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Abstract

Several notions on soft topology are studied and their basic prop-
erties are investigated by using the concept of soft open sets and soft
closure operators which are derived from the basics of soft set theory
established by Molodtsov [7]. In this paper we introduce some soft sep-
aration axioms called Soft R0 and soft R1 in soft topological spaces
which are defined over an initial universe with a fixed set of parame-
ters. Many characterizations and properties of these spaces are found.
Necessary and sufficient conditions for a soft topological space to be a
soft Ri for i = 0, 1 space are also presented. Furthermore, the concept
of functions with soft closed graph and soft cluster sets are defined.
Many results on theses two concepts are proved also it is proved that
a function has a soft closed graph if and only if its soft cluster set is
degenerate.
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1. Introduction

The study of soft sets and their properties was initiated by Molodtsov [7]
in 1999. After his introduction of soft set theory as a common mathemat-
ical application in dealing with the vagueness of not well defined objects,
Several researchers applying on formal modeling, reasoning and comput-
ing. Shabir, M. and Naz, M. [9] in 2011 described a soft topological space
and they introduced so many basic notations and gave their properties in
detail. Mathematicians gave in several papers different and, many interest-
ing topological concepts such as, soft connectedness defined by Zorlutuna,
I. and Cakir, H. [13] in 2015. In the same year Wang p. and He, J.
[11], introduced the concept of soft compactness. Separation axioms, have
been extended in soft topological spaces and many types of soft separation
axioms are introduced. Husain S, and Ahmed B. [4] in 2015 introduced
separation axioms by using distinct point in the universal set while in 2018
Bayramov S. and Aras C. G. [2] defined some separation axioms by using
distinct soft points.

The aim of this paper, is to introduce and discuss in detail a study of
two soft separation axioms which we call them soft R0 and R1 which are
defined over an initial universe with a fixed set of parameters. Also we
shed light on the notion of a function with a soft closed graph and the soft
cluster set of a function, by using notations of soft open sets and soft points
defined in [2].

Throughout the present paper, X will be a nonempty initial universal
set and E will be a set of parameters and A be a non-empty subset of E. A
pair (F,A) is called a soft set over X, where F is a mapping F : A→ P (X).
The collection of soft sets (F,A) over a universal set X with the parameter
set A is denoted by SP (X)A.

2. Preliminaries

In this section, we give some definitions and results on soft set theory which
will be used in the sequel.
First, we recall the following notions more details about properties of such
notions can be found in [1], [2], [3], [4] and [6].

Definition 2.1. For two soft sets (F,A) and (G,B) over a common uni-
verse X, we say that (F,A) is a soft subset of (G,B), if
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1. A ⊆ B and

2. for all e ∈ A, F (e) ⊆ G(e)

We write (F,A) v (G,B).

Definition 2.2. The complement of a soft set (F,A) is denoted by (F,A)c

or X̃ \ (F,A) and is defined by (F,A)c = (F c, A) where F c : A→ P (X) is
a mapping given by F c(e) = X \ F (e), for all e ∈ A.

Definition 2.3. A soft set (F,A) over X is said to be empty soft set de-
noted by φ̃ if for all e ∈ A, F (e) = φ and (F,A) over X is said to be
absolute soft set denoted by Ã if for all e ∈ A, F (e) = X.

Definition 2.4. The union of two soft sets of (F,A) and (G,B) over
the common universe X is the soft set (H,C) = (F,A) t (G,B), where
C = A ∪B and for all e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F (e) : if e ∈ A−B
G(e) : if e ∈ B −A
F (e) ∪G(e) : if e ∈ A ∩B

In particular, (F,A) t (G,A) = (H,A) and H(e) = F (e) ∪G(e) for all
e ∈ A.

Definition 2.5. The intersection (H,C) of two soft sets (F,A) and (G,B)
over a common universeX, denoted (F,A)u(G,B), is defined as C = A∩B,
and H(e) = F (e) ∩G(e) for all e ∈ C.

In particular, (F,A) u (G,A) = (H,A) and H(e) = F (e) ∩G(e) for all
e ∈ A.

Definition 2.6. Let x ∈ X, then (x,E) denotes the soft set over X for
which x(e) = {x}, for all e ∈ E.
Let (F,E) be a soft set over X and x ∈ X. We say that x ∈ (F,E) read as
x belongs to the soft set (F,E) whenever x ∈ F (e) for all e ∈ E.

Definition 2.7. The soft set (F,E) is called a soft point, denoted by
(xe, E) or xe, if for the element e ∈ E, F (e) = {x} and F (e) = φ for
all e ∈ E \ {e}.
We say that xe ∈ (G,E) if x ∈ G(e).
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Two soft points xe and ye0 are distinct if either x 6= y or e 6= e0.
It is clear that xe ∈ (x,E) always.

Definition 2.8. [9] Let τ be a collection of soft sets over a universe X with
a fixed set A of parameters. Then τ ⊆ SP (X)A is called a soft topology if,

1. φ̃ and X̃ belongs to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ,A) is called a soft topological space over X. The
members of τ̃ are called soft open sets in X̃ and complements of them are
called soft closed sets in X̃ and they are denoted by SO(X̃) and SC(X̃)
respectively. Logical operation on soft set are denoted by usual set theo-
retical operations with symbol (∼) above. Soft interior and soft closure are
denoted by s̃int and s̃cl respectively.

Definition 2.9. [9] Let (X, τ,A) be a soft topological space and let (G,A)
be a soft set. Then

1. The soft closure of (G,A) is the soft set
s̃cl(G,A) = u{(K,B) ∈ SC(X̃) : (G,A) v (K,B)}

2. The soft interior of (G,A) is the soft set
s̃int(G,A) = t{(H,B) ∈ SO(X̃) : (H,B) v (G,A)}.

Definition 2.10. [3] Let (X, τ,A) be a soft topological space, (G,A) be a
soft set over X̃ and xe ∈ X̃. Then (G,A) is said to be a soft neighborhood
of xe if there exists a soft open set (H,A) such that xe ∈ (H,A) v ((G,A).

