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1. Introduction

This work is motived by two inverse eigenproblems, introduced in [11], for

an n× n real symmetric doubly arrowhead matrix A
(q)
n of the form:

A(q)n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
. . .

...
aq−1 bq−1

b1 · · · bq−1 aq bq · · · bn−1
bq aq+1
...

. . .

bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, aj ∈ R, bj > 0

(1.1)

where q can take some value between 1 and n. The matrix A
(q)
n is a gener-

alization of a real symmetric arrowhead matrix, in the sense that, if q = 1
or q = n we have a upward or downward arrowhead matrix, respectively

(see [10], [13]). The form of a matrix A
(q)
n is particularly special; this is ob-

tained by a permutation of the row (or column) 1 with the row (or column)
q of a symmetric upward arrowhead matrix. On the other hand, it coin-
cides with the structure of the inverse of a downward arrowhead matrix,
whose element in the position (q, q) (1 < q < n), is equal to zero (see [7]).
An analogous situation happens, in both cases, if we have a downward or
upward arrowhead matrix, respectively.

The problem of constructing a symmetric doubly arrowhead matrix
from certain spectral information is important in many applications, such
as vibration theory, structural design, control theory, etc. In particular,
for q = 1 or q = n, these matrices are associated with a discrete dynamic
model of a mechanical structure. Besides, the symmetric doubly arrowhead
matrices have other important applications in the theory of graphs. Indeed,

the matrix A
(q)
n has an associated star graph of n vertices, whose root of

the star (vertex to which all the others are connected) corresponds to the
q-th vertex, that is, to the entries of the q-th row and q-th column of the

matrix A
(q)
n . Such matrices are called acyclic since they have an associated

star graph, which is a type of tree (graph connected without cycles).
The study of graph theory has been of great importance for various

sciences, such as chemistry, physics, operations research, combinatorial op-
timization, and computer science. In particular, among the applications
of the star graph, we have the star network, a computer network modeled
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after the star graph that is important in distributed computing, a field of
computer science that studies distributed systems.

In the context of the inverse eigenproblem, the classic spectral data
known to construct a symmetric matrix are all the eigenvalues of the matrix
and all the eigenvalues of a leading principal submatrix of order n − 1
(see [1]-[3], [5]-[6]). However, from the practical point of view, only some
eigenvalues and/or eigenvectors of the matrix or submatrices can be known
(see [2], [6]). In this sense, in [12], the authors consider a special kind of
spectral data, this is, the minimal and maximal eigenvalues of all leading

principal submatrices of A
(q)
n or an eigenvalue of each leading principal

submatrix of A
(q)
n , together with an eigenpair of it. Initially, this special

kind of spectral data was introduced by Peng et al. in [9], and subsequently,
it has been considered by several authors (see [4], [8], [10]-[13]).

Throughout this paper, we shall denote as Ij the j × j identity matrix,

A
(q)
j the j×j leading principal submatrix of A

(q)
n , P

(q)
j (λ) the characteristic

polynomial of A
(q)
j , λ

(j,q)
1 ≤ λ

(j,q)
2 ≤ · · · ≤ λ

(j,q)
j the eigenvalues of A

(q)
j , and

σ(A
(q)
j ) the spectrum of A

(q)
j . In the case where we consider only one

eigenvalue of A
(q)
j , it will be denoted by λ(j,q), and by x(q) its respective

eigenvector.

In this work, we will discuss the inverse problems considered in [11],
which are formulated as follows:

Problem 1. : Given the real numbers λ
(j,q)
1 and λ

(j,q)
j , j = 1, 2, . . . , n, find

necessary and sufficient conditions for the existence of an n×n matrix A
(q)
n

of the form (1.1), such that λ
(j,q)
1 and λ

(j,q)
j are respectively, the minimal

and maximal eigenvalues of the j × j leading principal submatrix A
(q)
j of

A
(q)
n , j = 1, 2, . . . , n.

