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Abstract

In this paper we introduce a new type of fuzzy metric spaces and
obtain several properties of it. Also some topological properties and
boundedness are investigated. The notion of convergence of fuzzy se-
quences together with the notion of fuzzy Cauchy sequences in a fuzzy
metric are discussed and some basic results related to these notions
are investigated.
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1. Introduction

The fuzzy set theory and applications has established as one of the most
active areas of research in many branches of mathematics and engineer-
ing. This theory was introduced by Zadeh [20] in 1965 and since then
a large number of research papers have published by using the notion of
fuzzy sets, fuzzy numbers and fuzzification of several classical theories has
also been introduced. Many authors have introduced the concept of fuzzy
metric spaces in different ways and also they studied the relation with
fuzzy topology. Fuzzy metric spaces usually are introduced by means of
the points in the crisp set X with fuzzy distance mapping or by using the
fuzzy points in IX with a fuzzy distance between fuzzy points. In 1982
Z. Deng [7], introduced the concept of fuzzy pseudo metric space by using
fuzzy points also he introduced the concept of fuzzy topology and defined
fuzzy interior and fuzzy cluster points. A. George and P. Veeramani [9] in
1994, introduced a fuzzy metric space by considering points in the crisp set
and a fuzzy distance between them. They gave several properties of these
spaces also many topological notions are discussed. In 2009 M. Aphane [2],
gave some results on fuzzy metric spaces. In [15], [16] certain types of fuzzy
sets are introduced in fuzzy topological spaces, while in [14], [17] and [19],
some types of continuity of maps are studied in fuzzy topological spaces.
In [13] and [18], some types of fuzzy sequences and fuzzy Cauchy sequences
are studied in certain fuzzy topological spaces. In metric spaces, the no-
tion of a sequence is a good tool to study important topological properties
such as the closure of a set and continuity of maps can be characterized
using convergent sequences. Several types of fuzzy convergent and fuzzy
Cauchy sequences in a fuzzy metric space are studied in [1],[2], [6], [7], [9]
and [10]. Fuzzy boundedness in fuzzy metric spaces is investigated in [21].
In [9], the relation between fuzzy compactness [4] and some types of fuzzy
boundedness in fuzzy metric spaces is investigated.

In this paper, we introduce a fuzzy metric space by considering fuzzy
points in the family of all fuzzy sets with crisp set X. We investigate the
concept of fuzzy convergence and we define some types of Fuzzy bounded-
ness in fuzzy metric spaces. The concept of complete fuzzy metric space
is introduced and some relation among fuzzy convergence, F-boundedness
and fuzzy compactness are investigated.
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2. Definitions and preliminaries

By R, N we denote the set of real and natural numbers respectively. All
linear spaces are assumed to be overR. To make this paper as self-contained
as possible, we recall some definitions and results which are needed in the
next section.

Definition 2.1. ([20]) Let X be a non-empty set and and I = [0, 1], then a
fuzzy set A in X is characterized by a membership function µA(x) from X
to the unit interval I = [0, 1]. The family of all fuzzy sets on X is denoted
by IX . It is obvious that |µA(x)| ≤ 1 and hence every fuzzy set is bounded.
We say that a fuzzy set A is empty if µA(x) = 0 for all x ∈ X, the fuzzy
empty set is denoted by 0̃. The whole fuzzy set has the membership function
µX(x) = 1 for all x ∈ X it is denoted by 1̃.

Definition 2.2. ([20]) The union and intersection of two fuzzy sets A and
B with membership functions µA(x) and µB(x) are denoted respectively
by A ∨B and A ∧B and their membership functions are defined as:
µ(A∨B)(x) = max.{µA(x), µB(x) : x ∈ X}.
µ(A∧B)(x) = min.{µA(x), µB(x) : x ∈ X}.

Definition 2.3. ([20]) Two fuzzy sets A and B are called disjoint if and
only if A ∧B = 0̃.

Definition 2.4. [7] A fuzzy point λ or λαx in IX is a fuzzy set with mem-
bership function defined as

λαx(y) =

(
α : y = x;
0 : otherwise,

where 0 < α < 1. The fuzzy point λ is said to have support x and value α.

Definition 2.5. [7] The complementary of a fuzzy point λ or λαx in IX

with support x and value α is a fuzzy point denoted by λc with the same
support x and value 1− α, so

λc = (λαx(y))
c =

(
1− α : y = x;

0 : otherwise.

The support of λc is x and the value 1− α.
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We say that two fuzzy points in IX are distinct if either their supports
or their values are distinct.

Definition 2.6. [7] A fuzzy point λ in IX with support x and value α is
called belongs to the fuzzy set A or the fuzzy set A contains λ denoted by
λ ∈ A if and only if λ(x) ≤ µA(x) i.e. α ≤ µA(x).

Definition 2.7. [11] A topological space X is called Hausdorff space if and
only if for each two distinct points of X there exist two disjoint open sets
containing them.