Definition 2.11. [5] Let SP (X)A and SP (Y )B be families of soft sets.
Let u : X → Y and p : A → B be mappings. Then a mapping fpu :
SP (X)A → SP (Y )B is defined as:

1. Let (F,A) be a soft set in SP (X)A. The image of (F,A) under fpu,
written as fpu(F,A) = (fpu(F ), p(A)), is a soft set in SP (Y )B such
that

fpu(F )(e
0) =

⎧⎨⎩
S

e∈p−1(e0)∩A
u(F (e)) : if p−1(e0) ∩A 6= φ

φ : if p−1(e0) ∩A = φ

for all e0 ∈ B.
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2. Let (G,B) be a soft set in SP (Y )B. Then the inverse image of (G,B)
under fpu, written as f

−1
pu (G,B) = (f

−1
pu (G), p

−1(B)), is a soft set in
SP (X)A such that

f−1pu (G)(e) =

(
u−1(G(p(e))) : if p(e) ∈ B
φ : otherwise

for all e ∈ A.

The soft function fpu is called surjective if p and u are surjective and it
is called injective if p and u are injective.

Definition 2.12. [13] Let (X, τ,A) and (Y, µ,B) be two soft topologi-
cal spaces. A soft mapping fpu : X̃ → Ỹ is called soft continuous if
f−1pu ((G,B)) ∈ τ for all (G,B) ∈ µ.

Definition 2.13. [12] A soft filter F converges to a soft point xe ∈ X̃ in a
soft topological space (X, τ,A), if every soft neighborhood of the soft point
xe belongs to the soft filter F . It is denoted by F → xe.

Definition 2.14. [11] Let F be a soft filter in a soft topological space
(X, τ,A), a soft point xe is called soft accumulation point of F , if xe ∈
s̃cl(G,A) for every (G,A) ∈ F .

Theorem 2.15. [11] A soft filter F converges to a soft point xe, then xe
is the soft accumulation point of F , if F is a maximal soft filter and xe is
a soft accumulation point of F , then the soft filter F converges to the soft
point xe.

Proposition 2.16. [8] Let fpu : SP (X)A → SP (Y )B be a soft function.
If F is a soft ultra filter in X̃, then fpu(F) is a soft ultra filter in Ỹ .

Definition 2.17. [2] A soft topological space (X, τ,A) is said to be:

1. Soft T0, if for each pair of distinct soft points xe, ye0 ∈ SP (X)A, there
exist soft open sets (F,A) and (G,A) such that either xe ∈ (F,A) and
ye0 /∈ (F,A) or ye0 ∈ (G,A) and xe /∈ (G,A).

2. Soft T1, if for each pair of distinct soft points xe, ye0 ∈ SP (X)A, there
exist two soft open sets (F,A) and (G,A) such that xe ∈ (F,A) but
ye0 /∈ (F,A) and ye0 ∈ (G,A) but xe /∈ (G,A).
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3. Soft T2, if for each pair of distinct soft points xe, ye0 ∈ SP (X)A, there
exist two disjoint soft open sets (F,A) and (G,A) containing xe and
ye0 respectively.

Proposition 2.18. [2]

1. Every soft T2-space ⇒ soft T1-space ⇒ soft T0-space.

2. A soft topological space (X, τ,A) is soft T1 if and only if each soft
point is soft closed.

3. Soft R0 and soft R1 Spaces

In this section we introduce new types of soft separation axioms over the
universal setX and a fixed set of parameters by using the soft points defined
in [2] called soft Ri spaces for i = 0, 1. We obtain several properties and
characterizations of these spaces.

Definition 3.1. A soft topological space (X, τ,A) is called soft R0 if for
every soft open set (F,A), s̃cl({xe}) v (F,A) whenever xe ∈ (F,A).

Definition 3.2. A soft topological space (X, τ,A) is called soft R1 if for
xe, ye0 ∈ X̃ with s̃cl({xe}) 6= s̃cl({ye0}), there exist disjoint soft open sets
(F,A) and (G,A) such that s̃cl({xe}) v (F,A) and s̃cl({ye0}) v (G,A).

Definition 3.3. Let (X, τ,A) be a soft topological space, then the soft
kernel of the soft set (F,A) is defined to be the intersection of all soft open
sets containing (F,A) and it is denoted by s̃ker(F,A) that is s̃ker(F,A) =
u{(G,A) ∈ SO(X̃) : (F,A) v (G,A)}.

Lemma 3.4. For any two soft points xe and ye0 in a soft topological space
(X, τ,A), we have ye0 ∈ s̃ker({xe}) if and only if xe ∈ s̃cl({ye0}).

Proof. Suppose thaty ye0 /∈ s̃ker({xe}), then there exists a soft open
sets (F,A) containing xe such that ye0 /∈ (F,A). Therefore, we have xe /∈
s̃cl({ye0}). The proof of the converse part is similar. 2

In the following theorem, we give characterizations of soft R0 spaces.

Theorem 3.5. Let (X, τ,A) be a soft topological space, then the following
properties are equivalent:

