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Abstract

For third order linear differential equations of the form

(r(t)x0(t))
00
+ p(t)x0(t) + q(t)x(t) = 0,

we will establish lower bounds for the distance between zeros of a solu-
tion and/or its derivatives. The main results will be proved by making
use of Hardy’s inequality, some generalizations of Opial’s inequality
and Boyd’s inequality.
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1. Introduction

The distribution of boundary conditions is the distribution of zeros of so-
lutions of differential equations has been started by Picard [15, 16], who
derived some uniqnueness results for solutions of the second order nonlinear
differential equation with two-points boundary conditions when the non-
linear function satisfies the Lipschitz condition. The distribution of zeros
of nth order differential equations with more than two points has been con-
sidered by Niccoletti [14]. Motivated by the work of Picard and Niccoletti.
C. de la Vallee Poussin in 1929 [22] considered the general nth order linear
differential equation

y(n)(t) + p1 (t) y
(n−1)(t) + ...+ pn (t) y(t) = 0, t ∈ I,(1.1)

with real coefficients that are locally integrable inside I and studied the
disconjugacy of solutions. The equation (1.1) is said to be disconjugate on
an interval I if every nontrivial solution has less than n zeros on I, multiple
zeros being counted according to their multiplicity. The equation (1.1) is
said to be (k, n−k)− disconjugate on an interval I if no nontrivial solution
has a zero of order k followed by a zero of order n − k. This means that,
for every pair of points α, β ∈ I, α < β, there does not exist a nontrivial
solution of (1.1) which satisfies

y(i)(α) = 0, i = 0, ..., k − 1,
y(j)(β) = 0, j = 0, ..., n− k − 1.

)
(1.2)

The least value of β such that there exists a nontrivial solution which
satisfies (1.2), is called the (k, n− k)−conjugate point of α. The first work
that was published by C. de la Vallee Poussin in 1929 was on the evaluation
of the length of the interval [0, h] in which the boundary value problem
y (t1) = y(t2) = ... = y (tn) = 0, (0 ≤ t1 < t2 < ... < tn ≤ h) for the linear
differential equation (1.1) only admits the null solution. The importance
of his work has been emphasized by many authors and is testified by many
authors in the literature [6, 11, 13, 18, 19, 20, 17, 23]. Following the way
indicated by C. de la Vallee Poussin, one has tried to evaluate the length h
in a function of the upper bounds of the coefficients. The precise evaluation
of the maximal length of the considered interval has only been obtained for
second order differential equations [12] with 1/4 which is the best possible
constant. Coming then to the equation (1.1), C. de la Vallee Poussin proved
that this equation is disconjugate in [a, b) , satisfies the inequality
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nX
j=1

Pj
hj

j < 1, Pj = maxa≤t≤b |pj(t)| , for j = 1, 2, ..., n, where h =

b− a.
This is the part of his paper which has motivated the many refinements

and generalizations described in the analysis. In this paper we interest-
ing to study the distribution of zeros of third order differential equations.
For completeness, we recall some of the related results which motivate the
contents of this paper. Lasota [11] considered the third order differential
equation

y
000
(t) + p1 (t) y

00
(t) + p2 (t) y

0
(t) + p3 (t) y (t) = 0, t ∈ [a, b].(1.3)

and proved the following condition
p1

h
4 + p2

h2

π2 + p3
h3

2π2 ≤ 1,
is sufficient to make (1.3) is disconjugate on [a, b] where Pi = max |pi(t)| on
[a, b] . Mathsen [13] proved that equation (1.3) is disconjugate on [a, b] if
p2(t) ≤ 0 on [a, b], and

(2h1 + 1)P3
[exp (2P1h1)− exp (P1h1)− h1P1]

P 21
≤ 1,(1.4)

where h1 = (b− a) /2. Casdei [6] also proved that if P1
h
2+P2

h2

8 +P3
h3

24 ≤ 1.
then the equation (1.3) is disconjugate on [a, b]. Agarwal and Krishnamoor-
thy [1] also proved that if

P1
2h
3 + P2

h2

6 + P3
2h3

81 ≤ 1,
then the equation (1.3) is disconjugate.