Lemma 2.8. [11] Every metric space is a Hausdorff space.

Definition 2.9. [11] A subset A of a topological space X is called dense
if and only if for each open set in X has a non-empty intersection with A.

Definition 2.10. [3] A fuzzy topology is a family F of fuzzy sets in X
which satisfies the following conditions:

1. 0̃, 1̃ ∈ F ,

2. If A,B ∈ F , then A ∧B ∈ F ,

3. If D is any index set and Ad ∈ F for each d ∈ D, then[
d∈D

Ad ∈ F

.

Every member of F is called a fuzzy open set.

Definition 2.11. [12] A fuzzy topological space IX is called fuzzy Haus-
dorff space if and only if for each two distinct fuzzy points of IX there exist
two disjoint fuzzy open sets containing them.

Definition 2.12. [9] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a
continuous t-norm if it satisfies the following conditions:

1. ∗ is associative and commutative;

2. ∗ is continuous;

3. a ∗ 1 = a for all a ∈ [0, 1];
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4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Obviously, a ∗ b = a× b and a ∗ b = min.{a, b} are two common examples
of continuous t-norms.

Definition 2.13. [9] Let X be an arbitrary set. A fuzzy subset M of
X × X × [0,∞] is called a fuzzy metric on X if it satisfies the following
conditions for all x, y ∈ X and t ∈ R.

(1) If t ≤ 0, then M(x, y, t) = 0;

(2) For all t > 0, M(x, y, t) = 1 if and only if x = y;

(3) For all t > 0, M(x, y, t) =M(y, x, t);

(4) For all s, t ∈ R, x, y ∈ X, M(x, y, s+ t) ≥M(x, z, s) ∗M(y, z, t);

(5) M(x, y, ∗) is a non decreasing function of R and lim
t→∞

M(x, y, t) = 1.

The pair (X,M, ∗) is called a fuzzy metric space.

Definition 2.14. [9] Let (X,M, .) be a fuzzy metric space and x ∈ X. If
0 < r < 1 and t > 0, then a fuzzy open ball B(x, r, t) with center x and
radius r is defined as B(x, r, t) = {y ∈ X :M(x, y, t) > 1− r}.

Definition 2.15. ([1]) Let (X,M, .) be a fuzzy metric space, a sequence
< xn > in X is fuzzy convergent to x ∈ X. If for each ε > 0 and t > 0,
there exists a large number K such that xn ∈ B(x, ε, t) for each n > K.

Lemma 2.16. [9]

1. In (X,M, .), every fuzzy open ball is a fuzzy open set.

2. The fuzzy metric space (X,M, .) is fuzzy Hausdorff.

3. Fuzzy Metric on a Fuzzy Space

In this section we introduce a fuzzy metric on the family of all fuzzy sets
defined on a non-empty set and give some properties of it. The fuzzy points
are usually denoted by λαx , µ

β
y (x, y are their supports and α, β are their

values) and if there is no confusion we just write them λ, µ. Let X be a
non-empty set and I be the closed unit interval [0, 1], so the family of fuzzy
sets on X is denoted by IX .
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Definition 3.1. A fuzzy subset M of IX × IX × [0,∞] is called a fuzzy
metric on IX if the following conditions are satisfied for all λαx , µ

β
y ∈ IX

and t ∈ [0,∞].

(F1) M(λ, µ, 0) = 0;

(F2) For all t > 0, M(λ, µ, t) = 1, if and only if x = y and α ≤ β;

(F3) For all t > 0, M(λ, µ, t) =M(µc, λc, t);

(F4) For all s, t ∈ [0,∞), λ, µ ∈ IX ,M(λ, µ, s+t) ≥M(λ, η, s)∗M(η, µ, t);

(F5) M(λ, µ, ∗) is a continuous function of [0,∞] and lim
t→∞

M(λ, µ, t) = 1.

The pair (X,M) is called a fuzzy metric space.

Proposition 3.2. M(λ, µ, ∗) is a non decreasing function on [0,∞] for
every λ, µ ∈ IX .

Proof. Let 0 < s < t, then by (F4), we haveM(λ, λ, t−s)∗M(λ, µ, s) ≤
M(λ, µ, t) and by (F2), M(λ, λ, t− s) = 1. Hence, M(λ, µ, s) ≤M(λ, µ, t)
whenever a ∗ b is either a× b or min.{a, b}. 2

Remark 3.3. If λ = λαx , µ = µβy ∈ IX and t ∈ [0,∞], then M(λ, µ, t) is
defined to be the degree (probability) of fuzzy closeness between λ and µ
with respect to t ≥ 0. If we use the notation d̃(λ, µ) the fuzzy distance
between λ and µ, then
M(λ, µ, t) = c if and only if P (d̃(λ, µ) ≤ t) = c where P is the probability
function.

In other words,
P (d̃(λ, µ) ≤ t) = c and P (d̃(µ, γ) ≤ s) = c implies that P (d̃(λ, γ) ≤ t+s) =
c.