1. (X, τ,A) is R0,



Soft separation axioms and functions with soft closed graphs 183

2. For any (K,A) ∈ SC(X̃) and xe /∈ (K,A), there exists (F,A) ∈
SC(X̃) such that (K,A) v (F,A) and xe /∈ (F,A),

3. For any (K,A) ∈ SC(X̃) and xe /∈ (K,A), implies that (K,A) u
s̃cl({xe}) = φ̃,

4. For any distinct soft points xe, ye0 ∈ X̃, either s̃cl({xe}) = s̃cl({ye0})
or s̃cl({xe}) u s̃cl({ye0}) = φ̃.

Proof. (1)⇒ (2). Let (K,A) ∈ SC(X̃) and xe /∈ (K,A). Then by (1),
s̃cl({xe}) v X̃ \ (K,A). Let (F,A) = X̃ \ (K,A), then (F,A) ∈ SO(X̃),
(K,A) v (F,A) and xe /∈ (F,A).
(2)⇒ (3). Let (K,A) ∈ SC(X̃) and xe /∈ (K,A). Then there exists (F,A) ∈
SO(X̃) such that (K,A) v (F,A) and xe /∈ (F,A). Hence, by (2), (F,A)u
s̃cl({xe}) = φ̃, this implies that (K,A) u s̃cl({xe}) = φ̃.
(3)⇒ (4). Let xe and ye0 be two distinct soft points of X̃. Suppose that
s̃cl({xe}) 6= s̃cl({ye0}), then there exists a soft point zc such that zc ∈
s̃cl({xe}) and zc /∈ s̃cl({ye0}) [ or zc ∈ s̃cl({ye0}) and zc /∈ s̃cl({xe})] and
there exists (F,A) ∈ SO(X̃) such that ye0 /∈ (F,A) and zc ∈ (F,A), so
xe ∈ (F,A). Therefore, we get xe /∈ s̃cl({ye0}), then by (3), we obtain
s̃cl({xe}) u s̃cl({ye0}) = φ̃.
(4)⇒ (1). Let (F,A) ∈ SO(X̃) and xe ∈ (F,A), for each ye0 /∈ (F,A).
Hence, xe 6= ye0 and xe /∈ s̃cl({ye0}), this shows that s̃cl({xe}) 6= s̃cl({ye0}).
By (4), we have s̃cl({xe})u s̃cl({ye0}) = φ̃, for each ye0 ∈ X̃ \(F,A). On the
other hand, since (F,A) ∈ SO(X̃) and ye0 ∈ X̃\(F,A), we have s̃cl({ye0}) v
X̃\(F,A). Hence X̃\(F,A) = ts̃cl({ye0}) where ye0 ∈ X̃\(F,A). Therefore
we obtain that X̃ \ (F,A) u s̃cl({ye0}) = φ̃ and s̃cl({xe}) v (F,A). This
shows that (X, τ,A) is R0. 2

Lemma 3.6. Let xe and ye0 be any distinct soft points in a soft topological
space (X, τ,A). Then s̃ker({xe}) 6= s̃ker({ye0}) if and only if s̃cl({xe}) 6=
s̃cl({ye0}).

Proof. Suppose that s̃ker({xe}) 6= s̃ker({ye0}). Then there exists a
soft point zc ∈ X̃ such that zc ∈ s̃ker({xe}) and zc /∈ s̃ker({ye0}). Since
zc ∈ s̃ker({xe}) so {xe} u s̃cl({zc}) 6= φ̃. This implies that xe ∈ s̃cl({zc})
and since zc /∈ s̃cl({ye0}) we have {ye0}us̃cl({zc}) = φ̃. Since xe ∈ s̃cl({zc}),
so s̃cl({xe}) v s̃cl({zc}) and hence {ye0} u s̃cl({xe}) = φ̃. Therefore,
s̃cl({xe}) 6= s̃cl({ye0}).
Conversely, Suppose that s̃cl({xe}) 6= s̃cl({ye0}). Then there exists a soft
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point zc ∈ X̃ such that zc ∈ s̃cl({xe}) and zc /∈ s̃cl({ye0}). Hence, there
exists a soft open set (F,A) containing zc (and hence xe) but not ye0 , that
is ye0 /∈ s̃ker({xe}). Therefore, s̃ker({xe}) 6= s̃ker({ye0}). 2

Theorem 3.7. A soft topological space (X, τ,A) is soft R0 if and only
if for any two distinct soft points xe, ye0 ∈ X̃, s̃ker({xe}) 6= s̃ker({ye0})
implies s̃ker({xe}) u s̃ker({ye0}) = φ̃.

Proof. Necessity, suppose that (X, τ,A) is soft R0. Thus by Lemma
3.6, for any distinct soft points xe, ye0 ∈ X̃, if s̃ker({xe}) 6= s̃ker({ye0}),
then s̃cl({xe}) 6= s̃cl({ye0}). Assume that zc ∈ s̃ker({xe}) u s̃ker({ye0}).
Since zc ∈ s̃ker({xe}) and by Lemma 3.4, it follows that xe ∈ s̃cl({zc}).
Since xe ∈ s̃cl({xe}), by Theorem 3.5 s̃cl({xe}) = s̃cl({ye0}). Similarly we
have s̃cl({xe}) = s̃cl({zc}) = s̃cl({ye0}), which is a contradiction. There-
fore s̃ker({xe}) u s̃ker({ye0}) = φ̃.

Sufficiency, let (X, τ,A) be a soft topological space such that for any
distinct soft points xe, ye0 ∈ X̃, s̃ker({xe}) 6= s̃ker({ye0}) implies that
s̃ker({xe}) u s̃ker({ye0}) = φ̃. If s̃cl({xe}) 6= s̃cl({ye0}), then by Lemma
3.6, s̃ker({xe}) 6= s̃ker({ye0}). Therefore s̃ker({xe}) u s̃ker({ye0}) = φ̃.
Now if zc ∈ s̃cl({xe}) u s̃cl({ye0}), then zc ∈ s̃cl({xe}) implies that xe ∈
s̃ker({zc}) so, s̃ker({xe})u s̃ker({zc}) 6= φ̃ and by the same way we obtain
that s̃ker({ye0}) u s̃ker({zc}) 6= φ̃. By hypothesis, we have, s̃ker({xe}) =
s̃ker({zc}) = s̃ker({ye0}), which is contradiction so, s̃cl({xe})us̃cl({ye0}) =
φ̃. Therefore, by Theorem 3.5, (X, τ,A) is soft R0. 2

Theorem 3.8. Let (X, τ,A) be a soft topological space. Then the follow-
ing statements are equivalent:

1. (X, τ,A) is soft R0,

2. For any non-empty soft set (F,A), (G,A) ∈ SO(X̃) with (F,A) u
(G,A) 6= φ̃, there exists (K,A) ∈ SC(X̃) such that (F,A)u (K,A) 6=
φ̃, and (K,A) v (G,A).

