
https://orcid.org/0000-0003-3850-1022
https://orcid.org/0000-0002-1694-7907
https://creativecommons.org/licenses/by/4.0/
https://www.revistas.ucn.cl
https://doi.org/10.22199/issn.0717-6279-2021-02-0029
https://doi.org/10.22199/issn.0717-6279
https://portal.issn.org/resource/ISSN/0717-6279#


506 Osama Moaaz and Clemente Cesarano

1. Introduction

In this paper, we are concerned with the oscillation of the fourth-order
nonlinear neutral differential equations with delay argumenth

r (t)
³
(x (t) + p (t)x (τ (t)))000

´αi0
+ q (t) f (x (g (t))) = 0, t ≥ t0,(1.1)

where r, p, q, τ, g ∈ C ([t0,∞) ,R), r (t) and q (t) are positive, 0 ≤ p (t) ≤
p < 1, α ≥ 1 is a quotient of odd positive integers, r0 (t) > 0, τ 0 (t) > 0,
τ (t) ≤ t, g (t) ≤ t, limt→∞ τ (t) = ∞, limt→∞ g (t) = ∞, the function f
satisfies the following condition

f ∈ C (R,R) , f (x) /xα ≥ k > 0 for x = 0,(1.2)

where k a constant and Z ∞
t0

r−1/α (t) dt <∞.(1.3)

We define the corresponding function υ (t) = x (t) + p (t)x (τ (t)). By a
solution of Eq. (1.1), we mean a non-trivial real function x(t) ∈ C ([tx,∞)),
tx ≥ t0, which has the properties x (t) , υ(t), υ

0(t), υ00(t) and r (t) [υ000 (t)]α

are continuously differentiable for all t ∈ [tx,∞) and satisfies (1.1) on
[tx,∞). We consider only those solutions x (t) of (1.1) which satisfy sup{|x(t)| :
t ≥ L} > 0 for any L ≥ tx. A solution of Eq. (1.2) is called oscillatory if it
has arbitrary large zeros, otherwise it is called nonoscillatory.

In models concerning chemical, biological and physical phenomena,
fourth-order differential equations naturally appear; see [1]. In the past
decade, there has been increasing interest in obtaining oscillation and nonoscil-
lation criteria of different classes of third and fourth-order differential equa-

tions. The works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] improved the oscillation
criteria for second-order equations with delay and advanced argument. For
even-order delay equations, papers [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] developed the oscillation criteria. Whereas, the results in [31, 32, 33, 34, 35, 36] dealt with the issue of oscillation of equations of odd-order.

Agarwal et al. [14] studied the oscillatory behavior of the delay equation∙
r3 (t)

µh
r2 (t)

³
[r1 (t) (x

0 (t))α1 ]0
´α2i0¶α3¸0 ± q (t) f (x (g (t))) = 0,

where
R∞ r

1/αi
i (ϑ) dϑ < ∞, i = 1, 2, 3. Grace et al. [16] established new

criteria for oscillation of delay equation

¡
r (t)

¡
x0 (t)

¢α¢000
+ q (t) f (x (g (t))) = 0,
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Wu [30] and Kamo and Usami [24] studied the oscillation behavior of
delay equation³

r (t)
¯̄
x00 (t)

¯̄α−1
x00 (t)

´00
+ q |x (t)|β−1 x (t) = 0,

where α, β > 0.

For neutral delay equations, Li et al. [19] studied oscillatory properties
of solutions of even-order equations

(x (t) + p (t)x (τ (t)))(n) + q (t)x (g (t)) = 0,

relating oscillation of higher-order equations to that of a pair of associated
first-order delay differential equations. Based on the comparison with first-
order delay equations, Moaaz et al. [28] established an oscillation criterion
for neutral equations

³
r (t)

³
(x (t) + p (t)x (τ (t)))(n−1)

´α´0
+ q (t)xα (g (t)) = 0,

where
R∞ r1/α (ϑ) dϑ =∞..