In this paper, we are concerned with the lower bounds of the distance
between zeros of a nontrivial solution and/or its derivatives for the third-
order differential equations of the form³

r(t)x
0
(t)
´00
+ p(t)x

0
(t) + q(t)x(t) = 0, t ∈ I,(1.5)

where I is an interval of reals and r(t), p(t) and q(t) are real valued functions
defined on I such that r(t) > 0. By a solution of (1.5) on the interval
J ⊆ I, we mean a nontrivial real-valued function x (t) ∈ C2(J), which
has the property that r(t)x

00
(t) ∈ C1(J) and satisfies equation (1.5) on J.

The nontrivial solution x(t) of (1.5) is said to oscillate or to be oscillatory,
if it has arbitrarily large zeros. Equation (1.5) is oscillatory if one of its
nontrivial solutions is oscillatory. An equation of the form (1.5) is said to



1304 C. Cesarano, M. A. Arahet and T. M. Al-shami

be disconjugate on an interval I if no nontrivial solution has more than two
zeros on I counting multiplicities. We say that (1.5) is right disfocal (left
disfocal) on the interval [a, b], (a < b) if the solutions of (1.5) such that
x
0
(a) = 0, x (a) 6= 0 (x0 (b) = 0, x (b) 6= 0) do not have two zeros counting

muliplicities in (a, b] ([a, b)).

Following this trend, in this paper, we are concerned with the following
problems for the equation (1.5):

(i) Obtain lower bounds for the spacing β − α, where x (t) is a non-
trivial solution of (1.5) which satisfies x(α) = x

0
(α) = x

0
(β) = 0, or

x(β) = x
0
(β) = x

0
(α) = 0,

(ii) Obtain lower bounds for the spacing β−α,where x (t) is a non-trivial
solution of (1.5) which satisfies x

0
(α) = x

0
(β) = x

00
(β) = 0, or

x
0
(β) = x

0
(α) = x

00
(α) = 0.

The paper is organized as follows: In Sections 2, we state Hardy’s in-
equality, the extensions of Opial’s inequality andWirtinger’s inequality that
will be used to prove our main resluts. In Sections 3, we prove the main
results for the equation (1.5) subject to the boundary conditions stated in
(i) − (ii) by applying Hardy’s, extensions of Opial’s inequality and some
new inequalities which we will state letters.

2. Hardy, Opial and Wirtinger Inequalities

In this section, we present the Hardy’s inequality, some generalizations of
Opial’s inequality and Wirtinger inequalities that will be needed in the
proof of the main results in Section 3. These inequalities are adapted from
Agarwal and Pang [2], Beesack [3], Clark and Hinton [7], Fink [8] and
Kufner et al. [9, 10].

We begin with Hardy’s inequality which states that: If y is absolutely
continuous on (α, β), such that y(α) = 0 or (y(β) = 0), then

ÃZ β

α
p(t) |y(t)|n dt

! 1
n

≤ C

ÃZ β

α
r(t)

¯̄
y0(t)

¯̄m
dt

! 1
m

,(2.1)

where the weighted functions p, r are measurable positive functions defined
on the interval (α, β) and n, m are real parameters that satisfy 0 < n ≤
∞ and 1 ≤ m ≤ ∞. The constant C is given by
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C ≤ m
1
m (m1)

1
m1A (α, β) , for 1 < m ≤ n, m1 =

m

m− 1 ,(2.2)

where

A (α, β) := supα≤t≤β
³R β

t p(t)dt
´ 1
n
³R t

α r
1−m1(s)ds

´ 1
m1 , if y(α) = 0,

A (α, β) := supα≤t≤β
³R t

α p(t)dt
´ 1
n
³R β

t r1−m1(s)ds
´ 1
m1 , if y(β) = 0.

(2.3)

Note that the inequality (2.1) has an immediate application to the case
when y(α) = y(β) = 0. In this case, the inequality (2.1) is satisfied if and
only if

.A (α, β) := (c, d) ⊂ (α, β)sup
³R d

c p(t)dt
´ 1
n

min

½¡R c
α r

1−m1(s)ds
¢ 1
n1 ,

³R β
d r1−m1(s)ds

´ 1
m1

¾
,

(2.4)

exists and finite. The Beesack’s inequality states that: If y (t) is absolutely
continuous on [α, β] with y(α) = 0, then the following inequality holds

Z β

α
q(t) |y(t)|m

¯̄
y0(t)

¯̄n
dt ≤ K1(m,n)

Z β

α
p(t)

¯̄
y0(t)

¯̄m+n
dt,(2.5)

where m, n are real numbers such that mn > 0, m + n > 1, q(t) and
p(t) are nonnegative, measurable functions defined on (α, β) such thatR t
α (p(s))

−1
m+n−1 ds <∞, and

K1(m,n) :=

µ
n

m+ n

¶ n
m+n

"Z β

α
q
m+n
n (t)p−

n
m (t)

µZ t

α
(p(s))

−1
m+n−1 ds

¶m+n−1
dt

# m
m+n

.