3. For any (G,A) ∈ SO(X̃), (G,A) = t{(K,A) ∈ SC(X̃) : (K,A) v
(G,A)},

4. For any (K,A) ∈ SC(X̃), (K,A) = u{(G,A) ∈ SO(X̃) : (K,A) v
(G,A)},

5. For any xe ∈ X̃, s̃cl({xe}) v s̃ker({xe}).
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Proof. (1)⇒ (2). Let (F,A) be a non empty subset of X̃ and (G,A) ∈
SO(X̃) such that (F,A) u (G,A) 6= φ̃. Let xe ∈ (F,A) u (G,A). Since
xe ∈ (G,A) ∈ SO(X̃), so by (1), we have s̃cl({xe}) v (G,A). Set
(K,A) = s̃cl({xe}), then (K,A) ∈ SC(X̃) such that (K,A) v (G,A) and
(F,A) u (K,A) 6= φ̃.
(2)⇒ (3). Let (G,A) ∈ SO(X̃). Then t{(K,A) ∈ SC(X̃) : (K,A) v
(G,A)} v (G,A). Now let xe be any soft point of (G,A). By (2), there
exists (K,A) ∈ SC(X̃), such that xe ∈ (K,A) and (K,A) v (G,A). There-
fore, we have xe ∈ (K,A) v t{(K,A) ∈ SC(X̃) : (K,A) v (G,A)}. Hence
(G,A) = t{(K,A) ∈ SC(X̃) : (K,A) v (G,A)}.
(3)⇒ (4). Obvious.
(4)⇒ (5). Let xe be any soft point of X̃ and ye0 /∈ s̃ker({xe}). So there
exists (H,A) ∈ SO(X̃) such that xe ∈ (H,A) and ye0 /∈ (H,A). Hence
s̃cl({ye0}) u (H,A) = φ̃. By(4), we have [u{(G,A) ∈ SO(X̃) : s̃cl({ye0}) v
(G,A)}] u (H,A) = φ̃, so xe /∈ (G,A) and s̃cl({ye0}) v (G,A). Therefore,
s̃cl({xe}) u (G,A) = φ̃ and hence ye0 /∈ s̃cl({xe}). Consequently we obtain
that s̃cl({xe}) v s̃ker({xe}).
(5)⇒ (1). Let (G,A) ∈ SO(X̃) and xe ∈ (G,A), let ye0 ∈ s̃ker({xe}). Then
xe ∈ s̃cl({ye0}) and ye0 ∈ (G,A) this implies that s̃ker({xe}) v (G,A).
Therefore, we obtain s̃cl({xe}) v s̃ker({xe}) v (G,A). This shows that
(X, τ,A) is soft R0. 2

Theorem 3.9. A soft topological space (X, τ,A) is soft R0 if and only if
s̃cl({xe}) = s̃ker({xe}), for all xe ∈ X̃.

Proof. Suppose that (X, τ,A) is a soft R0 space. By Theorem 3.8(5),
s̃cl({xe}) v s̃ker({xe}) for all xe ∈ X̃. Let ye0 ∈ s̃ker({xe}), then xe ∈
s̃cl({ye0}) and by Theorem 3.8, s̃cl({xe}) = s̃cl({ye0}). Therefore, ye0 ∈
s̃cl({xe}) and hence s̃ker({xe}) v s̃cl({xe}). This shows that s̃cl({xe}) =
s̃ker({xe}), for all xe ∈ X̃.
The converse part follows from Theorem 3.8. 2

Theorem 3.10. For a soft topological space (X, τ,A), the following state-
ment are equivalent :

1. (X, τ,A) is a soft R0 space,

2. xe ∈ s̃cl({ye0}) if and only if ye0 ∈ s̃cl({xe}) for any two distinct soft
points xe, ye0 ∈ X̃.
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Proof. (1) ⇒ (2). Assume that (X, τ,A) is a soft R0 space. Let
xe ∈ s̃cl({ye0}) and (H,A) be any soft open set containing ye0 , so by defi-
nition, s̃cl({ye0}) v (H,A), hence xe ∈ (H,A). Therefore, every soft open
set containing ye0 contains xe, so ye0 ∈ s̃cl({xe}).

(2)⇒ (1). Let (G,A) be any soft open set containing xe, if ye0 /∈ (G,A),
then xe /∈ s̃cl({ye0}) and By (2), we have ye0 /∈ s̃cl({xe}). This implies that
s̃cl({xe}) v (G,A), hence (X, τ,A) is a soft R0 space. 2

The following corollary follows from Theorem 3.9 and Theorem 3.10.

Corollary 3.11. A soft topological space (X, τ,A) is a soft R0 space if
and only if s̃ker({xe}) 6= s̃ker({ye0}) for all distinct soft points xe, ye0 ∈ X̃.

Lemma 3.12. Let (X, τ,A) be a soft topological space and (F,A) v X̃.
Then s̃ker(F,A) = {xe ∈ X̃ : s̃cl({xe}) u (F,A) 6= φ̃}.