Problem 2. : Given the real numbers λ(j,q), j = 1, 2, . . . , n and a real

vector x(q) =
³
x
(q)
1 , . . . , x

(q)
n

´T
, find necessary and sufficient conditions for

the existence of an n × n matrix A
(q)
n of the form (1.1), such that λ(j,q) is

an eigenvalue of the j × j leading principal submatrix A
(q)
j of A

(q)
n , j =

1, 2, . . . , n− 1, and (λ(n,q),x(q)) is an eigenpair of A(q)n .

Regarding to Problem 1, in [[11], Theorem 2.2] it is said that there is a
solution if
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λ
(n,q)
1 < · · · < λ

(q−1,q)
1 = · · · = λ

(1,q)
1 < λ

(2,q)
2 < · · · < λ(n,q)n(1.2)

and there exist real solutions aq, bk > 0, k = 1, . . . , q − 1 of the system of
equations

P (q)q

³
λ
(q,q)
j

´
=
³
λ
(q,q)
j − aq

´
P
(q)
q−1

³
λ
(q,q)
j

´
−

q−1X
k=1

b2k

q−1Y
i=1
i=k

³
λ
(q,q)
j − λ

(i,q)
i

´
= 0,

(1.3)
for j = 1, q.

In the Theorem 1, Second Step, we prove that the system of equations
given in condition (1.3) has a solution if condition (1.2) is satisfied.

On the other hand, the sufficient conditions to determine a solution to
Problem 2 given in [[11], Theorem 3.1] are:

x
(q)
k = 0, k = 1, . . . , n,(1.4)

P
(q)
q−1

³
λ(q,q)

´
= 0(1.5)

and there exists a real solution bj−1 of the equation

b2j−1

j−1Y
i=1
i=q

³
λ(j,q) − ai

´
−bj−1

x
(q)
q

x
(q)
j

P
(q)
j−1

³
λ(j,q)

´
+
³
λ(n,q) − λ(j,q)

´
P
(q)
j−1

³
λ(j,q)

´
= 0,

(1.6)
j = q + 1, . . . , n− 1.

In this case, we prove in Theorem 2 that the condition (1.5) is satisfied
if we consider the minimal eigenvalue of the leading principal submatrix

A
(q)
q . Furthermore, with an adequate order of the given eigenvalues and
the condition (1.4), we also prove that the quadratic equations given in
(1.6) have positive discriminants.

The paper is organized as follows: In Section 2, through Theorems 1
and 2, we prove that the Theorems 2.2 and 3.1 in [11] can be substantially
improved. Indeed, we guarantee this by providing a particular solution to
Problems 1 and 2. In Section 3, we will give some numerical examples to
analyze the accuracy and efficiency of the results. Our results are construc-
tive, in the sense that they generate an algorithmic procedure to construct
the solution matrices.
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2. New Sufficient Conditions for Problems 1 and 2

In this section, we give new sufficient conditions for Problems 1 and 2 to
have a real solution. In each case, we include the algorithm that is derived
from our results. First, we recall the following results:

Lemma 1. [11] Let A
(q)
n be an n×n matrix of the form (1.1). Then the se-

quence of characteristic polynomials
n
P
(q)
j (λ)

on
j,q=1

satisfies the recurrence

relation:

P
(q)
j (λ) =

jY
i=1

(λ− ai) j = 1, . . . , q − 1.(2.1)

P
(q)
j (λ) = (λ− aj)P

(q)
j−1 (λ)− j − 1k = 1

X
b2k

q−1Y
i=1
i=k

(λ− ai) j = q.(2.2)

P
(q)
j (λ) = (λ− aj)P

(q)
j−1 (λ)− b2j−1

j−1Y
i=1
i=q

(λ− ai) j = q + 1, ..., n,(2.3)

where P
(q)
0 (λ) = 1.

Lemma 2. [11] Let P (λ) be a monic polynomial of degree n, with all real
zeroes. If λ1 and λn are, respectively, the minimal and the maximal zero
of P (λ), then

1. If µ < λ1, we have that (−1)n P (µ) > 0.

2. If µ > λn, we have that P (µ) > 0.

Notice that for the sequence of polynomials of Lemma 1, if µ < λ
(j,q)
1 ,

then (−1)j P (q)j (µ) > 0 and if µ > λ
(j,q)
j , then P

(q)
j (µ) > 0. The minimal

and maximal eigenvalues of A
(q)
j will be called extremal eigenvalues.