(2.6)

If instead y(β) = 0, then (2.5) holds, where K1(m,n) is replaced by

K2(m,n) :=

µ
n

m+ n

¶ n
m+n

⎡⎣Z β

α
q
m+n
n (t)p−

n
m (t)

ÃZ β

t
(p(s))

−1
m+n−1 ds

!m+n−1

dt

⎤⎦ m
m+n

.

(2.7)
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The Agarwal and Pang inequality states that: If y(t) ∈ C(n−1)[α, β] be
such that y(i)(α) = 0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), y(n−1)(t) is absolutely
continuous on (α, β), then

Z β

α
φ(t)

¯̄̄
y(k)(t)

¯̄̄l ¯̄̄
y(n)(t)

¯̄̄m
dt ≤ H1

"Z β

α
ϕ(t)

¯̄̄
y(n)(t)

¯̄̄c
dt

#(l+m)c
,(2.8)

where φ and ϕ are nonnegative and measurable function defined on the
interval (α, β), m, l are real numbers such that c/m > 1,

H1 :=

³
m
m+l

´m
c

(n− k − 1)!

"Z β

α

¡
φc(t)ϕ−m(t)

¢1(c−m)
(G1,k(t))

l(c−1)(c−m) dt

# c−m
c

,

(2.9)
and

G1,k(t) :=
R t
α(t− s)(n−k−1)c(c−1) (ϕ(s))−1(c−1) ds.

If instead y(i)(β) = 0, 0 ≤ k ≤ i ≤ n−1 (n ≥ 1), then (2.8) holds where
H1 is replaced by

H2 :=

³
m
m+l

´m
c

(n− k − 1)!

"Z β

α

¡
φc(t)ϕ−m(t)

¢1(c−m)
(G2,k(t))

l(c−1)(c−m) dt

# c−m
c

,

(2.10)
and

G2,k(t) :=
R β
t (s− t)(n−k−1)c(c−1) (ϕ(s))−1(c−1) ds.

We also need the following inequality which is the special case of an
inequality proved by Agarwal and Pang [2] with two functions. This in-
equality states that: If y(t) ∈ Cn−1 [α, β] such that y(i)(α) = 0, k ≤ i ≤
n− 1, 0 ≤ k ≤ n− 1 (n ≥ 1) fixed and y(n−1) is absolutely continuous on
(α, β), thenZ β

α
c(t)

¯̄̄
y(k)(t)

¯̄̄ ¯̄̄
y(k+1)(t)

¯̄̄
dt ≤ Cα

Z β

α
r(t)

¯̄̄
y(n)(t)

¯̄̄2
dt,(2.11)

where c(t), r(t) be non-negative measurable functions defined on (α, β) and

Cα :=
1

2 ((n− k − 1)!)2
max
t∈[α,β]

c(t)

Z β

α

(s− α)2(n−k−1)

r(s)
ds.(2.12)

If y(i)(β) = 0, k ≤ i ≤ n− 1, then (2.11) holds where Cα is replaced by
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Cβ :=
1

2 ((n− k − 1)!)2
max
t∈[α,β]

c(t)

Z β

α

(β − s)2(n−k−1)

r(s)
ds.(2.13)

The Wirtinger inequality due to Agarwal and Pang [2] that will also be
needed states that: If y(α) = y(β) = 0, then

Z β

α
yγ+1(t)dt ≤ (β − α)γ+1 Γ2((γ + 2) 2)

2Γ (γ + 2)

Z β

α

³
y
0
(t)
´γ+1

(t)dt.(2.14)

The Clark and Hinton inequality [7] states that: If y ∈ C2 [α, β], where
y(α) = y

0
(α) = 0, and 1 ≤ r ≤ 2, then

µR β
α |y(t)|

2
¯̄̄
y
00
(t)
¯̄̄2
dt

¶ 1
r

≤ (β − α)1+
1
r C2 (r)

R β
α

¯̄̄
y
00
(t)
¯̄̄2
dt,(2.15)

where C2 (r)

C2 (r) :=

(
((2− r) /2 (r + 1))

2−r√
3 /
√
3, if 1 ≤ r < 2,

1√
3
, if r = 2.