Actually, we have greatly less results for fourth order neutral differential
equations than those can be found in the literature on the oscillation of
solutions of differential equations of first, second orders, also even-order
delay equations. So, the main objective of this paper is to shed light on
the class of fourth order neutral equations (1.1), and through study the
oscillation criteria of solutions of this equation. In order to discuss our
main results, we need the following lemmas

Lemma 1.1. [3, Lemma 2.1] Assume that α ≥ 1 is a quotient of odd
positive integers, A, B, U and V are constants, AB ≥ 0 and V > 0. Then

A(α+1)/α − (A−B)(α+1)/α ≤ 1

α
B1/α ((α+ 1)A−B)(1.4)

and

Uy − V y(α+1)/α ≤ αα

(α+ 1)α+1
Uα+1V −α, y ≥ 0.(1.5)

Lemma 1.2. [37] If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and
x(n+1) (t) < 0, then
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x (t)

tn/n!
≥ λx0 (t)

tn−1/ (n− 1)! ,

for all λ = (0, 1).

Lemma 1.3. [2, Lemma 2.2.3] Let x ∈ Cn ([t0,∞) , (0,∞)) . Assume that
x(n) (t) is of fixed sign and not identically zero on [t0,∞) and that there
exists a t1 ≥ t0 such that
x(n−1) (t)x(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ x (t) 6= 0, then for every
µ ∈ (0, 1) there exists tµ ≥ t1 such that

x(t) ≥ µ
(n−1)! t

n−1
¯̄̄
x(n−1) (t)

¯̄̄
for t ≥ tµ.

2. Main results

In this section, we will establish some oscillation criteria for solutions of the
Eq. (1.1). For simplicity, denote by S⊕ the set of all eventually positive
solutions of the equation (1.1). Also, we introduce the following notations:

η0 (t) =
R∞
t r−1/α (s) ds, ηi (t) =

R∞
t ηi−1 (s) ds, η0 (t) = η (t) , i = 1, 2,

and

β = αα

(α+1)α+1
.

Lemma 2.1. If x (t) is an eventually positive three times continuously
differentiable function such that r (t) (υ000 (t))α is continuously differentiable
and (r (t) (υ000 (t))α)0 ≤ 0 for large t, then one of the following cases holds
for large t,

(C1) υ (t) > 0, υ0 (t) > 0, υ00 (t) > 0 and υ000 (t) > 0,

(C2) υ (t) > 0, υ0 (t) > 0, υ00 (t) < 0 and υ000 (t) > 0,

(C3) υ (t) > 0, υ0 (t) < 0, υ00 (t) > 0 and υ000 (t) < 0,

(C4) υ (t) > 0, υ0 (t) > 0, υ00 (t) > 0 and υ000 (t) < 0.

The proof is immediate and hence is omitted.

Lemma 2.2. Let x (t) ∈ S⊕ and the corresponding υ (t) satisfy (C1).
Then there exist a positive function ρ1 ∈ C1 ([t0,∞)) such that for some
µ ∈ (0, 1),
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R1 :=

Z ∞
t0

Ã
Ψ (s)− 2α

(α+ 1)α+1
r (s) (ρ01 (s))

α+1

µαs2αρα1 (s)

!
ds <∞,(2.1)

where

Ψ (t) = kρ1 (t) q (t) (1− p (g (t)))α
µ
g (t)

t

¶3α
.(2.2)

Proof. Assume that x (t) ∈ S⊕. It follow from the facts r0 (t) > 0 and
(r (t) (υ000 (t))α)0 ≤ 0 that υ(4) (t) < 0. Since τ(t) ≤ t and υ0 (t) > 0, we get

x(t) = υ(t)− p(t)x(τ(t))

≥ (1− p(t))υ(t).

From equation (1.1), we see that

¡
r (t)

¡
υ000 (t)

¢α¢0
= −q (t) f (x (g (t)))(2.3)

≤ −kq (t) (1− p (g (t)))α υα (g (t)) .(2.4)

Now, we define a generalized Riccati substitution by

ω (t) := ρ1 (t)
r(t)(υ000(t))α

υα(t) .