Or

M(λ, µ, t) ≥ c and M(µ, γ, t) ≥ c implies that M(λ, γ, t+ s) ≥ c.

We have x = y and α ≤ β if and only ifM(λ, µ, t) = 1 for all t > 0, and

lim
t→0

M(λ, µ, t) = 0.
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Remark 3.4. Let (IX ,M, ∗) be a fuzzy metric space and let λ, µ ∈ IX ,
t > 0, 0 < c < 1. If M(λ, µ, t) > 1− c, then for t0 with 0 < t0 < t we have
M(λ, µ, t0) > 1− c.

The following are examples of a fuzzy metric space on the set X = R
with t-norm a ∗ b = a× b.

Example 3.5. Let X = R and λα1x1 and µ
α2
x2 be any two fuzzy points where

x1, x2 ∈ R and α1, α2 ∈ (0, 1] and t ∈ [0,∞). Then

M(λ, µ, t) =

(
t

t+(α1−α2)+|x1−x2| : α1 ≥ α2;
t

t+|x1−x2| : α1 ≤ α2,

is a fuzzy metric.

(F1) is clear.

(F2) Suppose that M(λ, µ, t) = 1, if α1 ≥ α2, then
t

t+(α1−α2)+|x1−x2| = 1.

Hence, (α1 − α2) + |x1 − x2| = 0. Which implies that α1 = α2 and
x1 = x2.
If α1 ≤ α2, then

t
t+|x1−x2| = 1 which implies x1 = x2. For the converse

part, If α1 ≤ α2 and x1 = x2, it is clear that M(λ, µ, t) = 1.

(F3) Case (1) If α1 ≥ α2, ThenM(λ, µ, t) =
t

t+(α1−α2)+|x1−x2| and 1−α2 ≥
1− α1. Hence
M(µc, λc, t) = t

t+(1−α2−(1−α1))+|x1−x2| =
t

t+(α1−α2)+|x1−x2| =M(λ, µ, t).

Case(2) if α1 ≤ α2, then 1− α2 ≤ 1− α1 and hence
M(λ, µ, t) =M(µc, λc, t) = t

t+|x1−x2| .

(F4) Let ηα3x3 be another fuzzy point. We have the following cases:
(i) If α1 ≥ α2 ≥ α3, then we haveM(λ, µ, t+s) =

t+s
t+s+(α1−α2)+|x1−x2| ,

M(λ, η, t) = t
t+(α1−α3)+|x1−x3| and M(η, µ, s) = s

s+|x3−x2| . Now we
have

t+s
t+s+(α1−α2)+|x1−x2| −

t
t+(α1−α3)+|x1−x3| ×

s
s+|x3−x2| =

(t+s)(t+(α1−α3)+|x1−x3|)(s+|x3−x2|)−ts(t+s+(α1−α2)+|x1−x2|)
(t+s+(α1−α2)+|x1−x2|)(t+(α1−α3)+|x1−x3|)(s+|x3−x2|) . We have

|x1−x2| ≤ |x1−x3|+|x3−x2|, so−st(|x1−x2|) ≥ −st|x1−x3|−st|x3−
x2|. Also α1−α2 ≤ α1−α3 and hence −ts(α1−α2) ≥ −ts(α1−α3).
Therefore, we obtain that
(t+ s)(t+(α1−α3)+ |x1−x3|)(s+ |x3−x2|)− ts(t+ s+(α1−α2)+
|x1 − x2|) ≥ (t + s)(t + (α1 − α3) + |x1 − x3|)(s+ |x3 − x2|) − t2s−
ts2 − ts(α1 − α3)− st|x1 − x3|− st|x3 − x2| ≥ t2(|x3 − x2|) + t(α1 −
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α2)(|x3−x2|)+s(α1−α2)(|x3−x2|)+s2(α1−α2)+ t(|x3−x2|)(|x1−
x3|) + s2(|x1 − x3|) + s(|x3 − x2|)(|x1 − x3|) ≥ 0. Which implies that
M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).

(ii) If α2 ≥ α1 ≥ α3. Then we have M(λ, µ, s + t) −M(λ, η, s) ×
M(η, µ, t) = t+s

t+s+|x1−x2| −
t

t+(α1−α3)+|x1−x3| ×
s

s+|x3−x2|
= (t+s)(t+(α1−α3)+|x1−x3|)(s+|x3−x2|)−ts(t+s+|x1−x2|)

(t+s+|x1−x2|)(t+(α1−α3)+|x1−x3|)(s+|x3−x2|) ≥ 0. Hence
M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).

(iii) If α2 ≥ α3 ≥ α1. Then we have M(λ, µ, s + t) −M(λ, η, s) ×
M(η, µ, t) = t+s

t+s+|x1−x2| −
t

t+|x1−x3| ×
s

s+|x3−x2|
= (t+s)(t+|x1−x3|)(s+|x3−x2|)−ts(t+s+|x1−x2|)

(t+s+|x1−x2|)(t+|x1−x3|)(s+|x3−x2|) ≥ 0. Hence
M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).
The other cases are similar.