Lemma 3. (Cauchy Interlacing Theorem) Let A
(q)
n be an n× n real sym-

metric matrix with eigenvalues λ
(n,q)
1 ≤ λ

(n,q)
2 ≤ · · · ≤ λ

(n,q)
n . Let A

(q)
r , with

eigenvalues λ
(r,q)
1 ≤ λ

(r,q)
2 ≤ · · · ≤ λ

(r,q)
n−1 , the principal submatrix of A

(q)
n ,

obtained by deleting the r − th row and r − th column of A
(q)
n . Then

λ
(n,q)
1 ≤ λ

(r,q)
1 ≤ λ

(n,q)
2 ≤ · · · ≤ λ

(n,q)
n−1 ≤ λ

(r,q)
n−1 ≤ λ

(n,q)
n .
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The following theorem is the main result of this paper related to Prob-
lem 1:

Theorem 1. Let the real numbers λ
(j,q)
1 and λ

(j,q)
j , j, q = 1, 2, . . . , n, be

given. If

λ
(n,q)
1 < . . . < λ

(q−1,q)
1 = . . . = λ

(1,q)
1 < λ

(2,q)
2 < . . . < λ(n,q)n ,(2.4)

with λ
(0,q)
1 = λ

(1,q)
1 , then there exists an n × n real symmetric doubly

arrowhead matrix A
(q)
n of the form (1.1), such that λ

(j,q)
1 and λ

(j,q)
j are the

extremal eigenvalues of the leading principal matrix A
(q)
j , j = 1, 2, . . . , n.

Proof. Suppose that the real numbers λ
(j,q)
1 and λ

(j,q)
j , j = 1, 2, . . . , n,

satisfy condition (2.4). The proof will consist of three steps.

First Step: There exists a j×j matrix A
(q)
j with extremal eigenvalues λ

(j,q)
1

and λ
(j,q)
j for j = 1, 2, . . . , q− 1. Indeed, define the following matrix A(q)j =

diag
n
λ
(1,q)
1 , λ

(2,q)
2 , . . . , λ

(j,q)
j

o
, j = 1, 2, . . . , q − 1, with extremal eigenvalues

λ
(j,q)
1 and λ

(j,q)
j .

Second Step: There exists a q × q matrix A
(q)
j with extremal eigenvalues

λ
(q,q)
1 and λ

(q,q)
q . Indeed, we will show that the system given by (1.3) has a

solution if the condition (1.2) (or (2.4)) is satisfied. That is, we will show
that the linear system of equations

P
(q)
q−1

³
λ
(q,q)
1

´
aq −

q−1X
k=1

b2k

q−1Y
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´
− λ

(q,q)
1 P

(q)
q−1

³
λ
(q,q)
1

´
= 0(2.5)

P
(q)
q−1

³
λ(q,q)q

´
aq −

q−1X
k=1

b2k

q−1Y
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
− λ(q,q)q P

(q)
q−1

³
λ(q,q)q

´
= 0(2.6)

has a solution (aq, b1, b2, . . . , bq−1)
T ∈ Rq. In fact, considering the condition

(2.4) and Lemma 2, we have that P
(q)
q−1

³
λ
(q,q)
1

´
= 0 and P

(q)
q−1

³
λ
(q,q)
q

´
= 0.