(2.16)

The Fink inequality [8] states that: If y(i)(α) = 0, 0 ≤ i ≤ n− 1, µ ≥ 1,
1
µ +

1
ν = 1, then

Z β

α

¯̄̄
y(k)(t)y(r)(t)

¯̄̄
dt ≤ C(n, k, r, µ) (β − α)2n−k−r+1−2µ

ÃZ β

α

¯̄̄
y(n)(t)

¯̄̄µ
dt

! 2
µ

,

(2.17)
where 0 ≤ k < r < n, (n ≥ 2), and

C(n,k,r,µ) = 1
2((n−k−1)!)2[(n−k−1)ν+1]2ν .

3. Main Results

In this section we state and prove the main results. For simplicity, we
utilize the following notations:

H1(α, β,G1,0) =
1√
2

"Z β

α
Q21(t)

G1,0(t)

r(t)
dt

# 1
2

,

G1,0(t) =

Z t

α

(t− s)2

r(s)
ds,1 (t) =

Z t

α
q(s)ds,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭(3.1)
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H2(α, β,G2,0) =
1√
2

"Z β

α
Q22(t)

G2,0(t)

r(t)
dt

# 1
2

,

G2,0(t) =

Z β

t

(t− s)2

r(s)
ds, Q2(t) =

Z β

t
q(s)ds,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭(3.2)

Z1(α, β,G1,1) =
1√
2

"Z β

α
u2(t)

G1,1(t)

r(t)
dt

# 1
2

,

G1,1(t) =

Z t

α

1

r(s)
ds,

(3.3)

Z2(α, β,G2,1) =
1√
2

"Z β

α
u2(t)

G2,1(t)

r(t)
dt

# 1
2

,

G2,1(t) =

Z β

t

1

r(s)
ds,

(3.4)

Ai (α, β) = Ji(t)min

⎧⎨⎩
µZ c

α

1

r(s)
ds

¶ 1
2

,

ÃZ β

c

1

r(s)
ds

! 1
2

⎫⎬⎭ ,(3.5)

where Ji(t) = sup
(c,d)⊂(α,β)

³R β
α Ri(t)dt

´ 1
2 and |Ri(t)| = |Qi(t)|+|p(t)| , i = 1, 2,

1 (α, β) := α ≤ t ≤ βsup
³R β

t p(t)dt
´ 1
2
³R t

α
1

r(s)ds
´ 1
2 ,

Cα :=
1
2α ≤ t ≤ βmaxq(t)

R β
α
(s−α)2
r(s) ds,

(3.6)

2 (α, β) := α ≤ t ≤ βsup
³R t

α p(t)dt
´ 1
2
³R β

t
1

r(s)ds
´ 1
2 ,

Cβ :=
1
2α ≤ t ≤ βmaxq(t)

R β
α
(β−s)2
r(s) ds,

(3.7)

and

ψ (α, β) := sup
α≤t≤β

⎛⎝ÃZ β

t
r(t)dt

! 1
2 µZ t

α

1

r(s)
ds

¶ 1
2

⎞⎠ .(3.8)

Now, we are ready to prove the following results.

Theorem 3.1. Assume that x(t) is a nontrivial solution of (1.5).
(1) If x(α) = x

0
(α) = x

0
(β) = 0, then

4A21 (α, β) +H1(α, β,G1,0) +M1(α, β,G1,1) ≥ 1(3.9)
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(2) If x
0
(α) = x(β) = x

0
(β) = 0, then

H2(α, β,G2,0) + 4A
2
1 (α, β) +M1(α, β,G2,1) ≥ 1.(3.10)

Proof. To prove (3.9) , we multiply (1.5) by x
0
(t) and integrating from

α to β, we obtainR β
α x

0
(t)
³
r (t)

³
x
0
(t)
´´00

dt = −
R β
α p (t)

³
x
0
(t)
´2

dt−
R β
α q (t)x (t)x

0
(t) dt.

We get the following by integrating the left hand side by partsZ β

α
x
0
(t)
³
r (t)

³
x
0
(t)
´´00

dt = x
0
(t)
³
r (t)

³
x
0
(t)
´´0 ¯̄̄̄β

α
−
Z β

α
r
0
(t)x

0
(t)x

00
(t) dt

−
Z β

α
r (t)

³
x
00
(t)
´2

dt

Using the assumptions that x
0
(α) = x

0
(β) = 0 andQ1(t) =

Z t

α
q(s)ds,we

find

Z β

α
r (t)

³
x
00
(t)
´2

dt =

Z β

α
p (t)

³
x
0
(t)
´2

dt+

Z β

α
Q01 (t)x (t)x

0
(t) dt

−
Z β

α
r
0
(t)x

0
(t)x

00
(t) dt.