Example 3.6. Let X = R and λαx and µβy be any two fuzzy points where
x, y ∈ R, α, β ∈ (0, 1] and t ≥ 0. Then

M(λ, µ, t) =

⎧⎨⎩ e−
|x−y|+(α−β)

t : α ≥ β;

e−
|x−y|
t : α ≤ β,

is a fuzzy metric.

(F1) It is clear that M(λ, µ, 0) = 0.

(F2) Suppose that for t > 0, M(λ, µ, t) = 1.

If α ≥ β, then we have e−
|x−y|+(α−β)

t = 1 and hence, |x−y|+(α−β)t = 0
which implies that |x−y|+(α−β) = 0. Therefore, x = y and α = β.
If α ≤ β, we obtain that x = y.
Conversely, suppose that x = y and α ≤ β, so M(λ, µ, t) = e0 = 1.

(F3) M(µc, λc, t) = e−
|x−y|+((1−β)−(1−α))

t when (1 − β) ≥ (1 − α). Hence

M(µc, λc, t) = e−
|x−y|+(α−β)

t when α ≥ β). Therefore, M(µc, λc, t) =
M(λ, µ, t). Further we have (1−β) ≤ (1−α) implies that α ≤ β and
hence M(µc, λc, t) =M(λ, µ, t).
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(F4) To prove thatM(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t) where the fuzzy
point η = ηγz . For each x, y, z ∈ R and s, t >), the following inequality
is true:
|x− y| ≤ ( t+st )|x− z|+ ( t+ss )|z − y|. That is

|x− y|
t+ s

≤ ( |x− z|
s

) + (
|z − y|

t
).(3.1)

For values of α, β and γ, we have the following cases:

(1) If α ≤ β, α ≤ γ and γ ≤ β, then from Equation 3.1, we obtain
that

e−(
|x−y|
t+s

) ≥ e−(
|x−z|
s
) × e−(

|z−y|
t
).

Hence, M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).

(2) If α ≥ β, α ≥ γ and γ ≥ β, also we have

(α− β)

t+ s
≤ ((α− γ)

s
) + (

(γ − β)

t
).(3.2)

Combining Equation 3.1 and Equation 3.2, we get

|x− y|+ (α− β)

t+ s
≤ ( |x− z|+ (α− γ)

s
) + (

|z − y|+ (γ − β)

t
).(3.3)

Again we obtain that M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).

(3) If γ ≥ α ≥ β, then α − β ≤ γ − β and hence (α−β)
t+s ≤ (

(γ−β)
t ).

Therefore, we get

|x− y|+ (α− β)

t+ s
≤ ( |x− z|

s
) + (

|z − y|+ (γ − β)

t
).(3.4)

Hence, M(λ, µ, s+ t) ≥M(λ, η, s)×M(η, µ, t).

The other cases can be proved similarly.

Proposition 3.7. If condition [F3] in Definition 3.1,M(λ, µ, t) =M(µc, λc, t)
for all t ∈ (0,∞], is replaced by:
[F3]0 M(λ, µ, t) = M(µ, λ, t) for all t ≥ 0, then (IX ,M, ∗) is also a fuzzy
metric space where either a ∗ b = a× b or a ∗ b = min.{a, b}.
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Proof.

(F1) is obvious.

(F2) Let λαx , µ
β
x be two fuzzy numbers with α ≤ β, then from condition

(F2) and by hypothesis, we have M(λαx , µ
β
x, t) =M(µβx, λ

α
x , t) = 1.

(F3) Let λ = λαx , λ
0 = λα

0
x , α ≤ α0 and µ = µβy , µ

0 = µβ
0

y and x 6= y.
If β ≤ β0, then M(λ, µ, s + t) = M(µ, λ, s + t) ≥ M(µ, µ0, s) ∗
M(µ0, λ, t) =M(µ0, λ, t) =M(λ, µ0, t). Hence, by Remark 3.4,M(λ, µ, t) ≥
M(λ, µ0, t). Also we have M(λ, µ0, t+ s) ≥M(λ, µ, t) ∗M(µ, µ0, s) =
M(λ, µ, t) and again by Remark 3.4 M(λ, µ0, t) ≥ M(λ, µ, t). There-
fore, M(λ, µ, t) = M(λ, µ0, t). By the same way we can prove that
M(λ, µ0, t) = M(λ0, µ0, t) and hence, we obtain that M(λ, µ, t) =
M(λ0, µ0, t).
If β ≥ β0, from above we have M(λ, µ0, t) =M(λ0, µ, t). Also we have
M(λ0, µ0, s+t) =M(µ0, λ0, s+t) ≥M(µ0, µ, s)∗M(µ, λ0, t) =M(µ, λ0, t) =
M(λ0, µ, t) =M(λ, µ0, t). Again, we have
M(λ, µ0, s+ t) ≥M(λ, λ0, s) ∗M(λ0, µ0, t) =M(λ0, µ0, t).
Therefore, M(λ0, µ0, t) =M(λ, µ0, t).
In the same way we can prove that M(λ, µ, t) = M(λ, µ0, t) and
hence, we get M(λ, µ, t) = M(λ0, µ0, t) = M(µ0, λ0, t). Now in par-
ticular if we take β0 = 1 − β and α0 = 1 − α, then we obtain that
M(λ, µ, t) =M(µc, λc, t).