Then, from equations (2.5) and (2.6) we obtain
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aq = λ

(q,q)
1 − 1

P
(q)
q−1

³
λ
(q,q)
1

´ q−1X
k=1

b2k

q−1Y
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´
(2.7)

aq = λ(q,q)q − 1

P
(q)
q−1

³
λ
(q,q)
q

´ q−1X
k=1

b2k

q−1Y
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
.(2.8)

Now, as λ
(q,q)
q − λ

(q,q)
1 > 0, we have

q−1X
k=1

b2k

⎡⎢⎢⎣ 1³
λ
(q,q)
q −λ(q,q)1

´
⎛⎜⎜⎝ 1

P
(q)
q−1

³
λ
(q,q)
q

´ q−1Y
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
− 1

P
(q)
q−1

³
λ
(q,q)
1

´ q−1Y
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´⎞⎟⎟⎠
⎤⎥⎥⎦ = 1.

(2.9)
Also, from the Lemma (2) and the condition (2.4), we obtain, for each

k = 1, 2, . . . , q − 1,

1

P
(q)
q−1

³
λ
(q,q)
q

´ q−1Y
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
> 0

and

1

P
(q)
q−1

³
λ
(q,q)
1

´ q−1Y
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´
< 0.

Therefore, the equation (2.9) can be written as

q−1X
k=1

B2k = 1,(2.10)

with

Bk = bk

vuuuuut 1³
λ
(q,q)
q −λ(q,q)1

´
⎛⎜⎜⎝ 1

P
(q)
q−1

³
λ
(q,q)
q

´ q−1Y
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
− 1

P
(q)
q−1

³
λ
(q,q)
1

´ q−1Y
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´⎞⎟⎟⎠,
(2.11)
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where the radicands of each root are positive.
Clearly, from the equations (2.11) and (2.7) (or (??)), we obtain infinite
solutions for bk, k = 1, 2, . . . , q − 1 and aq. This proves the existence of a

q×q matrix A
(q)
q . In particular, one solution can be obtained if we consider

B1 = B2 = · · · = Bq−1 =
1√
q − 1 , q > 1.

Thus,

bk =
1vuuuut q−1³

λ
(q,q)
q −λ(q,q)1

´
⎛⎜⎝ 1

P
(q)
q−1

³
λ
(q,q)
q

´ q−1Q
i=1
i=k

³
λ(q,q)q − λ

(i,q)
i

´
− 1

P
(q)
q−1

³
λ
(q,q)
1

´ q−1Q
i=1
i=k

³
λ
(q,q)
1 − λ

(i,q)
i

´⎞⎟⎠
(2.12)
and aq is computed by (2.7) (or (2.8)).

Third Step: There exists a j × j matrix A
(q)
j , j = q + 1, . . . , n, with the

required spectral properties. Indeed, we proceed as in [[11], Theorem 2.2],
that is, for j = q + 1, . . . , n

aj =

λ
(j,q)
1 P

(q)
j−1

³
λ
(j,q)
1

´ j−1Q
i=1
i=q

³
λ
(j,q)
j − ai

´
− λ

(j,q)
j P

(q)
j−1

³
λ
(j,q)
j

´ j−1Q
i=1
i=q

³
λ
(j,q)
1 − ai

´
hj

(2.13)
and

b2j−1 =

³
λ
(j,q)
j − λ

(j,q)
1

´
P
(q)
j−1

³
λ
(j,q)
1

´
P
(q)
j−1

³
λ
(j,q)
j

´
hj

> 0,(2.14)

where

hj = P
(q)
j−1

³
λ
(j,q)
1

´ j−1Q
i=1
i=q

³
λ
(j,q)
j − ai

´
−P

(q)
j−1

³
λ
(j,q)
j

´ j−1Q
i=1
i=q

³
λ
(j,q)
1 − ai

´
. This

completes the proof. 2
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Algorithm 1: Reconstruction of a doubly arrowhead symmetric matrix
from extremal eigenvalues.

INPUT: The real numbers
n
λ
(j,q)
1 , λ

(j,q)
j

on
j=1
, that satisfy the condition

(2.4), and subindex q.

OUTPUT: An n × n matrix Aq
n of the form (1.1) such that λ

(j,q)
1 and

λ
(j,q)
j are the minimal and the maximal eigenvalues of the leading principal
submatrix Aq

j , j = 1, 2, . . . , n of Aq
n.