Proof. Let xe ∈ s̃ker(F,A) and s̃cl({xe}) u (F,A) = φ̃. So we have
xe /∈ X̃ \ s̃cl({xe}) which is a soft open set containing (F,A). This is
impossible, because xe ∈ s̃ker(F,A). Therefore, s̃cl({xe}) u (F,A) 6= φ̃.
On the other hand, if s̃cl({xe}) u (F,A) 6= φ̃ and xe /∈ s̃ker(F,A). Then
there exists a soft open set (H,A) containing (F,A) and xe /∈ (H,A). Let
ye0 ∈ s̃cl({xe}) u (F,A), so (H,A) is a soft neighborhood of ye0 in which
xe /∈ (H,A), which is a contradiction, so xe ∈ s̃ker(F,A). 2

Theorem 3.13. For a soft topological space (X, τ,A), The following state-
ment are equivalent:

1. (X, τ,A) is a soft R0,

2. If (K,A) is soft closed, then (K,A) = s̃ker(K,A),

3. If (K,A) is soft closed and xe ∈ (K,A), then s̃ker({xe}) v (K,A),

4. If xe ∈ X̃, then s̃ker({xe}) v s̃cl({xe}).

Proof. (1)⇒ (2). Let (K,A) be a soft closed set and xe /∈ (K,A). Then
X̃ \ (K,A) is soft open set containing xe. Since X̃ is a soft R0 space, so
s̃cl({xe}) v X̃ \ (K,A), thus s̃cl({xe}) u (K,A) = φ̃, by Lemma 3.12, xe /∈
s̃ker(K,A). Therefore, s̃ker({xe}) v (K,A), hence (K,A) = s̃ker(K,A).
(2)⇒ (3). In general (F,A) v (G,A) implies that s̃ker(F,A) v s̃ker(G,A).
Therefore, from (2), it follows that s̃ker({xe}) v (K,A).
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(3)⇒ (4). Since xe ∈ s̃cl({xe}) and s̃cl({xe}) is soft closed, so by (3), we
get that s̃ker({xe}) v s̃cl({xe}).
(4)⇒ (1). Let xe ∈ s̃cl({ye0}), then by Lemma 3.4, ye0 ∈ s̃ker({xe}).
Since xe ∈ s̃cl({xe}) and s̃cl({xe}) is soft closed, by (4) we obtain ye0 ∈
s̃ker({xe}) v s̃cl({xe}). Therefore, xe ∈ s̃cl({ye0}) implies that ye0 ∈
s̃cl({xe}). Similarly, if ye0 ∈ s̃cl({xe}), we get xe ∈ s̃cl({ye0}), so by Theo-
rem 3.10, (X, τ,A) is a soft R0. 2

Proposition 3.14. If a soft topological space (X, τ,A) is a soft R1 space,
then it is soft R0.

Proof. Suppose that (X, τ,A) is soft R1. Let (H,A) be any soft open
set containing a soft point xe. Then for each ye0 ∈ X̃ \ (H,A), s̃cl({xe}) 6=
s̃cl({ye0}). Since (X, τ,A) is soft R1, there exist two disjoint soft open sets
(K,A) and (G,A) such that s̃cl({xe}) v (K,A) and s̃cl({ye0}) v (G,A).
Let (F,A) = t{(G,A) : ye0 ∈ X̃ \ (H,A)}, then X̃ \ (H,A) v (F,A),
xe /∈ (F,A) and (F,A) is a soft open set. Therefore, s̃ker({xe}) v X̃ \
(F,A) v (H,A). Hence, (X, τ,A) is soft R0 space. 2

Proposition 3.15. If a soft topological space (X, τ,A) is a soft T1 space,
then it is soft R0.

Proof. The proof is obvious since in a soft T1 space, every soft point is
soft closed. 2

The following examples shows that the converses of Proposition 3.14
and Proposition 3.15 are not true in general.

Example 3.16. Let X be any infinite set, A = {e1, e2} and τ a topology
consists of φ̃, X̃ and all soft sets (F,A), where (F,A) is defined as: F (e1) =
G where G is a subset of X and X \G is finite and F (e2) = φ.
Then (X, τ,A) is a soft topological space over X. It can be easily shown
that this space is soft R0 and not soft R1.

Example 3.17. Let X = {x1, x2}, A = {e1, e2} and
τ = {φ̃, X̃, (F1, A), (F2, A)}, where
(F1, A) = {(e1, {x2}), (e2, {x1})},
(F2, A) = {(e1, {x1}), (e2, {x2})}. Then (X, τ,A) is a soft topological space
over X. This space is both soft R0 and soft R1 but it is not soft T1.

Proposition 3.18. A soft topological space (X, τ,A) is soft T1 if and only
if it is both soft T0 and soft R0.
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Proof. Necessity, follows from Proposition 3.15 and the fact that every
soft T1 is soft T0.
Sufficiency, assume that (X, τ,A) is both soft T0 and soft R0 space. Let
xe,ye0 ∈ X̃ be any pair of distinct soft points. Since (X, τ,A) is both soft
T0, there exists a soft open set (H,A) which contains one of the points but
not the other. Suppose that xe ∈ (H,A) and ye0 /∈ (H,A). Since X̃ is
soft R0, then s̃cl({xe}) v (H,A). As ye0 /∈ (H,A) implies ye0 /∈ s̃cl({xe}).
Hence ye0 ∈ (G,A) = X̃ \ s̃cl({xe}) and it is clear that xe /∈ (G,A), this
implies that there exist soft open sets (G,A) and (H,A) containing xe and
ye0 respectively such that xe /∈ (G,A) and ye0 /∈ (H,A). Therefore, (X, τ,A)
is soft T1. 2

Theorem 3.19. A soft topological space (X, τ,A) is soft R0 if and only if
for every soft closed set (K,A) and xe /∈ (K,A), there exists a soft open
set (G,A) such that xe /∈ (G,A) and (K,A) v (G,A).

Proof. Let (X, τ,A) be soft R0, xe ∈ X̃ and (K,A) be soft closed subset
such that xe /∈ (K,A). Then X̃ \ (K,A) is a soft open set containing xe.
Hence, s̃cl({xe}) v X̃ \ (K,A) and then (K,A) v X̃ \ s̃cl({xe}). Now let
(G,A) = X̃ \ s̃cl({xe}), then (G,A) is a soft open set does not contains xe
and (K,A) v (G,A).
Conversely: Let xe ∈ (G,A) where (G,A) is a soft open set in X̃. Then
X̃ \ (G,A) is a soft closed set and xe /∈ (G,A) implies by hypothesis, that
there exists a soft open set (H,A) such that xe /∈ (H,A) and X̃ \ (G,A) v
(H,A). Now X̃ \(H,A) v (G,A) and xe ∈ X̃ \(H,A), but X̃ \(H,A) is soft
closed, hence s̃cl({xe}) v X̃ \ (H,A) v (G,A) this implies that (X, τ,A) is
soft R0. 2

Theorem 3.20. A soft topological space (X, τ,A) is soft T2 if and only if
it is both soft T0 and soft R1.