2

Proposition 3.8. If α1 ≤ α, then M(λα1 , µ, t) ≥M(λα, µ, t).

Proof. We have by (F4),M(λα1 , µ, s+t) ≥ min.{M(λα1 , λ, s),M(λ, µ, t)} =
M(λ, µ, t). By Remark 3.4, we get M(λα1 , µ, t) ≥M(λα, µ, t). 2

Proposition 3.9. If M(λ, µβ
0
, t) > r for some 0 < r < 1 and β0 ≤ β, then

M(λ, µβ, t) > r.

Proof. If M(λ, µβ
0
, t) > r, then by (F3), M(µβ

0c
, λc, t) > r and by

Proposition 3.8, for any γ ≤ 1−β0 we haveM(µγ, λc, t) ≥M(µβ
0c
, λc, t) > r

. Therefore, M(λ, µβ, t) > r where β = 1− γ ≥ β0. 2

Proposition 3.10. If β0 ≤ β, then M(λ, µβ
0
, t) ≤M(λ, µβ, t).
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Proof. We have by (F3), M(λ, µβ
0
, t) = M(µβ

0c
, λc, t) and Proposition

3.8, M(µβ
0c
, λc, t) ≤ M(µc, λc, t) = M(λ, µ, t), where 1 − β ≤ 1 − β0.

Therefore, M(λ, µβ
0
, t) ≤M(λ, µβ, t), where β0 ≤ β. 2

Remark 3.11. In general condition (F3) does not implies condition (F30).
However we have the following result:

Proposition 3.12. If λαx , µ
β
y ∈ IX and if α = β. Then (F3) and (F30) are

equivalent.

Proof. Suppose that λαx , µ
β
y ∈ IX and α = β. We have the following

cases:

Case 1. If α ≤ (1 − β), Then by Proposition 3.8, we get M(λα, µ, t) ≥
M(λ1−β, µ, t) =M(λ1−β, µ, t) 2

Definition 3.13. Let (IX ,M, ∗) be a fuzzy metric space and λ ∈ IX . If
0 < r < 1 and t > 0, then

1. A fuzzy open ball B(λ, r, t) with center λ and radius r is defined as
B(λ, r, t) = {µ ∈ IX :M(λ, µ, t) > 1− r}.

2. A fuzzy closed ball B[λ, r, t] with center λ and radius r is defined as
B[λ, r, t] = {µ ∈ IX :M(λ, µ, t) ≥ 1− r}.

Definition 3.14. Let (IX ,M, ∗) be a fuzzy metric space. A fuzzy set A of
IX is said to be fuzzy compact, if for 0 < r < 1, t > 0 and A ⊆ S{B(λ, r, t) :
λ ∈ A}, then there is a finite set {λ1, λ2, ..., λn} such that

A ⊆
n[
i=1

{B(λi, r, t) : λi ∈ A}.

Proposition 3.15. If B(λ, r, t) is a soft open ball in the fuzzy metric
space (IX ,M, ∗), then for each µ ∈ B(λ, r, t), there exists a soft open ball
B(µ, p, q) such that µ ∈ B(µ, p, q) ⊆ B(λ, r, t).
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Proof. For µ ∈ B(λ, r, t), so M(λ, µ, t) > 1− r. Hence, by Remark 3.4,
there exists 0 < t0 < t such that M(λ, µ, t0) > 1 − r. If r0 = M(λ, µ, t0),
then r0 > 1−r, so we can find a number s with r0 > 1−s > 1−r and hence,
there exists r1, 0 < r1 < 1 such that r0×r1 > 1−s. Suppose that p = 1−r1
and q = t− t0, if η ∈ B(µ, p, q) this implies that M(µ, η, t− t0) > 1− p =
r1. Hence, by (F4), we have M(λ, η, t) ≥ min{M(λ, µ, t0),M(µ, η, t− t0)}
implies that M(λ, η, t) ≥ r0 × r1 ≥ 1− s > 1− r. Therefore, η ∈ B(λ, r, t)
and thus µ ∈ B(µ, p, q) ⊆ B(λ, r, t). 2

Proposition 3.16. If the soft metric (IX ,M, ∗) satisfies (F30). Then it is
soft Hausdorff.