1. for j = 1, 2, . . . , q − 1 do

2. set aj = λ
(j,q)
j

3. end

4. for j = 1, 2, . . . , q − 1 do

5. compute bj defined by (2.12)

6. end

7. for j = q + 1, q + 2, . . . , n do

8. compute aj defined by (2.13)

9. compute bj−1 defined by the square root of (2.14)

10. end

Now we propose a better solution to Problem 2 through the following
theorem:

Theorem 2. Let the set real numbers
n
λ
(j,q)
1

on−1
j=1
∪
n
λ
(n,q)
n

o
and a real

vector x(q) =
³
x
(q)
1 , . . . , x

(q)
n

´T
be given. If

λ
(n−1,q)
1 < λ

(n−2,q)
1 < . . . < λ

(q,q)
1 < λ

(q−1,q)
1 ≤ . . . ≤ λ

(1,q)
1 < λ(n,q)n ,(2.15)

with λ
(0,q)
1 = λ

(1,q)
1 , and

x
(q)
j = 0, j = 1, . . . , n,(2.16)

then there exists an n×nmatrix A(q)n of the form (1.1), such that λ
(j,q)
1 is the

minimal eigenvalue of its leading principal submatrix A
(q)
j , j = 1, . . . , n− 1

and (λ
(n,q)
n , x(q)) is the maximal eigenpair of A

(q)
n .
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Proof. Suppose that the set real numbers
n
λ
(j,q)
1

on−1
j=1
∪
n
λ
(n,q)
n

o
and real

vector x(q) =
³
x
(q)
1 , . . . , x

(q)
n

´T
, satisfy the conditions (2.15) and (2.16),

respectively. Then, by [[11], Theorem 3.1], from Lemmas 1 and 2, and

A
(q)
n x(q) = λ

(n,q)
n x(q), diagonal entries aj of the matrix A

(q)
n can be computed

by

aj = λ
(j,q)
1 , j = 1, . . . , q − 1,

aq =

λ
(q,q)
1 P

(q)
q−1

³
λ(q,q)

´
−−Pq−1

k=1 b
2
k

q−1Q
i=1
i=k

³
λ
(q,q)
1 − ai

´
P
(q)
q−1

³
λ
(q,q)
1

´ ,(2.17)

and

aj = λ(n,q)n − bj−1
x
(q)
q

x
(q)
j

, j = q + 1, . . . , n,(2.18)

and the entries bj by

bj =
³
λ(n,q)n − aj

´ x(q)j

x
(q)
q

, j = 1, . . . , q − 1.(2.19)

Therefore, the matrix A
(q)
n will be completely obtained if the entries

bj , j = q, . . . , n − 1 are computed. In this sense, we will prove that the
quadratic equations that are the sufficient condition (1.6) of Theorem 3.1 in
[11] always have at least one real solution. We will prove that discriminants

∆j =

⎡⎣x(q)q

x
(q)
j

P
(q)
j−1

³
λ
(j,q)
1

´⎤⎦2−4 j−1Q
i=1
i=q

³
λ
(j,q)
1 − ai

´³
λ
(n,q)
n − λ

(j,q)
1

´
P
(q)
j−1

³
λ
(j,q)
1

´
,

j = q + 1, . . . , n− 1 are positive. In fact, is known that

λ
(j,q)
1 ≤ ai ≤ λ

(j,q)
j , j = 1, 2, . . . , n− 1, i = 1, 2, . . . , j.

In particular, for j = q and (2.15), we have

λ
(q+1,q)
1 < λ

(q,q)
1 ≤ ai ≤ λ

(q,q)
j , i = 1, 2, . . . , q.
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Now, the second term of the expression of the right side of ∆jcan be

written as follows:

(−1) 4
j−1Q
i=1
i=q

³
ai − λ

(j,q)
1

´ ³
λ
(n,q)
n − λ

(j,q)
1

´
(−1)j−1 P (q)j−1

³
λ
(j,q)
1

´
,

where,
³
ai − λ

(j,q)
1

´
> 0,

³
λ
(n,q)
n − λ

(j,q)
1

´
> 0 and (−1)j−1 P (q)j−1

³
λ
(j,q)
1

´
>

0, by Lemmas 2 and 3. Therefore, all the discriminants ∆j are positive,
i.e., the entries bj−1, j = q + 1, . . . , n can be computed as

bj−1 =

x
(q)
q

x
(q)
j

P
(q)
j−1

³
λ
(j,q)
1

´
±

vuuut∙x(q)q

x
(q)
j

P
(q)
j−1

³
λ
(j,q)
1

´¸2
−4

j−1Q
i=1
i=q

³
λ
(j,q)
1 −ai

´³
λ
(n,q)
n −λ(j,q)1

´
P
(q)
j−1

³
λ
(j,q)
1

´

2
j−1Q
i=1
i=q

³
λ
(j,q)
1 −ai

´ .

(2.20)
This completes the proof. 2

Algorithm 2: Reconstruction of a doubly arrowhead symmetric matrix
from minimal eigenvalues and eigenpair.

INPUT: The real numbers
n
λ
(j,q)
1

on
j=1
∪
n
λ
(n,q)
n

o
and the vector

x(q) = (xq1, x
q
2, . . . , x

q
n), that satisfy the conditions (2.15) and (2.16), respec-

tively, and subindex q.

OUTPUT: An n × n matrix Aq
n of the form (1.1) such that λ

(j,q)
1 is the

minimal eigenvalue of the leading principal submatrix Aq
j , j = 1, 2, . . . , n

of Aq
n and

³
λ
(n,q)
n , x(q)

´
is the eigenpair of Aq

n, with being λ
(n,q)
n the maximal

eigenvalue of Aq
n.

1. for j = 1, 2, . . . , q − 1 do

2. set aj = λ
(j,q)
1

3. end

4. compute aq defined by (2.17)

5. for j = q + 1, q + 2, . . . , n do

6. compute aj defined by (2.18)
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7. end

8. for j = 1, 2, . . . , q − 1 do

9. compute bj defined by (2.19)

10. end

11. for j = q + 1, q + 2, . . . , n do

12. compute bj−1 defined by (2.20)

13. end

3. Numerical examples

In this section, we present the results and performance of the Algorithms 1
and 2 in determining a solution of Problems 1 and 2, respectively. Exten-
sive experiments have been realized. All experiments were done in Matlab
R2019a on an Intel CORE i7 8-th gen processor, DDR4 2133MHz SDRAM
Onboard Memory, up to 16 GB SDRAM with IEEE doubly precision arith-
metic.

In order to show the matrix A
(q)
n that Algorithms 1 and 2 reconstructs,

in Example 1 and 2, we execute experiments from an initial spectral data
given, satisfying the conditions of Theorems 1 and 2.

Example 1. In Example 1, two test are done showing the matrix A
(q)
n

recovered, whose initial data are evenly distributed. In the first test, we set

n = 7 and q = 3, and the initial real numbers λ
(j,3)
1 and λ

(j,3)
j , j = 1, 2, . . . , 7

in the second and third row of Table 1 are listed.

2

Table 1: Initial data for Alg 1

j λ
(j,3)
1 λ

(j,3)
j

1 1.0000
2 1.0000 4.0000
3 −3.0000 6.0000
4 −5.0000 7.0000
5 −6.0000 8.0000
6 −9.0000 9.0000
7 −14.0000 15.0000

Table 2: The matrix A
(3)
7 recovered

j a
(7,3)
i b

(7,3)
i

1 1.0000 3.1623
2 4.0000 2.6458
3 0, 5000 4.0620
4 4.0000 3.7000
5 1.6338 5.1235
6 −3.6633 11.5640
7 1.0535

Once we apply Algorithm 1, the entries of the matrix A
(3)
7 reconstructed in

the second and third row are listed in Table 2. To verify that the matrix
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obtained is correct, we calculated the spectra σ

³
A
(3)
j

´
of each submatrix

A
(3)
j , j = 1, 2, . . . , 7, which are listed in Table 3. Here, the bold numbers

correspond to the minimal and maximal eigenvalues of A
(3)
j recovered. We

can see that these numbers coincide exactly with the initial data.

