0) φ(0)

2(α0, α1) 2(α1, α1) . . . 2(αn, α1) φ(− 1
n )

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2(α0, αn) 2(α1, αn) . . . 2(αn, αn) φ(−n−1
n )

B0,n(0) B1,n(0) . . . Bn,n(0) 0

⎤⎥⎥⎦,
C̃ = [c0, c1, . . . , cn, µ]

T ,

F = [2(g, α0), . . . , 2(g, αn), φ(0)]
T .

the unique solution of linear system (3.6) is yn(t) =
Pn

i=0 ciBi,n(t) is called

an optimal control approximation solution (OCAS). If lim
n→∞

R tf
0 (Dyn)

2(t)dt =

0 then the OCAS converges to the exact solution.
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4. Error estimation based on residual error function

Now, some theorems are stated for the error estimation.

Theorem 4.1. Let y(t) is a continuous exact solution defined on [0, tf ],
and yn(t) is an OCAS of this problem. If there exists Pn(t) =

Pn
i=0 ciBi,n(t),

ci ∈ R such that for any t ∈ [0, tf ], lim
n→∞

Pn(t) = y(t), then

lim
n→∞

R tf
0 (Dyn)

2(t)dt = 0.

Proof. By the Weierstrass theorem it follows that there exists the se-
quence of polynomials, Pn(t) =

Pn
i=0 ciBi,n(t) such that lim

n→∞
Pn(t) = y(t),

that is

lim
n→∞

Z tf

0
(DPn)

2(t)dt = 0,(4.1)

Hence, one may have

0 ≤
Z tf

0
(Dyn)

2(t)dt ≤
Z tf

0
(DPn)

2((t)dt,(4.2)

0 ≤ lim
n→∞

Z tf

0
(Dyn)

2(t)dt ≤ lim
n→∞

Z tf

0
(DPn)

2(t)dt,(4.3)

By Eqs.(4.1) and (4.3), the proof is completed. 2
Now, the approximate solution obtained by this technique can be stated

as:

yn(t) =
nX
i=0

ciBi,n(t).

Presently, in the following theorem, an upper bound for the error esti-
mation of the proposed technique can be proven.

Theorem 4.2. Let y(t) ∈ Cn+1[0, tf ] is the exact solution of explained
problem, yn(t) =

Pn
i=0 ciBi,n(t) is the solution with degree n, hence

ky(t)− yn(t)k∞ ≤
M

(n+ 1)!
max

i=0,1,...,n
|c̃i|,

M = max
0≤t≤tf

|yn+1)(t)|, c̃k =
y(k)(0)

k!
− ci,
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Proof. See [12]. 2

Here, the residual error function of the numerical solution is defined yn(t)
as

Rn(t) = L{yn(t)}− g(t),

and

en(t) = y(t)− yn(t),

where y(t) is exact solution. Hence

L{en(t)} = L{y(t)}− L{yn(t)} = −Rn(t),
nX
i=0

ciBi,n(t) = φ(t), t ≤ 0.

5. Numerical applications

In this section, some results are given to demonstrate the quality of the
sated technique in approximating the solution of delay Volterra integral
equations (1.1).

Example 1. Now, the following proportional delay VFIE is considered

y(t) = (et + e1−t − e− 1) + y(qt) +

Z t

1
e−ty(s) ds

−
Z qt

1
y(s) ds, t ∈ [0, 3],

y(t) = et, t ≤ 1,

where yexact(t) = et. One may obtain y(t) = 0.04102190678t5−0.0987753295t4+
0.4132317318t3 + 0.3108745122t2 + 1.055479444t+ 0.9964495623 with this
technique by n = 5. The approximate solution for y(t) is shown in Fig. 1.
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Example 2. The following vanishing delay Volterra integral equation (VIE)
is considered (see [13])

y(t) =
1

2
(1 + e−qt)−

Z t

0
y(s)ds+

1

2

Z qt

0
y(s)ds,

where q = 0.2, and yexact(t) = e−t. One may obtain y(t) = 1−0.99941777t+
0.4953779080t2−0.15359822t3+0.0255175232t4 with this method by n = 4.
The approximate solution for y(t) is shown in Fig. 2. Table 1 demonstrates
the errors of the this technique where kerrork∞ in [13] and this paper are
respectively 2× 10−4 (for n = 4,m = 1) and 0.0.

pc
figure-1


pc
table-1
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Example 3. The following vanishing delay VIE is considered (see [13])

y(t) = f(t) +

Z t

0
y(s)ds+

Z qt

0
e−ty(s)ds,

f(t) = cos(t)− sin(t)− e−tsin(0.5t),

where q = 0.5, and exact solution is y(t) = cos(t). One may obtain y(t) =
1 + 0.000271524t− 0.502368133t2 + 0.006222416t3 + 0.03617649887t4 with
this technique by n = 4. The approximate solution for y(t) is shown in Fig.
3. Table 2 demonstrates the errors of the this technique.

pc
figure-2


pc
figure-3
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Remark 5.1. The fractional differential equations have drawn expanding
consideration as a result of their vital applications in science, material sci-

ence, and designing (see [14, 15, 16, 17, 18, 19, 20]). Generally, the solving
of most fractional differential equations are definitely not simple. The
Bagley-Torvik equation was introduced by the authors of [21]. In
different papers, it has been examined. This equation has been
concentrated both diagnostically and, numerically in [22]. These
techniques included expansion formula for fractional derivative [23], Haar
wavelet, pseudo-spectral scheme [24], Bessel collocation technique [25],
Taylor collocation method [26]. Mekkaoui and Hammouch [27] solved
the Bagley-Torik equation by the fractional iteration method (FIM). In
addition, the stability of the Bagley-Torvik equation is given [28].
Mashayekhi and Razzaghi [29] stated a new numerical tech- nique by
utilizing hybrid functions approximation for solving the fractional
Bagley-Torvik equation.
In this remark, one may utilize Bezier curves technique for solving frac-
tional Bagley-Torvik equation.