Proof. Let λαx , µ
β
y be two distinct fuzzy points in IX . Then 0 <

M(λ, µ, t) < 1 and let M(λ, µ, t) = r where 0 < r < 1. Hence, for each r <
r0 < 1, there exists r1 such that r1 ∗ r1 ≥ r0. Consider the fuzzy open balls
B(λ, 1−r1, 12t) and B(µ, 1−r1,

1
2t). If η ∈ B(λ, 1−r1, 12t)∩B(µ, 1−r1,

1
2 t),

then r = M(λ, µ, t) ≥ M(λ, η, 12 t) ∗M(η, µ,
1
2 t) ≥ r1 ∗ r1 ≥ r0 > r which

is contradiction. Hence, B(λ, 1− r1,
1
2 t) ∩ B(µ, 1− r1,

1
2 t) = φ. Therefore,

(IX ,M, ∗) is soft Hausdorff. 2

4. The induced fuzzy metric

In this section we define the fuzzy metric space (X,M) when (X,d) is any
metric space and we denote this fuzzy metric by Md.

Proposition 4.1. Let (X,d) be a metric space and let λαx , µ
β
y ∈ IX . Then

Md(λ, µ, t) =
t

t+d(x,y)+max.{0,α−β} is a fuzzy metric on IX .

Proof.

(F1) when t = 0, then clearly Md(λ, µ, 0) = 0.

(F2) If t > 0, suppose thatMd(λ, µ, t) = 1, then d(x, y)+max.{0, α−β} =
0 implies that d(x, y) = 0 and max.{0, α− β} = 0. Hence, x = y and
α ≤ β. Conversely is obvious.

(F3) We have, Md(µ
c, λc, t) = t

t+d(y,x)+max.{0,(1−β)−(1−α)}
= t

t+d(x,y)+max.{0,α−β} =Md(λ, µ, t).
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(F4) Let ηγz ∈ IX , then we have:

Md(λ, µ, t+ s) =
t+ s

t+ s+ d(x, y) +max.{0, α− β}

Md(λ, η, t) =
t

t+ d(x, z) +max.{0, α− γ}

Md(η, µ, s) =
s

s+ d(z, y) +max.{0, γ − β}
We shall discus the following cases:

Case 1. If α ≤ β ≤ γ. Then

Md(λ, µ, t+ s)−Md(λ, η, t) ∗Md(η, µ, s)

=
t+ s

t+ s+ d(x, y)
− t

t+ d(x, z)
∗ s

s+ d(z, y) + (γ − β)

=
(t+ s)(t+ d(x, z))(s+ d(z, y) + (γ − β))− ts(t+ s+ d(x, y))

(t+ s+ d(x, y))(t+ d(x, z))(s+ d(z, y) + (γ − β))

≥ (t+ s)(d(x, z))(d(z, y) + ts(d(x, z) + d(x, z)) + (γ − β))− ts(d(x, z) + d(x, z))

(t+ s+ d(x, y))(t+ d(x, z))(s+ d(z, y) + (γ − β))
≥ 1

The other cases can be proved similarly. This proves (F4).
It is obvious thatMd is continuous on [0,∞] and lim

t→∞
Md(λ, µ, t) = 1.

Therefore, (Md, I
X) is a fuzzy metric on IX .

2

Definition 4.2. Let (M, IX) be a fuzzy metric space.

1. A fuzzy subset A of IX is said to be F1-bounded if there exist t > 0
and 0 < r < 1 such that M(λ, µ, t) > 1− r for all λ, µ ∈ A.

2. A crisp subset B of X is said to be F2-bounded if there exist t > 0
and 0 < r < 1 such that M(λαx , µ

β
y , t) > 1− r for all x, y ∈ B and all

α, β ∈ (0, 1].

Remark 4.3. If B is the set of all supports of points of A. Then B is
F2-bounded if and only if A is F1-bounded.

Proposition 4.4. Let (Md, I
X) be the induced fuzzy metric space. Then

A ⊆ IX is F1-bounded if and only if B ⊆ X is F2-bounded.
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Proof. Suppose that A ⊆ IX is F1-bounded, then for each t > 0
and 0 < r < 1, we have Md(λ, µ, t) > 1 − r for all λ, µ ∈ A. Hence,

t
t+d(x,y)+max.{0,α−β} > 1−r if and only if t−(1−r)[t+d(x, y)+max.{0, α−
β}] > 0. Hence,

d(x, y) +max.{0, α− β} < r[t+ d(x, y) +max.{0, α− β}].

Therefore, we obtain that d(x, y) < d(x, y) +max.{0, α − β} < s, so B is
bounded.
Conversely, if B is bounded, then there is a positive number s such that
d(x, y) < s for all x, y ∈ B. Since B is the support set of elements of A, so
we have

Md(λ, µ, t) =
t

t+ d(x, y) +max.{0, α− β} >
t

t+ s+max.{0, α− β} > 1−r

where r = s+max.{0,α−β}
t+s+max.{0,α−β} . It is clear that 0 < r < 1. Therefore, A is

F1-bounded. 2

Proposition 4.5. Let (M, IX) be any fuzzy metric space and let A ⊆ IX

be fuzzy compact, then it is F1-bounded.