Table 3: The spectra σ
³
A
(3)
j

´
of each submatrix A

(3)
j

j σ
³
A
(3)
j

´
1 1.0000
2 1.0000 4.0000
3 −3.0000 2.5000 6.0000
4 −5.0000 0.7657 3.1343 7.0000
5 −6.0000 0.7152 1.3282 3.4904 8.0000
6 −9.0000 −1.7916 0.7346 1.3480 3.5795 9.0000
7 −14.0000 −3.0167 0.4651 1.0037 1.5855 3.8863 15.0000

In the second test, we set n = 7 and q = 4, and the initial real numbers

λ
(j,4)
1 , j = 1, 2, . . . 6 and λ

(7,4)
7 , and the components x

(4)
j , j = 1, 2, . . . 7 of the

vector x(4) in the second and third row of Table 4 are listed.

2

Table 4: Initial data for Alg 2

j λ(j,4) x
(4)
j

1 6.5333 −0.1689
2 −0.0626 −0.0550
3 −1.6820 −0.2232
4 −4.4075 −0.7439
5 −7.8393 −0.0587
6 −9.3280 −0.5888
7 13.2734 −0.1229

Table 5: The matrix A
(4)
7 recovered

j a
(7,4)
i b

(7,4)
i

1 6.5333 1.5303
2 −0.0626 0.9864
3 −1.6820 4.4864
4 3.4154 1.6383
5 −7.4907 9.4578
6 1.3240 2.8856
7 −4.1944

Table 5, shows the matrix A
(4)
7 , reconstructed by Algorithm 2, and Ta-

ble 6 shows the spectra σ
³
A
(4)
j

´
of A

(4)
j , j = 1, 2, . . . , 7 and eigenpair³

λ(7,4),x(4)
´
. Again, the results show that the reconstructed matrix A

(4)
7

is as expected.

Table 6: The spectra σ
³
A
(4)
j

´
of each submatrix A

(4)
j

j σ
³
A
(4)
j

´
1 6.5333
2 −0.0626 6.5333
3 −1.6820 −0.0626 6.5333
4 −4.4075 −0.1230 5.0369 7.6978
5 −7.8393 −4.2035 −0.1217 5.1193 7.7588
6 −9.3280 −6.9174 −1.0817 −0.0430 6.3993 13.0082
7 −9.8703 −7.1057 −3.7729 −1.0441 −0.0422 6.4049 13.2734

13.2734x(4) −2.2420 −0.7304 −2.9621 −9.8743 −0.7791 −7.8154 −1.6312
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Example 2. In this example, we show two extensive tests of dimensions
n = 1, 2, . . . , 100, where the initial spectral data are randomly distributed
in such a way showing the accuracy and efficiency of Algorithms 1 and 2.

Randomly spectral data are indirectly generated, that is, with 2n-1 random
numbers generated by Matlab randn routine, we obtain a random matrixbA(q)n . Then, for each n = 1, 2, . . . , 100, we calculate the minimal and max-

imal eigenvalues bλ(j,q)1 and bλ(j,q)j of bA(q)j , j = 1, 2, . . . , n and the eigenpair³bλ(n,q), bx(q)´ of bA(q)n , using the Matlab eig routine, being this the initial

spectral data of Algorithms 1 and 2 to calculate the matrix A
(q)
n .

Once the matrix A
(q)
n is reconstructed, the accuracy of Algorithm 1 is mea-

sured by computing the relative error eλ defined by

eλ1 =

°°°bλ− λ
°°°
∞°°°bλ°°°

∞

,

where bλ =
³bλ(n,q)1 , bλ(n−1,q)1 , . . . , bλ(2,q)1 , bλ(1,q)1 , bλ(2,q)2 , . . . , bλ(n−1,q)n−1 , bλ(n,q)n