Proof. Let X̃ be soft T2, then from Proposition 2.18(1), it is soft T0 and
to show X̃ is a soft R1 space, let xe, ye0 ∈ X̃ such that s̃cl({xe}) 6= s̃cl({ye0})
and since X̃ is soft T1 space, so by Proposition 2.18(2), every singleton set in
X̃ is soft closed, that is s̃cl({xe}) = {xe} and s̃cl({ye0}) = {ye0} and since X̃
is a soft T2 space so there exist two disjoint soft open sets (G,A) and (H,A)
such that {xe} = s̃cl({xe}) v (G,A) and {ye0} = s̃cl({ye0}) v (H,A). Thus
X̃ is soft R1 space.
Conversely, let X̃ be soft T0 and soft R1 and xe, ye0 ∈ X̃ such that xe 6= ye0 .
Since X̃ is soft T0, so by Definition 2.17, there exists a soft open set (G,A)
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containing one of the points but not the other. Suppose that xe ∈ (G,A)
and ye0 /∈ (G,A) implies that (G,A) u {ye0} = φ̃, and then xe /∈ s̃cl({ye0})
this implies that s̃cl({xe}) 6= s̃cl({ye0}) and since X̃ is soft R1, so there exist
two disjoint soft open sets (G,A) and (H,A) such that s̃cl({xe}) v (G,A)
and s̃cl({ye0}) v (H,A) implies that xe ∈ (G,A) and ye0 ∈ (H,A) . Thus
(X, τ,A) is soft T2. 2

4. Functions with soft closed graphs

In this section we introduce the concepts of the soft closed graph and the
soft cluster set of a function fpu : (X, τ,A) → (Y, µ,B) and give several
related properties. Also, we proved that a function has a soft closed graph
if and only if its soft cluster set at a fixed point degenerate.

Definition 4.1. The graph of a function fpu : (X, τ,A) → (Y, µ,B) is
denoted by G(fpu) and it is soft closed in X̃ × Ỹ , if for each (xe, ye0) ∈
G(fpu), there exist two soft open sets (U,A) and (V,B) containing xe and
ye0 respectively such that (U,A)× (V,B) uG(fpu) = φ̃.

The following lemma follows from Definition 4.1.

Lemma 4.2. The function fpu : (X, τ,A) → (Y, µ,B) has a soft closed
graph if and only if for each xe ∈ X̃ and ye0 ∈ Ỹ such that fpu(xe) 6=
ye0 , there exist two soft open sets (U,A) and (V,B) containing xe and ye0

respectively such that fpu((U,A) u (V,B)) = φ̃.

Proposition 4.3. If fpu : (X, τ,A) → (Y, µ,B) is an injective function
with soft closed graph, then X̃ is a soft T1 space.

Proof. Let (x1)e1 and (x2)e2 be two distinct points in X̃. Since fpu
is injective, so fpu((x1)e1) 6= fpu((x2)e2). Let fpu((x1)e1) = (y1)e01 thus
fpu((x2)e2) = (y2)e02 , by Lemma 4.2, there exist two soft open sets (U,A)
and (V,B) containing (x2)e2 and (y1)e01 respectively, such that fpu((U,A))u
(V,B) = φ̃, then (U,A) u f−1pu (V,B) = φ̃. We get fpu((x1)e1) = (y1)e01 ∈
(V,B), then (x1)e1 ∈ f−1pu (V,B) implies that, (x1)e1 /∈ (U,A). Again con-
sider fpu((x2)e2) = (y2)e02 implies that fpu((x1)e1) = (y2)e02 . Since the
graph of fpu is soft closed, so there exist soft open sets (U1, A) containing
(x1)e1 and (V1, A) containing (y2)e02 such that fpu((U1, A) u (V1, A)) = φ̃,

so (U1, A) u f−1pu (V1, A) = φ̃, we obtain fpu((x2)e2) = (y2)e02 ∈ (V1, A), so
(x2)e2 ∈ f−1pu (V1, A) and hence (x2)e2 /∈ (U1, A). Therefore, X̃ is a soft T1
space. 2
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Proposition 4.4. If fpu : (X, τ,A) → (Y, µ,B) is a surjective function
with soft closed graph, then Ỹ is a soft T1 space.

Proof. Let (y1)e01 and (y2)e02 be two distinct points in Ỹ . Since fpu is

surjective, so there exists a point (x1)e1 ∈ X̃, with fpu((x1)e1) = (y1)e01 then
fpu((x1)e1) 6= (y2)e02 . Therefore, ((x1)e1 , (y2)e02) /∈ G(fpu), since the graph
of fpu is soft closed, by Lemma 4.2, there exist two soft open sets (U1, A)
containing (x1)e1 and (V2, A) containing (y2)e02 such that fpu((U1, A) u
(V2, A)) = φ̃, We obtain (y2)e02 ∈ (V2, A), and (x1)e1 ∈ (U1, A) implies
that fpu((x1)e1) ∈ fpu(U1, A), so (y1)e01 /∈ (V2, A). Again from the sur-

jectivity of fpu there exists (x2)e2 ∈ X̃ with fpu((x2)e2) = (y2)e02 , then
fpu((x2)e2) 6= (y1)e01 , thus ((x2)e2 , (y1)e01) /∈ G(fpu) and the graph of fpu is
soft closed, there exist two soft open sets (U2, A) and (V1, A) containing
(x2)e2 and (y1)e01 respectively, such that fpu((U2, A)) u (V1, A) = φ̃. We
get (x2)e2 ∈ (U2, A) implies that (y2)e02 = fpu((x2)e2) ∈ fpu((U2, A)), so

(y2)e02 /∈ (V1, A). It follows that Ỹ is soft T1. 2

The following corollary follows from Proposition 4.3 and Proposition
4.4.