Then ω (t) > 0. By differentiating and using (2.4), we obtain

ω0 (t) ≤ ρ01 (t)

ρ1 (t)
ω (t)− kρ1 (t) q (t) (1− p (g (t)))α

υα (g (t))

υα (t)
(2.5)

−αρ1 (t)
r (t) (υ000 (t))α

υα+1 (t)
υ0 (t) .(2.6)

From Lemma 1.2, we have that υ (t) ≥ t
3υ
0 (t), and hence,

υ (g (t))

υ (t)
≥ g3 (t)

t3
.(2.7)

It follows from Lemma 1.3 that

υ0 (t) ≥ µ

2
t2υ000 (t) ,(2.8)

for all µ ∈ (0, 1) and every sufficiently large t. Thus, by (2.6), (2.7) and
(2.8), we get
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ω0 (t) ≤ ρ01 (t)

ρ1 (t)
ω (t)− kρ1 (t) q (t) (1− p (g (t)))α

µ
g (t)

t

¶3α
(2.9)

−αµ t2

2r1/α (t) ρ
1/α
1 (t)

ω
α+1
α (t) .(2.10)

Using the inequality (1.5) with U =
ρ01(t)
ρ1(t)

, V = αµt2

2r1/α(t)ρ
1/α
1 (t)

and y = ω,

we get

ω0 (t) ≤ −Ψ (t) + 2α

(α+ 1)α+1
r (t) (ρ01 (t))

α+1

µαt2αρα1 (t)
.

This implies that

Z t

t1

Ã
Ψ (s)− 2α

(α+ 1)α+1
r (s) (ρ01 (s))

α+1

µαs2αρα1 (s)

!
ds ≤ ω (t1) .

This completes the proof of Lemma 2.2. 2

Lemma 2.3. Let x (t) ∈ S⊕ and the corresponding υ (t) satisfy (C2).
Then there exist a positive function ρ2 ∈ C1 ([t0,∞)) such that

R2 :=

Z ∞
t0

Ã
Φ (s)− (ρ

0
2 (s))

2

4ρ2 (s)

!
ds <∞,(2.11)

where

Φ (t) = ρ2 (t)

Z ∞
t

µ
k

r (u)

Z ∞
u

q (s)
gα (s)

sα
(1− p (g (s)))α ds

¶1/α
du.

(2.12)

Proof. In view of the proof of Lemma 2.2, it follows that (2.4) holds.
Integrating (2.4) from t to u, we obtain

r (u)
¡
υ000 (u)

¢α − r (t)
¡
υ000 (t)

¢α ≤ −k Z u

t
q (s) (1− p (g (s)))α υα (g (s)) ds.
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(2.13)

From Lemma 1.2, we get that υ (t) ≥ tυ0 (t), and hence,

υ (g (t)) ≥ g (t)

t
υ (t) .(2.14)

For (2.13), letting u→∞ and using (2.14), we get
r(t) (υ000 (t))α ≥ kυα (t)

R∞
t q (s) g

α(s)
sα (1− p (g (s)))α ds.

Integrating the former inequality again from t to ∞, we get

υ00 (t) ≤ −υ (t)
Z ∞
t

µ
k

r (u)

Z ∞
u

q (s)
gα (s)

sα
(1− p (g (s)))α ds

¶1/α
du.

(2.15)

Now, we define

w (t) = θ (t)
υ0 (t)

υ (t)
.

Then w (t) > 0 for t ≥ t1 ≥ t0. By differentiating the last inequality
and using (2.15), we find

w0 (t) =
θ0 (t)

θ (t)
w (t) + θ (t)

υ00 (t)

υ (t)
− θ (t)

µ
υ0 (t)

υ (t)

¶2

≤ θ0 (t)

θ (t)
w (t)− θ (t)

Z ∞
t

µ
k

r (u)

Z ∞
u

q (s)
gα (s)

sα
(1− p (g (s)))α ds

¶1/α
du

− 1

θ (t)
w2 (t) .(2.16)

Thus, we obtain

w0 (t) ≤ −Φ (t) + (θ
0 (t))2

4θ (t)
.

Then, we get
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Z t

t1

Ã
Φ (s)− (θ

0 (t))2

4θ (t)

!
ds ≤ w (t1) .

This completes the proof of Lemma 2.3. 2

Lemma 2.4. Assume that p (t) = p (constant). If x (t) ∈ S⊕ and the
corresponding υ (t) satisfy (C3), then there exists an odd integer n ≥ 0
such that

R3 :=

Z ∞
t0

µ
kλαηα2 (s) q (s)− αβ

η1 (s)

η2 (s)

¶
ds ≤ 1,(2.17)

where λ =
Pn

r=0 (−1)r pr < 1.

Proof. Let x (t) is a positive solution of equation (1.1). Since r (t) (υ000 (t))α

nonincreasing, we have that r (s) (υ000 (s))α ≤ r (t) (υ000 (t))α for all s ≥ t ≥
t1. This yields

υ000 (s) ≤ [r (t) (υ000 (t))α]1/α 1
r1/α(s)

.