´T
is

the vector of the random initial data and

λ =
³
λ
(n,q)
1 , λ

(n−1,q)
1 , . . . , λ

(2,q)
1 , λ

(1,q)
1 , λ

(2,q)
2 , . . . , λ

(n−1,q)
n−1 , λ

(n,q)
n

´T
is the vec-

tor of the minimal and maximal eigenvalues of the matrix A
(q)
n . While for

Algorithm 2, we define the relative errors

eλ2 =

°°°eλ− λ
°°°
∞°°°eλ°°°

∞

and ex =
kbx− xk∞
kbxk∞ ,

eλ = ³eλ(n,q)1 , eλ(n−1,q)1 , . . . , eλ(2,q)1 , eλ(1,q)1

´T
and ex = ³eλ(n,q)n , exq1, exq2, . . . , exqn´T are

the vectors of the random initial data and λ =
³
λ
(n,q)
1 , λ

(n−1,q)
1 , . . . , λ

(2,q)
1 , λ

(1,q)
1

´T
and x =

³
λ
(n,q)
n , xq1, x

q
2, . . . , x

q
n

´T
are, respectively, the vectors of the mini-

mal eigenvalues and eigenpair of the matrix A
(q)
n .

Table 7 shows the error eλ1 for Algorithm 1, while Table 8 shows the errors
eλ2 and ex for Algorithm 2. Both Tables are organized as follows: the first
column displays the dimension n. To display the error eλ1 , there are three
columns: the first one displays the average over the 1000 tests made; the
second and third display, respectively, the smallest and largest value for the
error among the 1000 experiments. Similarly, to show the errors eλ2 and ex,
the first columns of Table 8 show the average of the 1000 tests performed,
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while the second columns display the smallest value for the error among
the 1000 tests and the third columns the largest value.

Table 7: Relative error eλ1 for Alg 1

n eλ1
Mean Min Max

10 6.17e− 16 1.22e− 16 1.54e− 15
25 1.71e− 15 2.73e− 16 2.67e− 15
50 1.35e− 15 3.36e− 16 2.73e− 15
75 1.45e− 15 3.31e− 16 3.22e− 15
100 1.47e− 15 3.55e− 16 3.24e− 15

Table 8: Relative errors eλ1 and ex for Alg 2

n eλ2 ex
Mean Min Max Mean Min Max

10 2.64e− 12 1.29e− 16 2.31e− 09 5.78e− 14 2.83e− 17 1.82e− 14
25 1.38e− 14 1.51e− 16 2.72e− 12 6.83e− 16 1.98e− 17 4.84e− 14
50 2.90e− 14 2.06e− 16 2.28e− 11 7.46e− 16 1.36e− 17 7.98e− 14
75 3.46e− 13 3.71e− 16 3.42e− 10 1.08e− 14 1.28e− 17 1.01e− 11
100 7.15e− 15 3.40e− 16 3.21e− 12 6.90e− 16 9.96e− 18 8.27e− 14

On the other hand, the CPU time of Algorithms 1 and 2 are measured in
seconds, using the Matlab TimeCPU routine. The first column of Table
9 displays the dimension n. To display the CPU times there are three
columns for both algorithms: the first one displays the average over the
1000 tests, while the second and third columns display, respectively, the
smallest and largest value for the CPU time among the 1000 experiments.

Table 9: The CPU time of Algorithms 1 and 2

n CPU Time Alg 1 CPU Time Alg 2

Mean Min Max Mean Min Max

10 8.61e-14 7.78e-04 7.91e-03 9.82e-04 8.95e-04 1.61e-03
25 4.79e-03 4.37e-03 1.57e-02 6.25e-03 4.95e-03 1.71e-02
50 2.09e-02 1.96e-02 3.32e-02 2.59e-03 2.16e-02 8.67e-02
75 5.42e-02 5.10e-02 8.59e-02 6.25e-02 5.44e-02 1.37e-01
100 1.11e-01 1.31e-01 1.31e-01 1.19e-01 1.08e-01 1.36e-01

As we can see in the tables, both algorithms find solutions whose spec-
tral data are approximately close to the initial data and are consistently
fast.

Data Availability Statement No data were used to support this study.
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