(3.11)

Integrating the term

Z β

α
Q
0
1(t)x(t)x

0
(t)dt by parts and using the as-

sumption that x
0
(α) = x

0
(β) = 0, we obtainZ β

α
Q
0
1(t)x(t)x

0
(t)dt = Q

0
1(t)x(t)x

0
(t)
¯̄̄β
α
−
Z β

α
Q1(t)(x

0
(t))2dt−

Z β

α
Q1(t)x(t)x

00
(t)dt,

= −
Z β

α
Q1(t)(x

0
(t))2dt−

Z β

α
Q1(t)x(t)x

00
(t)dt.(3.12)

Substituting (3.12) into (3.11), we get

Z β

α
|r (t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤

Z β

α
|R1 (t)|

¯̄̄
x
0
(t)
¯̄̄2
dt+

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt

+

Z β

α
|u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt.

(3.13)
where |R1(t)| = |Q1(t)|+ |p(t)| and u (t) = r

0
(t) . Applying the inequality

(2.8) on the integralZ β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt,
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with φ(t) = |Q1(t)|, ϕ(t) = r(t), k = 0, m = l = 1, n = 2, c = 2 and
x(α) = x

0
(α) = 0, we get

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt,≤ H1(α, β,G1,0)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.14)

where H1(β, α,G1,0) is defined as in (3.1). Applying the inequality (2.1) on

the integral

Z β

α
|R1(t)|

¯̄̄
x
0
(t)2

¯̄̄
dt with y(t) = x

0
(t) and y(α) = y(β) = 0, we

have that Z β

α
|R1(t)|

¯̄̄
x
0
(t)2

¯̄̄
dt ≤ 4A21 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.15)

where A1 (α, β) is defined as in (3.5). Applying the inequality (2.8) on the
integral Z β

α
|u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt,

with y(t) = x
0
(t) and y(α) = y(β) = 0, with φ(t) = |u(t)|, ϕ(t) = |r(t)|,

k = 1, m = l = 1, n = 2, c = 2 and x(α) = x
0
(α) = 0, we get

Z β

α
|u(t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt ≤ Z1(α, β,G1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.16)

where Z1(α, β,G1,1) is defined in (3.3).
Substituting (3.15), (3.14) and (3.16) into (3.13). We get

Z β

α
r(t)x

00
(t)2dt ≤ 4A21 (α, β)

Z β

α
r(t)x

00
(t)2dt(3.17)

+G1(α, β,M1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt+(3.18)

H1(α, β,G1,0)

Z β

α
r(t)x

00
(t)2dt.(3.19)

Cancelling the term

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,

4A21 (α, β) +H1(α, β,G1,0) +M1(α, β,G1,1) ≥ 1,
The proof of (3.10) is similar to (3.9) by replaceing H1(α, β,G1,0) by

H2(α, β,G1,0) replacingA1 (α, β) byA2 (α, β) and replaceingM1(α, β,G1,1) by
M1(α, β,G2,1). The proof is complete. 2

In the following, we apply the Clark and Hinton inequality (2.15) whith
r = 2 to get a new result.
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Theorem 3.2. Assume that r(t) is a non-increasing function and suppose
that x(t) is a solution of (1.5). If x(α) = x

0
(α) = x

0
(β) = 0, then

4A21 (α, β) +
(β − α)

3
2

√
3r(β)

ÃZ β

α
|Q1(t)|2 dt

! 1
2

≥ 1,(3.20)

where Q1(t) and A1 (α, β) are defined as in (3.1) and (3.5), respectively.

Proof. Multiplying (1.5) by x
0
(t) and proceeding as in the proof of

Theorem (3.1) to get,

Z β

α
|r (t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤

Z β

α
|R1 (t)|

¯̄̄
x
0
(t)
¯̄̄2
dt+

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt

+

Z β

α
|u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt.

(3.21)
where |R1(t)| = |Q1(t)|+ |p(t)| and u (t) = r

0
(t) .