By integrating this inequality three times from t to ∞ and using (C3),
we get

(−1)i+1 υ(i) (t) ≤
£
r (t)

¡
υ000 (t)

¢α¤1/α
η2−i (t) , i = 0, 1, 2.(2.18)

New, we define
τ0 (t) = t, τ j (t) = τ

¡
τ j−1 (t)

¢
, j = 1, 2, ... .

Then, we obtain
x(t) = υ (t)− px (τ (t)) = υ (t)− pυ (τ (t)) + p2x

¡
τ2 (t)

¢
,

for all sufficiently large t. Repeating this procedure and the monotonicity of
υ, we obtain that there exists an odd integer n ≥ 0 such that τn+1 (g (t)) ≥
t1 ≥ t0 and

x(g (t)) =
Pn

r=0 (−1)r prυ (τ r (g (t)))+pn+1x
¡
τn+1 (g (t))

¢
≥ λυ (g (t)) ,

where λ > 0. Hence, from (1.1), we see that

£
r (t)

¡
υ000 (t)

¢α¤0 ≤ −kλαq (t) υα (g (t))(2.19)

≤ −kλαq (t) υα (t) .(2.20)

Next, we define

ψ (t) =
r (t) (υ000 (t))α

υα (t)
.(2.21)



Oscillation results for a certain class of fourth-order ... 513

Thus, we see that ψ (t) < 0 and satisfies

ψ0 (t) = [r(t)(υ000(t))α]0

υα(t) − α r(t)(υ000(t))α

υα+1(t)
υ0 (t) .

Hence, from (2.20) and [(2.18) with i = 1], we have

ψ0 (t) ≤ −kλαq (t)− αη1 (t)ψ
1+α
α (t) .(2.22)

From (2.18) with i = 0, we have

ηα2 (t)ψ (t) ≥ −1.(2.23)

Multiplying (2.22) by ηα2 (t) and integrating from t1 to t, we obtain

ηα2 (t)ψ (t)− ηα2 (t1)ψ (t1) ≤ −α
Z t

t1
η1 (s) η

α−1
2 (s)ψ (s) ds

−kλα
Z t

t1
ηα2 (s) q (s) ds− α

Z t

t1
η1 (s) η

α
2 (s)ψ

1+α
α (s) ds,

which with (2.23) gives

1 + ηα2 (t1)ψ (t1) ≥ kλα
Z t

t1
ηα2 (s) q (s) ds

+α

Z t

t1
η1 (s) η

α−1
2 (s)

h
ψ (s) + η2 (s)ψ

1+α
α (s)

i
ds.

Using the inequality (1.5) with U = 1, V = η2 (s) and y = −ψ, we get
ψ (s) + η2 (s)ψ

1+α
α (s) ≥ − αα

(α+1)α+1
η−α2 (s) .

Hence, it follows that

Z t

t1

Ã
kλαηα2 (s) q (s)−

αα+1

(α+ 1)α+1
η1 (s)

η2 (s)

!
ds ≤ 1 + ηα2 (t1)ψ (t1)

≤ 1.

This completes the proof of Lemma 2.4. 2

Lemma 2.5. Assume that x (t) ∈ S⊕ and the corresponding υ (t) satisfy
(C4). Then

R4 :=

Z ∞
t0

µ
keµα
2α

q (s)
h
η0 (s) (1− p (g (s))) g2 (s)

iα
− αβ

r1/α (s) η0 (s)

¶
ds ≤ 1,

(2.24)
for some eµ ∈ (0, 1).



514 Osama Moaaz and Clemente Cesarano

Proof. In view of the proofs of Lemma 2.2 and Lemma 2.4, we have
that (2.4) and (2.18) with i = 2 hold, respectively. The inequality (2.18)
with i = 2 yields

ηα0 (t)
r (t) (υ000 (t))α

(υ00 (t))α
≥ −1(2.25)

From Lemma 1.3, we have that υ (t) ≥ eµ
2 t
2υ00 (t) for all eµ ∈ (0, 1) and

every sufficiently large t. Thus, there exists a t2 ≥ t1 such that

υ (g (t))

υ00 (g (t))
≥ eµ
2
g2 (t) ,(2.26)

for t ≥ t2. Next, we define

ϕ (t) =
r (t) (υ000 (t))α

(υ00 (t))α
.(2.27)

We note that ϕ (t) < 0 for t ≥ t1. By differentiating (2.27) and using
(2.4) and (2.26), we obtain

ϕ0 (t) ≤ −keµα
2α q (t) (1− p (g (t)))α g2α (t)

³
υ00(g(t))
υ00(t)

´α
− α 1

r1/α(t)
ϕ

α+1
α (t) .