Proof. Since A is fuzzy compact, so for t > 0 and 0 < r < 1, there is a
finite set {λ1, λ2, ..., λn} such that

A ⊆
n[
i=1

{B(λi, r, t) : λi ∈ A}.

To show that A is F1-bounded, let λ, µ ∈ A, then there exist j, k such that
λ ∈ B(λj , r, t) and µ ∈ B(λk, r, t) for 0 < j, k < n. This implies that
M(λj , λ, t) > 1−r andM(λk, µ, t) > 1−r. Since λj , λk are distinct for 0 <
j, k < n, so for t > 0, we haveM(λj , λk, t) > 0. Let c = min.{M(λj , λk, t) :
0 < j, k < n and because 0 < r < 1, so we can take c < 1

(1−r)2 , then we

have for t > 0, then s = 3t > 0 and M(λ, µ, s) ≥M(λ, λj , t)∗M(λj , λk, t)∗
M(µ, λk, t) > (1− r)(1− r)c > 1− p where 0 < p < 1. Hence M(λ, µ, s) >
1− p for all λ, µ ∈ A, hence A is F1-bounded. 2

Definition 4.6. A sequence in IX is a mapping f : N → IX and it is
denoted by < λn > or < λαnxn > where the membership function of λn is
given by:
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µλn(x) =

(
αn : if x = xn;
0 : otherwise.

We say that < λn > is fuzzy convergent to a fuzzy point λαx (dented by
< λn >→ λαx) if and only if

lim
n→∞

M(λ, λn, t) = 1 ∀t > 0.

Proposition 4.7. A fuzzy sequence< λn > in a fuzzy metric space (IX ,M, ∗)
is fuzzy convergent to a fuzzy point λαx if and only if for each small real
number ε > 0, there exists a number K ∈ N such that λn ∈ B(λ, ε, t) for
all n > K.

Proof. Suppose that < λn >→ λαx , then by definition

lim
n→∞

M(λ, λn, t) = 1 ∀t > 0.

⇐⇒ for each small number ε > 0, there exists a number K ∈ N such that

|M(λ, λn, t)− 1| < ε for all n > K

⇐⇒ 1−M(λ, λn, t) < ε for all n > K
⇐⇒ M(λ, λn, t) > 1− ε
⇐⇒ λn ∈ B(λ, ε, t) for all n > K. 2

Example 4.8. Let (X,d) = (R, |.|) and let IR,M|.|) be the induced fuzzy
metric space. If the sequence < λn > has the membership function

µλn(x) =

(
n

2n+1 : if xn =
1+n
n ;

0 : otherwise.

Then < λn > converges to λ where

µλ(x) =

(
1
2 : if x = 1;
0 : otherwise.

To prove it, we have to show that

lim
n→∞

M|.|(λ, λn, t) = 1 ∀t > 0.
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For this we have M|.|(λ
1
2
1 , λ

n
2n+1
1+n
n

, t) = t
t+|1− 1+n

n
|+( 1

2
− n
2n+1

)
= t

t+| 1
n
|+ 1

2(2n+1)

.

Hence it is obvious that

lim
n→∞

M|.|(λ
1
2
1 , λ

n
2n+1
1+n
n

, t) = 1 ∀t > 0.

Theorem 4.9. Let (IX ,Md, ∗) be the induced fuzzy metric space. if <
xn > converges to x in (X,d) and < αn > converges to α in [0, 1]. Then
the fuzzy sequence < λn > in IX fuzzy converges to λ .

Proof. Let t > 0 and by hypothesis < xn > converges to x in (X, d)
and < αn > converges to α in [0, 1]. Therefore, there exists N0 such
that d(xn, x) < ε1 and |αn − α| < ε1 for all n > N0 . Now d(xn, x) +
max.{0, α − αn} < ε1 + ε2 and hence,

t
t+d(xn,x)+max.{0,α−αn > t

t+ε1+ε2
.

Therefore, Md(λ, λn, t) > 1 − ε1+ε2
t+ε1+ε2

. Thus, Md(λ, λn, t) > 1 − r where

r = ε1+ε2
t+ε1+ε2

, clearly 0 < r < 1. This implies that λn ∈ B(λ, r, t), so by
Proposition 4.7, < λn >→ λ. 2

Theorem 4.10. Let (IX ,Md, ∗) be the induced fuzzy metric space. if
< xn > converges to x in (X, d), then the fuzzy sequence < λαnxn > in IX

fuzzy converges to λαx where α ≤ αn for all n ∈ N .