Applying the Schwarz inequality

Z β

α
f(t)g(t)dt ≤

ÃZ β

α
f(t)2dt

! 1
2
ÃZ β

α
g(t)2dt

! 1
2

,(3.22)

on the integral

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt, we have that

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt ≤

ÃZ β

α
|Q1(t)|2 dt

! 1
2
ÃZ β

α
|x(t)|2

¯̄̄
x
00
(t)
¯̄̄2
dt

! 1
2

.

(3.23)
Applying the inequality (2.15) and using the assumpution x(α) = x

0
(α),

we get that

ÃZ β

α
|x(t)|2

¯̄̄
x
00
(t)
¯̄̄2
dt

! 1
2

≤ (β − α)
3
2

√
3

Z β

α

¯̄̄
x
00
(t)
¯̄̄2
dt.(3.24)

Substituting (3.24) into (3.23) and using the assumpution that r(t) is a
non-increasing function, we have

Z β

α
|Q1(t)| |x(t)|

¯̄̄
x
00
(t)
¯̄̄
dt ≤ (β − α)

3
2

√
3r(β)

ÃZ β

α
|Q1(t)|2 dt

! 1
2 Z β

α
r(t)

¯̄̄
x
00
(t)
¯̄̄2
dt.

(3.25)
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Applying Hardy’s inequality (2.1) on the integral

Z β

α
|R1(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt,

we obtain Z β

α
|R1(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt ≤ 4A21 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt,(3.26)

where x0(α) = x0(β) = 0. Substituting (3.25) and (3.26) into (3.21), we
obtain

Z β

α
r(t)x

00
(t)2dt ≤ 4A21 (α, β)

Z β

α
r(t)x

00
(t)2dt

+
(β − α)

3
2

√
3r(β)

ÃZ β

α
Q1(t)

2dt

! 1
2 Z β

α
r(t)x

00
(t)2dt.

The desired inequality (3.20) followed by cancelling the term

Z β

α
r(t)x

00
(t)2dt.

The proof is complete. 2

Remark 3.1. When r(t) = 1, p(t) = 0 in Theorem 3.2, we have the result
in ([21] corollary 6).

Now, we will prove some new result when r(t) = 1.

Theorem 3.3. Suppose that r(t) = 1 and asumme that x(t) is a solution
of (1.5). If x(α) = x

0
(α) = x

0
(β) = 0, or x(β) = x

0
(β) = x

0
(α) = 0, then

P
π (β − α)2

16
+Q

(β − α)3

6
≥ 1,(3.27)

where P (t) = maxα≤t≤β |p(t)| , and Q (t) = maxα≤t≤β |q(t)| .

Proof. The proof is similar the proof of (theorem 5 [21]) 2

As a special case when p(t) = 0 in Theorem 3.3, we have the following
result.

Corollary 3.1. Suppose that r(t) = 1, p(t) = 0 and let x (t) be a nontrivial
solution of (1.5). If x(α) = x

0
(α) = x

0
(β) = 0, then

max
α≤t≤β

|q(t)| ≥ 6

(β − α)3
.(3.28)
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Corollary 3.2. Suppose that r(t) = 1, q(t) = 0 and let x (t) be a nontrivial
solution of (1.5). If x(α) = x

0
(α) = x

0
(β) = 0, then

maxα≤t≤β |p(t)| ≥ 16
π(β−α)2 .

In the following, we apply an inequality due to Boyd [4] to obtain new
results. The Boyd inequality states that: If y ∈ C1[α, β] with y(α) = 0 (or
y(β) = 0), then

Z β

α
|y(t)|ν

¯̄
y0(t)

¯̄η
dt ≤ N(ν, η, s) (β − α)ν

"Z b

a

¯̄
y0(t)

¯̄s
dt

# ν+η
s

,(3.29)

where ν > 0, s > 1, 0 ≤ η < s,

N(ν, η, s) := (s−η)ννrν+η−s
(s−1)(ν+η)(I(ν,η,s))ν

r :=
n
ν(s−1)+(s−η)
(s−1)(ν+η)

o 1
s

,(3.30)

and

I(ν, η, s) :=
R 1
0

n
1 + s(η−1)

s−η t
o−(ν+η+sν)/sν

[1 + (η − 1)] t
1

ν−1dt.