Since, g (t) ≤ t and υ000 (t) < 0, we have that υ00 (g (t)) ≥ υ00 (t), and
hence

ϕ0 (t) ≤ −keµα
2α

q (t) (1− p (g (t)))α g2α (t)− α

r1/α (t)
ϕ

α+1
α (t) .(2.28)

Multiplying (2.28) by ηα0 (t) and integrating from t2 to t, and using
(2.25), we obtain

1 + ηα0 (t2)ϕ (t2) ≥
keµα
2α

Z t

t2
q (s) ηα0 (s) (1− p (g (s)))α g2α (s) ds

+α

Z t

t2

ηα−10 (s)

r1/α (s)

³
ϕ (s) + η0 (s)ϕ

1+α
α (s)

´
ds.

By following the same steps in Lemma 2.4, we get that

Z t

t2

Ã
keµα
2α

q (s) ηα0 (s) (1− p (g (s)))α g2α (s)−
µ

α

α+ 1

¶α+1 1

r1/α (s) η0 (s)

!
ds

≤ 1 + ηα0 (t2)ϕ (t2) ,

≤ 1.



Oscillation results for a certain class of fourth-order ... 515

This completes the proof of Lemma 2.5. 2

Theorem 2.1. Assume that p (t) = p (constant). If there exist positive
functions ρ, θ ∈ C1 ([t0,∞)) and odd integer n ≥ 0 such that R1 = R2 =∞,
R3 > 1 and R4 > 1, for some µ, eµ ∈ (0, 1), where R1, R2, R3$andR4 are
defined by (2.1), (2.11), (2.17) and (2.24), respectively, then every solution
of (1.1) is oscillatory.

In the next theorem, we establish new oscillation results for equation
(1.1) by using the integral averaging technique due to Philos [38].

Theorem 2.2. Assume that there exist positive functions ρ, θ ∈ C1 ([t0,∞)) ,
Hi, hi ∈ C (D,R) for i = 1, 2, 3, 4, where D = {(t, s) ∈ R2 : t ≥ s ≥ t0},
such that Hi (t, t) = 0$fort≥ t0, Hi (t, s) > 0 for t > s ≥ t0, Hi has a
nonpositive continuous partial derivative ∂Hi/∂s satisfying

ρ (s) ∂H1(t,s)
∂s + ρ0 (s)H1 (t, s) = h1 (t, s)H

α
α+1

1 (t, s) ,

θ (s) ∂H2(t,s)
∂s + θ0 (s)H2 (t, s) = h2 (t, s)

p
H2 (t, s),

ρ3 (s)
∂H3(t,s)

∂s + ρ03 (s)H3 (t, s) = −h3 (t, s)H
α

α+1

3 (t, s)

and

ρ4 (s)
∂H4(t,s)

∂s + ρ04 (s)H4 (t, s) = −h4 (t, s)H
α

α+1

4 (t, s) .

If

lim sup
t→∞

1

H1 (t, t0)

Z t

t0

⎛⎜⎝H1 (t, s)Ψ (s)−
2α

(α+ 1)α+1

r (s)
h
hα+11 (t, s)

i
+

µαs2αρα (s)

⎞⎟⎠ ds =∞,

(2.29)

lim sup
t→∞

1

H2 (t, t0)

Z t

t0

Ã
H2 (t, s)Φ (s)−

£
h22 (t, s)

¤
+

4θ (s)

!
ds =∞,(2.30)

lim sup
t→∞

1

H3 (t, t0)

Z t

t0

⎛⎜⎝kλαH3 (t, s) ρ3 (s) q (s)−
1

(α+ 1)α+1

h
hα+13 (t, s)

i
+

ηα1 ρ
α
3 (s)

⎞⎟⎠ ds =∞

(2.31)

and
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lim sup
t→∞

1

H4 (t, t0)

Z t

t0

Ã
Ω (t, s)− 1

(α+ 1)α+1
rhα+14

ρα4

!
ds =∞,(2.32)

where Ω (t, s) = keµα
2α H4 (t, s) ρ4 (s) q (s) (1− p (g (s)))α g2α (s), then every

solution of (1.1) is oscillatory.