Corollary 4.5. If fpu : (X, τ,A) → (Y, µ,B) is a bijective function with
soft closed graph, then both X̃ and Ỹ are soft T1 spaces.

Proposition 4.6. If fpu : (X, τ,A)→ (Y, µ,B) is is soft continuous and Ỹ
is a soft T2 space, then G(fpu) is soft closed.

Proof. Let (xe, ye0) /∈ G(fpu). Then fpu(xe) 6= ye0 and since Ỹ is
a soft T2 space, there exist soft open sets (U,A) and (V,B) such that
fpu(xe) ∈ (U,A), ye0 ∈ (V,B) and ((U,A) u (V,B)) = φ̃. Since fpu is soft
continuous, so there exists a soft open set (G,A) containing xe such that
fpu(G,A) v (U,A). Hence, we have fpu((G,A)) u (V,B) = φ̃. Therefore,
by Lemma 4.2, G(fpu) is soft closed. 2

Definition 4.7. Let fpu : (X, τ,A) → (Y, µ,B) be any soft function. The
soft cluster set of fpu at xe is denoted by s̃C(fpu, xe) is the set of all points
ye0 ∈ Ỹ such that whenever there exists a filter base F soft converges to
the point xe, the filter base < fpu(F) > soft converges to the point ye0 .

The following theorem is a characterization of soft cluster set of a func-
tion fpu.
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Theorem 4.8. Let fpu : (X, τ,A)→ (Y, µ,B) be any function and xe ∈ X̃.
Then the following statements are equivalent:

1. ye0 ∈ s̃C(fpu, xe),

2. ye0 ∈ u{s̃cl(fpu((U,A)) : ∀ (U,A) ∈ s̃N(xe)},

3. fpu(s̃N(xe)) is soft accumulates to ye0 ,

4. f−1pu (s̃N(ye0)) is soft accumulates to xe,

5. xe ∈ u{s̃cl(f−1pu ((V,B)) : ∀ (V,B) ∈ s̃N(ye0)},

Proof. (1)⇒ (2). Let ye0 ∈ s̃C(fpu, xe), so there exists a filter base
F soft converges to the point xe and < fpu(F) > soft converges to the
point ye0 . Suppose that (U,A) is any soft open set containing xe, since F
soft converges to xe, so (U,A) ∈ F and < fpu(F) > soft converges to the
point ye0 . Therefore, ye0 ∈ s̃cl(fpu(xe)) implies that ye0 ∈ s̃cl(fpu((U,A))
for each soft open set (U,A) containing xe. Hence ye0 ∈ u{s̃cl(fpu((U,A)) :
∀ (U,A) ∈ s̃N(xe)}.
(2)⇒ (3). Let ye0 ∈ u{s̃cl(fpu((U,A)) : ∀ (U,A) ∈ s̃N(xe), so ye0 ∈
s̃cl(fpu((U,A)) for each soft open set (U,A) containing xe. Then fpu((U,A))u
(V,B) 6= φ̃ for each soft open sets (U,A) containing xe and (V,B) contain-
ing ye0 implies that fpu(s̃N(xe) u (V,B) 6= φ̃ for every soft open set (V,B)
containing ye0 and hence fpu(s̃N(xe)) is soft accumulates to ye0 .
(3)⇒ (4). Let fpu(s̃N(xe)) is soft accumulates to ye0 , which implies that
fpu(s̃N(xe)u(V,B) 6= φ̃ for each (V,B) ∈ s̃N(ye0), thus (U,A)uf−1pu (s̃N(ye0)) 6=
φ̃ for every soft open set (U,A) in X̃ containing xe it follows that f

−1
pu (s̃N(ye0))

is soft accumulates to xe.
(4)⇒ (5). Assume that f−1pu (s̃N(ye0)) is soft accumulates to xe, so (U,A)u
f−1pu (s̃N(ye0)) 6= φ̃, for every soft open set (U,A) containing xe. It follows

that (U,A)uf−1pu ((V,B)) 6= φ̃ for every soft open set (U,A) in X̃ containing

xe and (V,B) in Ỹ containing ye0 . Hence, xe ∈ s̃cl(f−1pu ((V,B))) for every
soft open set (V,B) containing ye0 . This shows that xe ∈ u{s̃cl(f−1pu ((V,B)) :
∀ (V,B) ∈ s̃N(ye0)}.
(5)⇒ (1). Since SO(X̃, xe) is a filter base which is soft converges to the
point xe, then SO(X̃, xe) is contained in an ultra filter F on X̃ which is also
soft converges to xe, so there exists (F,A) ∈ F such that (F,A) v (U,A)
for every soft open set (U,A) in X̃ containing xe, so (U,A) ∈ F . By
(5), xe ∈ s̃cl(f−1pu ((V,B)) for every soft open set (V,B) containing ye0 . So
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(U,A) u f−1pu ((V,B)) 6= φ̃, implies that fpu((U,A)) u (V,B) 6= φ̃ for every
soft open set (U,A) containing xe and (V,B) containing ye0 . Hence, by
Proposition 2.16, fpu(F) is an ultra filter base which is soft accumulates to
the soft point ye0 ,so by Theorem 2.15, fpu(F) is soft convergent to ye0 . 2

By using the concept of soft cluster set of a function fpu : (X, τ,A) →
(Y, µ,B) we obtain some properties and characterizations of the soft graph
of the function fpu. We start by the following result which is a relation be-
tween a function with soft closed graph and soft cluster set of the function.
First we introduce the concept of degenerate soft cluster set.

Definition 4.9. Let (X, τ,A) be a soft topological space, the degenerate
soft cluster set of fpu is a soft cluster set which contains exactly one element.