Note that an inequality of type (3.29) also holds when y(α) = y(β) = 0.
Choose c = (α+ β)/2 and apply (3.29) to [α, c] and [c, β], we obtain

Z β

α
|y(t)|ν

¯̄̄
y
0
(t)
¯̄̄η
dt ≤ N(ν, η, s)

µ
β − α

2

¶ν "Z β

α

¯̄̄
y
0
(t)
¯̄̄s
dt

# ν+η
s

,(3.31)

where N(ν, η, s) is defined as in (3.30). An inequality of type (3.29) holds
when η = s and y(α) = 0 (or y(β) = 0). In this case, inequality (3.29)
becomes

Z β

α
|y(t)|ν

¯̄̄
y
0
(t)
¯̄̄η
dt ≤ L(ν, η) (β − α)ν

"Z β

α

¯̄̄
y
0
(t)
¯̄̄η
dt

#ν+η
η

,(3.32)

where

L(ν, η) :=
ηνη

ν + η

µ
ν

ν + η

¶ ν
η

⎛⎝ Γ
³
η+1
η + 1

ν

´
Γ
³
η+1
η

´
Γ
³
1
ν

´
⎞⎠ν

,(3.33)

and Γ is the gamma function.
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Theorem 3.4. Assume that r (t) is non-incresing function and x(t) is a
nontrivial solution of (1.5).
(1) If x(α) = x

0
(α) = x

0
(β) = 0, then

4B21 (α, β) +
8(β − α)

πr(β)
ψ2 (α, β)

ÃZ β

α
|q(t)|2 dt

! 1
2

+ Z1(α, β,G1,1) ≥ 1.

(3.34)

(2) If x(β) = x
0
(β) = x(α) = 0, then

4B22 (α, β) +
8(β − α)

πr(β)
ψ2 (α, β)

ÃZ β

α
|q(t)|2 dt

! 1
2

+G1(α, β,G2,1) ≥ 1.

(3.35)

Proof. To prove (3.34), we multiply (1.5) by x
0
(t) and integrating from

α to β, we obtain

Z β

α
x
0
(t)
³
r (t)

³
x
0
(t)
´´00

dt = −
Z β

α
p (t)

³
x
0
(t)
´2

dt−
Z β

α
q (t)x (t)x

0
(t) dt.

(3.36)

Integrating by parts the left hand side, and using the assumption that
x(α) = x

0
(α) = x

0
(β) = 0, we get that

Z β

α
x
0 ³
r
³
x
0´´00

dt = −
Z β

α
r
0
(t)x

0
(t)x

00
(t) dt−

Z β

α
r (t)

³
x
00
(t)
´2

dt

(3.37)
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By substitutian (3.36) into (3.37), we give

β
α |r (t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤R β

α |p (t)|
¯̄̄
x
0
(t)
¯̄̄2
dt+

R β
α |q (t)| |x (t)|

¯̄̄
x
0
(t)
¯̄̄
dt

+
R β
α |u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt, u (t) = r

0
(t) .

(3.38)

Applying the inequality (2.1) on the integral
R β
α |p(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt with

m = n = 2, we getZ β

α
|p(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt ≤ 4ψ2 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.39)

where ψ (α, β) is defined as in (3.8).

Applying Schwarz inequality (3.22) on

Z β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt, to get

Z β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt ≤

ÃZ β

α
|q(t)|2 dt

! 1
2
ÃZ β

α
|x (t)|2

¯̄̄
x
0
(t)
¯̄̄2
dt

! 1
2

.

(3.40)

Now, by applying the inequality (3.32) on the integral

Z β

α
|x (t)|2

¯̄̄
x (t)

0 ¯̄̄2
dt

with ν = η = 2. we obtain

Z β

α
|x|2

¯̄̄
x
0
¯̄̄2
dt ≤ 4(β − α)2

π2r2(β)

"Z β

α
r(t)

¯̄̄
x
0
¯̄̄2
dt

#2
,(3.41)

where r(t) is a non-increasing function. Substituting (3.41) into (3.40), we
get

Z β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt ≤

ÃZ β

α
|q(t)|2 dt

! 1
2 2(β − α)

πr(β)

Z β

α
r(t)

¯̄̄
x
0
¯̄̄2
dt.

(3.42)
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Applying the inequality (2.1) on the integral

Z β

α
r(t)

¯̄̄
x
0
¯̄̄2
dt with m =

n = 2, we getZ β

α
|r(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt ≤ 4B21 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt.(3.43)

Substituting (3.43) into (3.42), we have

Z β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt ≤

ÃZ β

α
|q(t)|2 dt

! 1
2 8(β − α)

πr(β)
ψ2 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt.