Proof. Assume that equation (1.1) has a nonoscillatory solution x (t).
Without loss of generality, we may assume that x (t) is an eventually posi-
tive solution. By Lemma 2.1, we observe that υ (t) has one of the four cases
(C1)− (C4) for t ≥ t1. For Case (C1), proceeding as a proof of Lemma 2.2,
we have that (2.10) holds. Multiplying (2.10) by H1 (t, s) and integrating
the resulting inequality from t1 to t, we find

Z t

t1
H1 (t, s)Ψ (s) ds ≤ H1 (t, t1)ω (t1) +

Z t

t1

µ
∂H1 (t, s)

∂s
+

ρ0 (s)

ρ (s)
H1 (t, s)

¶
ω (s) ds(2.33)

−
Z t

t1

αµs2

2r1/α (s) ρ1/α (s)
H1 (t, s)ω

α+1
α (s) ds(2.34)

≤ H1 (t, t1)ω (t1) +

Z t

t1

h (t, s)

ρ (s)
H

α
α+1

1 (t, s)ω (s) ds(2.35)

−
Z t

t1

αµs2

2r1/α (s) ρ1/α (s)
H1 (t, s)ω

α+1
α (s) ds.(2.36)

By Lemma 1.1, if we set U = h
ρH

α
α+1

1 , V = αµs2

2r1/αρ1/α
H1 and y = ω, then

we obtain

h
ρH

α
α+1
1 ω− αµs2

2r1/αρ1/α
H1ω(α+1)/α≤ 2α

(α+1)α+1

rhα+1
1

µαs2αρα
,

which with (2.36) gives

1
H1(t,t1)

R t
t1

µ
H1(t,s)Ψ(s)− 2α

(α+1)α+1

r(s)[hα+11
(t,s)]

+

µαs2αρα(s)

¶
ds≤ω(t1),

which contradicts (2.29). In the Case (C2), as in the proof of Lemma 2.3,
we get that (2.16) holds. Multiplying (2.16) by H2 (t, s) and integrating
the resulting from t2 to t, we obtain

Z t

t2
H2 (t, s)Φ (s) ds ≤ H2 (t, t2)w (t2) +

Z t

t2

µ
∂H2 (t, s)

∂s
+

θ0 (s)

θ (s)
H2 (t, s)

¶
w (s) ds
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−
Z t

t2

1

θ (s)
H2 (t, s)w

2 (s) ds

≤ H2 (t, t2)w (t2) +

Z t

t2

h2 (t, s)

θ (s)

q
H2 (t, s)w (s) ds

−
Z t

t2

1

θ (s)
H2 (t, s)w

2 (s) ds

and so,

1
H2(t,t2)

R t
t2

³
H2(t,s)Φ(s)−

h2
2
(t,s)

4θ(s)

´
ds≤w(t2),

which contradicts (2.30). Now, let Case (C3) holds. Proceeding as a proof
of Lemma 2.4, we have that (2.18), (2.20) and (2.22) hold. Next, we define
ψ (t) = ρ3 (t)ψ (t) where ψ (t) defined as (2.21). Then, we see that ψ (t) < 0

and satisfies ψ
0
(t) = (ρ03 (t) /ρ3 (t))ψ (t) + ρ3 (t)ψ

0 (t). Hence, from (2.22),
we find

ψ
0
(t) ≤ ρ03(t)

ρ3(t)
ψ (t)− kλαρ3 (t) q (t)− αη1(t)

ρ
1/α
3 (t)

ψ
1+α
α (t) .