Theorem 4.10. Let fpu : (X, τ,A)→ (Y, µ,B) be any function, the graph
of fpu is soft closed if and only if the soft cluster set of fpu at xe is degenerate.

Proof. Let ye0 be any point in Ỹ different from fpu(xe). By Lemma
4.2, there exist (U,A) ∈ SO(X̃, xe) and (V,B) ∈ SO(Ỹ , ye0) such that
fpu((U,A)) u (V,B) 6= φ̃. This implies that ye0 /∈ s̃cl(fpu((U,A)) and by
Theorem 4.8(2), ye0 ∈ s̃C(fpu, xe). Hence s̃C(fpu, xe) = {fpu(xe)}.
Conversely, suppose G(fpu) is not soft closed. This implies that there exists
(xe, ye0) /∈ G(fpu) such that fpu((U,A)) u (V,B) 6= φ̃ for every soft open
set (U,A) in X̃ containing xe and (V,B) in Ỹ containing ye0 , then ye0 ∈
s̃cl(fpu((U,A)) for each soft open set (U,A) containing xe by Theorem
4.8(2), ye0 ∈ s̃C(fpu, xe) which contradicts the fact that s̃C(fpu, xe) =
{fpu(xe)}. Therefore, G(fpu) is soft closed. 2

The following results follows from Theorem 4.10 and the definition of
soft cluster set of a function.

Corollary 4.11. The function fpu : (X, τ,A)→ (Y, µ,B) has a soft closed
graph if and only if there exists a filter base F soft converges to a point xe,
the filter base fpu(F) soft converges to a point ye0 and ye0 = fpu(xe)..

Corollary 4.12. Let fpu : (X, τ,A) → (Y, µ,B) be any function. The
graph of fpu is soft closed if and only if

fpu(xe) ∈ u{s̃cl(fpu((U,A)) : ∀ (U,A) ∈ s̃N(xe)}

.
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5. Conclusion

In the last two decades the soft set theory, new definitions, examples, new
classes of soft sets, and properties for mappings between different classes
of soft sets are introduced and studied. After then, the theory of soft
topological spaces is investigated. This paper continues the study of the
theory of soft topological spaces. In section 3, we present the notion of soft
Ri spaces for i = 0, 1, we get several characterizations and properties of
these two spaces. In section 4, we obtain nice results concerning functions
with soft closed graphs and its relations with the notion of soft convergence
and cluster set of a function.

References

[1] M. Akdag, and A. Ozkan, “On soft preopen sets and soft pre separation axioms”, Gazi university journal of science, vol. 27, no. 4, pp. 1077-1083, 2014. 
[2] S. Bayramov and and C. G. Aras, “A new approach to separability and compactness in soft topological spaces”, Turkic World Mathematical 

Society Journal of pure and applied mathematics, vol. 9, no. 1, pp. 82-93, 2018.
[3] S. Hussain and B. Ahmad, “Some properties of soft topological spaces”, 

Computers and mathematics with applications, vol. 62, no. 11, pp. 4058–4067, 2011. doi: 10.1016/j.camwa.2011.09.051
[4] S. Hussain, “Soft separation axioms in soft topological spaces”, 

Hacettepe journal of mathematics and statistics, vol. 44, no. 3, pp. 559-568, 2015. 
[5] A. Kharal and B. Ahmad, “Mappings on soft classes”, New mathematics 

and natural computation, vol. 7, no. 3, pp. 471–481, 2011. doi: 10.1142/ S1793005711002025
[6] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory”, Computers and 

mathematics with applications, vol. 45, no. 4-5, pp. 555–562, 2003. doi: 10.1016/S0898-1221(03)00016-6
[7] D. Molodtsov, “Soft set theory-first results”, Computers and mathematics 

with applications, vol. 37, no. 4-5, pp. 19–31, 1999. doi: 10.1016/ S0898-1221(99)00056-5



194 Alias B. Khalaf, Nehmat K. Ahmed and Qumri H. Hamko

[8] R. Sahin and A. Kucuk, “Soft filters and their convergence properties”, 
Annals of fuzzy mathematics and informatics, vol. 6, no. 3, pp. 529-543, 2013.

[9] M. Shabir and M. Naz, “On soft topological spaces”, Computers and 
mathematics with applications, vol. 61, no. 7, pp. 1786–1799, 2011. doi: 10.1016/j.camwa.2011.02.006

[10] M. E. El-Shafei, M. Abo-Elhamayel, and T. M. Al-Shami, “Partial soft separation axioms and soft compact spaces”, Filomat, vol. 32, no. 13, pp. 4755–4771, 2018. doi: 10.2298/FIL1813755E
[11]  P. Wang and J. He, “Characterization of soft compact spaces based on soft filter”, Journal of theoretical and applied information technology, vol. 79, no. 3, pp. 431-436, 2015.
[12] Ş. Yüksel, N. Tozlu, and Z. G. Ergül, “Soft filter”, Mathematical sciences, vol. 8, no. 1, 2014. doi: 10.1007/s40096-014-0119-4 
[13] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Annals of fuzzy mathematics and informatics, vol. 3, no. 2, pp. 171-185, 2012.
[14] İ. Zorlutuna and H. Çakır, “On continuity of soft mappings”, Applied 

mathematics and information sciences, vol. 9, no. 1, pp. 403–409, 2015. doi: 10.12785/amis/090147



Soft separation axioms and functions with soft closed graphs 195

Alias B. Khalaf
Department of Mathematics,
College of Science,
University of Duhok,
Kurdistan Region
Iraq
e-mail: aliasbkhalaf@uod.ac
Corresponding author

Nehmat K. Ahmed
Department of Mathematics,
College of Education,
Salahaddin University,
Kurdistan-Region,
Iraq
e-mail: nehmat.ahmed@su.edu.krd

and

Qumri H. Hamko
Department of Mathematics,
College of Education,
Salahaddin University,
Kurdistan-Region,
Iraq
e-mail: qumri.hamko@su.edu.krd