(3.44)
Applying the inequality (2.8) on the integralR β
α |u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt,

we obtain

Z β

α
|u(t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt ≤ Z1(α, β,G1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.45)

where Z1(α, β,G1,1) is defined in (3.3).
Substituting (3.39), (3.44) and (3.45) into (3.38), we obtain

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤ 4B21 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt

+

ÃZ β

α
|q(t)|2 dt

! 1
2 8(β − α)

πr(β)
ψ2 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt

+Z1(α, β,G1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt.

Cancelling the term
R β
α |r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt, we obtain

4B21 (α, β) +
8(β−α)
πr(β) ψ

2 (α, β)
³R β

α |q(t)|
2 dt

´ 1
2 + Z1(α, β,G1,1) ≥ 1,

which is the desired inequality (3.34). In order to prove (3.35) we pro-
ceed as the proof of (3.34) and using B2 (α, β) instead of B1 (α, β) and
replaceing Z1(α, β,G1,1) by Z2(α, β,G2,1). Hence, the proof is complete.
2

In the following, we present some results related to the boundary con-
ditions (ii) .
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Theorem 3.5. Assume that x(t) is a nontrivial solution of (1.5).
(1) . If x

0
(α) = x

0
(β) = x

00
(β) = 0, then

4B21 (α, β) + Cα + Z1(α, β,G1,1) ≥ 1.(3.46)

(2) If x
0
(β) = x

0
(α) = x

00
(α) = 0, then

4B22 (α, β) + Cβ +G1(α, β,G2,1) ≥ 1.(3.47)

Proof. To prove (3.46) , we multiply (1.5) by x
0
(t) and integrating from

α to β, we obtain

Z β

α
x
0
(t)
³
r (t)

³
x
0
(t)
´´00

dt = −
Z β

α
p (t)

³
x
0
(t)
´2

dt−
Z β

α
q (t)x (t)x

0
(t) dt.

(3.48)
Integrating by parts the left hand side, we get thatR β
α x

0
³
r
³
x
0
´´00

dt = x
0
(t)
³
r
³
x
0
´´0 ¯̄̄̄β

α
−
R β
α r

0
(t)x

0
(t)x

00
(t) dt−

R β
α r (t)

³
x
00
(t)
´2

dt.

Using the assumption that x
0
(α) = x0 (β) = x

00
(β) = 0, we have

Z β

α
x
0 ³
r
³
x
0´´00

dt = −
Z β

α
r
0
(t)x

0
(t)x

00
(t) dt−

Z β

α
r (t)

³
x
00
(t)
´2

dt

(3.49)

By substitutian (3.49) into (3.48), we obtain

β
α |r (t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤R β

α |p (t)|
¯̄̄
x
0
(t)
¯̄̄2
dt+

R β
α |q (t)| |x (t)|

¯̄̄
x
0
(t)
¯̄̄
dt

+
R β
α |u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt,

(3.50)

where u (t) = r
0
(t) .

Applying the inequality (2.1) on the integral
R β
α |p(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt with

n = m = 2, we getZ β

α
|p(t)|

¯̄̄
x
0
(t)
¯̄̄2
dt ≤ 4B21 (α, β)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.51)
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where B1 (α, β) is deffined as in ( 3.6). Agin applying the inequality (2.11)

on the integral

Z β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt, we getZ β

α
|q(t)| |x(t)|

¯̄̄
x
0
(t)
¯̄̄
dt ≤ Cα

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.52)

where Cα is defined as in (3.6). Applying the inequality (2.8) on the integralR β
α |u (t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt,

we obtaine

Z β

α
|u(t)|

¯̄̄
x
0
(t)
¯̄̄ ¯̄̄
x
00
(t)
¯̄̄
dt ≤ Z1(α, β,G1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt,(3.53)

where Z1(α, β,G1,1) is defined in (3.3).
Substituting (3.51), (3.52) and (3.53) into (3.50), we obtain

Z β

α
|r(t)|

¯̄̄
x
00
(t)
¯̄̄2
dt ≤ 4B21

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt+ Cα

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt

+Z1(α, β,G1,1)

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt.

By cancelling the term

Z β

α
|r(t)|

¯̄̄
x
00
(t)2

¯̄̄
dt, we get that

4B21 (α, β) + Cα ++Z1(α, β,G1,1) ≥ 1,
which is the desired result (3.46). In order to prove (3.47) we proceed as
the proof of (3.46) and using the inequality B2 (α, β) instead of B1 (α, β),
replacing Cα and Z1(α, β,G1,1) by Cβ and Z2(α, β,G2,1), respectively.
Hence, the proof is complete. 2
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