Multiplying this inequality by H3 (t, s) and integrating the resulting
from t3 to t, we obtain

Z t

t3
kλαH3 (t, s) ρ3 (s) q (s) ds(2.37)

≤ H3 (t, t3)ψ (t3) +

Z t

t3

µ
∂H3 (t, s)

∂s
+

ρ03 (s)

ρ3 (s)
H3 (t, s)

¶
ψ (s) ds(2.38)

−
Z t

t3

αη1 (s)

ρ
1/α
3 (s)

H3 (t, s)ψ
1+α
α (s) ds(2.39)

≤ H3 (t, t3)ψ (t3)−
Z t

t3

h3 (t, s)

ρ3 (s)
H

α
α+1

3 (t, s)ψ (s) ds(2.40)

−
Z t

t3

αη1 (s)

ρ
1/α
3 (s)

H3 (t, s)ψ
1+α
α (s) ds.(2.41)

By Lemma 1.1, if we set U = h3
ρ3
H

α
α+1

3 , V = αη1

ρ
1/α
3

H3 and y = −ψ, then
we obtain

-h 3

ρ3H
α

α+1
3 ψ− αη1

ρ
1/α
3

H3ψ
(α+1)/α≤ 1

(α+1)α+1

hα+1
3

ηα
1
ρα
3
,

which with (2.41) gives
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1

H3 (t, t3)

Z t

t3

Ã
kλαH3 (t, s) ρ3 (s) q (s)−

1

(α+ 1)α+1
hα+13 (t, s)

ηα1 ρ
α
3 (s)

!
ds ≤ ψ (t3) ,

(2.42)
which contradicts (2.31). Assume that Case (C4) holds. Proceeding as
a proof of Lemma 2.5, we get that (2.28) holds. Next, we define ϕ (t) =
ρ4 (t)ϕ (t) where ϕ (t) defined as (2.27). Then, we note that ϕ (t) < 0 and
ϕ0 (t) = (ρ04 (t) /ρ4 (t))ϕ (t) + ρ4 (t)ϕ

0 (t). Thus, from (2.28), we have

ϕ0 (t) ≤ ρ04 (t)

ρ4 (t)
ϕ (t)− keµα

2α
ρ4 (t) q (t) (1− p (g (t)))α g2α (t)

− α

r1/α (t) ρ
1/α
4 (t)

ϕ
α+1
α (t) .

Multiplying this inequality by H4 (t, s) and integrating the resulting
from t4 to t, we obtain

Z t

t4

keµα
2α

H4 (t, s) ρ4 (s) q (s) (1− p (g (s)))α g2α (s) ds

≤ H4 (t, t4)ϕ (t4) +

Z t

t4

µ
∂H4 (t, s)

∂s
+

ρ04 (s)

ρ4 (s)
H4 (t, s)

¶
ϕ (s) ds

−
Z t

t4

α

r1/α (s) ρ
1/α
4 (s)

H4 (t, s)ϕ
α+1
α (s) ds

and so,

Z t

t4

keµα
2α

H4 (t, s) ρ4 (s) q (s) (1− p (g (s)))α g2α (s)(2.43)

≤ H4 (t, t4)ϕ (t4)−
Z t

t4

h4 (t, s)

ρ4 (s)
H

α
α+1

4 (t, s)ϕ (s) ds(2.44)

−
Z t

t4

α

r1/α (s) ρ
1/α
4 (s)

H4 (t, s)ϕ
α+1
α (s) ds.(2.45)

By Lemma 1.1, if we set U = h4
ρ4
H

α
α+1

4 , V = α

r1/αρ
1/α
4

H4 and y = −ϕ,
then we find

-h 4

ρ4H
α

α+1
4 ϕ− α

r1/αρ
1/α
4

H4ϕ
α+1
α ≤ 1

(α+1)α+1

rhα+1
4
ρα
4

,
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which with (2.45) gives

1

H4 (t, t4)

Z t

t4

⎛⎜⎝Ω (t, s)− 1

(α+ 1)α+1

r (s)
h
hα+14 (t, s)

i
+

ρα4 (s)

⎞⎟⎠ ds ≤ ϕ (t4) ,

(2.46)

which contradicts (2.31). 2

Example 2.1. Consider a delay differential equation

∙
et
µ∙

x (t) +
1

2
x

µ
t

2

¶¸000¶¸0
+ δetx

µ
t

2

¶
= 0, t ≥ t0,(2.47)

where δ > 0 is a constant. We note that

ηi (t) = e−t, i = 0, 1, 2.
If we now set ρ1 (t) = ρ2 (t) = 1, then we get that R1 = R2 =∞. Also,

we see that R3 = R4 > 1 if δ > 1/4. Thus, By Theorem 2.1, every solution
of equation (2.47) is oscillatory for δ > 1/4.
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