5.1. Basic Preliminaries

Definition 5.1. The caputo’s fractional derivative of order α is stated in
[25]

Dαf(t) =
1

Γ(n1 − α)

Z t

0
(t− s)−α−1+n1f (n1)(s)ds,

n1 − 1 ≤ α ≤ n1, n1 ∈N,

where α > 0 and n1 is the smallest integer greater than α.

pc
table-2
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5.2. Function approximation

Utilizing Bezier curves, this technique is to approximate the solutions f(t)
where f(t) is given in Eq. (5.1). Define the Bezier polynomials of degree n
that approximate over the interval t ∈ [t0, tf ] as follows:

f ≈ Pnf =
nX

r=0

crBr,n(
t− t0
h

) = CTB(t),

(5.1)

where h = tf − t0, C
T = [c0, c1, . . . , cn]

T ,

BT (t) = [B0,n(t), B1,n(t), . . . , Bn,n(t)]
T ,(5.2)

Br,n(
t− t0
h

) =

Ã
n

r

!
1

hn
(tf − t)n−r(t− t0)

r,

is the Bernstein polynomial with degree n for t ∈ [t0, tf ], and cr is the
control point [9].

5.3. Error bound for the Bezier curve

The error bound is presented for the Bezier curve now.

Theorem 5.1. Let f ∈ Hµ(0, 1) with µ ≥ 0, then one may have

kf − PnfkL2(0,1) ≤ CM−µ|f |H0;µ;M ;n(0,1),(5.3)

where

Hµ(0, 1) =Wµ,2(0, 1) =

{f ∈ L2(0, 1)|∂αf ∈ L2(0, 1), |α| ≤ µ}.

Proof. See [29]. 2

Now, one may derive the operator Iα for B(t) in Eq. 11 given by

IαB(t) = B̄(t, α),(5.4)

where

B̄(t, α) = [IαB0,n(t), . . . , I
αBn,n(t)]

T .(5.5)



A new approach for Volterra functional integral equations ... 897

5.4. Problem statement

One may introduce the following Bagley-Torvik fractional equation

AD(2)f(t) +BD( 3
2
)f(t) + Cf(t) = g(t).(5.6)

In this sequel, one may have the following problems:

5.4.1. Problem (a)

Bagley-Torvik equations in Eq. 22 with the conditions given by:

f(0) = f0, f
0(0) = f 00,(5.7)

where f0 and f 00 are given.

5.4.2. Problem (b)

Bagley-Torvik equations in Eq. 22 with the following conditions

f(0) = f0, f(1) = f1,(5.8)

where f0 and f1 are given.
For more explanation about these problems, one can study [29].

5.5. Error bound for problem (a)

Now, the error bound En is found for problem (a).

Theorem 5.2. Let f ∈ Hµ(0, 1) with µ ≥ 0, we have

kEnkL2(0,1) ≤
³
cM−µn−µkf (µ)kL2(0,1)

´
× (A+

B

Γ(32)
+

C

Γ(3)
).(5.9)

Proof. See [29]. 2
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5.6. Numerical applications

Now, for demonstrating the applicability and accuracy of this technique
some examples are solved. The package of Maple version 14 has been used
to solve the test problems.

Example 4. Now, one may consider Eqs. 22 and 24 such that (see [29])

A = 1, B =
8

17
, C =

13

51
, f0 = 0, f1 = 0,

g(t) =
t−

1
2

89250
√
π
(48p(t) + 7

√
tq(t))

where

p(t) = 16000t4 − 32480t3 + 2128t2 − 4746t+ 189,
q(t) = 3250t5 − 9425t4 + 264880t3 − 44.

the exact solution is f(t) = t5 − 29t4

10 +
76t3

25 −
339t2

250 +
27t
125 .

With n = 5, the obtained f(t) is 0.216t(1−t)4−0.492t2(1−t)3+0.2680000000t3(1−
t)2−0.024t4(1−t) with c0 = 0, c1 = 0.0432000000000003, c2 = −0.0492000000000008,
c3 = 0.0268000000000010, c4 = −0.00480000000000036, and c5 = 0. The obtained
error is zero (see Table 3). The graphs of approximated and exact solution f(t)
are plotted in Fig. 4.

pc
figure-4
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Example 5. One may consider Eqs. 22 and 24 such that (see [29])

f(0) = 0, f(1) = 0, g(t) =
4
√
t√
π
+ t(t− 1),

A = 0, B = C = 1,

where the exact solution is f(t) = t2 − t.
With n = 5, the obtained f(t) is−t(1−t)4−3t2(1−t)3−3t3(1−t)2−1t4(1−t)
with c0 = 0, c1 = −0.200000000000002, c2 = −0.299999999999996, c3 =
−0.300000000000004, c4 = −0.199999999999999, and c5 = 0. The obtained
error is zero (see Table 4). The graphs of approximated and exact solution
f(t) are plotted in Fig. 5.

pc
table-3


pc
figure-5
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6. Conclusions

The aim of this sequel is to improve an effective and accurate technique
for solving VFIE and fractional Bagley-Torvik equation. The Bezier curve
strategy is utilized to obtain the approximate solution of this problem.

Some results are included to explain the validity of this technique.
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