Proof. Let t > 0 and by hypothesis < xn > converges to x in (X, d).
Therefore, there exists N0 such that d(xn, x) < ε for all n > N0. Since
α ≤ αn for all n ∈ N , then d(xn, x) + max.{0, α − αn} < ε and hence,

t
t+d(xn,x)+max.{0,α−αn > t

t+ε . Therefore, Md(λ, λn, t) > 1 − ε
t+ε . Thus,

Md(λ, λn, t) > 1 − r where r = ε
t+ε , clearly 0 < r < 1. This implies that

λn ∈ B(λ, r, t), so by Proposition 4.7, < λn >→ λ. 2

Remark 4.11. In Example 4.8 and by virtue of Theorem 4.10, the fuzzy

sequence < λ
n

2n+1
1+n
n

> fuzzy converges to < λ
1
3
1 > also because 1

3 ≤
n

2n+1 for

all n ∈ N . Hence, we obtain that < λ
1
3
1 > and < λ

1
2
1 > are two distinct

fuzzy points in IX but every fuzzy open ball containing < λ
1
3
1 > intersects

with every open ball containing < λ
1
2
1 >. This implies that the fuzzy metric

space (IX ,Md, ∗) is not fuzzy Hausdorff. It is obvious that this space does
not satisfies the condition in Proposition 3.16.
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Definition 4.12. A sequence < λαxn > in IX is a fuzzy Cauchy sequence
if and only if

lim
n,m→∞

M(λαxn , λ
α
xm , t) = 1 ∀t > 0.

Equivalently, for each ε > 0, t > 0, there exists K ∈ N such that

M(λαxn , λ
α
xm , t) > 1− ε ∀n,m > K

.

Definition 4.13. A fuzzy metric space (IX ,M, ∗) is called fuzzy complete
if every fuzzy Cauchy sequence is fuzzy convergent in it.

Theorem 4.14. Let (IX ,Md, ∗) be the induced fuzzy metric space. If the
fuzzy sequence < λαxn > in IX fuzzy converges to λαx , then < λαxn > is a
fuzzy Cauchy sequence.

Proof. We have by definition, Md(λ
α
xn , λ

α
xm , t + ε) ≥ M(λαxn , λ

α
x , t) ∗

M(λαx , λ
α
xm , ε) for each t > 0 and ε > 0. Also we have Md(λ

α
xn , λ

α
x , t) =

t
t+d(xn,x)

→ 1 andM(λαx , λ
α
xm , ε) =

ε
ε+d(x,xm)

→ 1. Implies thatMd(λ
α
xn , λ

α
xm , t+

ε) → 1 and since ε is arbitrary small, so < λαxn > is a fuzzy Cauchy se-
quence. 2

Theorem 4.15. A sequence < λαxn > in a fuzzy metric space (IX ,Md, ∗)
is a fuzzy Cauchy sequence if and only if the sequence < xn > is a Cauchy
sequence in (X, d).

Proof. Suppose that < λαxn > is a Cauchy sequence, so by definition

lim
n,m→∞

M(λαxn , λ
α
xm , t) = 1 ∀t > 0.

⇐⇒ for each small real number ε > 0, there exists K ∈ N such that
1−M(λαxn , λ

α
xm , t) <

ε
ε+t for all n > K.

⇐⇒ t
t+d(xn,xm)

> 1− ε
ε+t for all n > K.

⇐⇒ d(xn, xm) < ε ⇐⇒ < xn > is a Cauchy sequence. 2

Remark 4.16. It is obvious that the sequence < xn >=< 1 + 1
2 +

1
3 +

... + 1
n > is not a Cauchy sequence in the usual metric (R, |.|). Hence, by

Theorem 4.15 the fuzzy sequence < λxn > is not a fuzzy Cauchy sequence
in (IR,M|.|, ∗).

Theorem 4.17. The fuzzy metric space (IR,M|.|, ∗) is fuzzy complete.
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Proof. Let (IR,M|.|, ∗) be the induced fuzzy metric space and< λxn >
be a fuzzy Cauchy sequence in it. Then by Theorem 4.15, < xn > is
a Cauchy sequence in the complete metric space (R, |.|). Hence < xn >
converges to some point x ∈ R. Therefore, by Theorem 4.10 we obtain that
< λxn > fuzzy converges to λx implies that (I

R,M|.|, ∗) is fuzzy complete.
2

Theorem 4.18. The fuzzy metric space (IX ,Md, ∗) is fuzzy complete if
and only if (X,d) is complete.

Proof. Follows from Theorem 4.15 and similar statements of Theorem
4.17. 2

Theorem 4.19. Let (IX ,Md, ∗) be the induced fuzzy metric space and let
< λxn > be a fuzzy sequence which is fuzzy convergent to λx. If λxn ∈
B[µ, r, t] for some µ ∈ IX and all n ∈ N , then λx ∈ B[µ, r, t].

Proof. For any given ε > 0 and any t > 0, we have Md(µ, λx, t + ε) ≥
Md(µ, λxn , t)∗Md(λxn , λx, ε). Since λxn ∈ B[µ, r, t], soMd(µ, λxn , t) ≥ 1−r.
Also λxn → λx and (I

X ,Md, ∗) is the induced fuzzy metric space, hence
Md(λxn , λx, ε) = Md(λx, λxn , ε) → 1. Therefore, Md(µ, λx, t + ε) ≥ (1 −
r) ∗ 1. Hence, for a large number n ∈ N , if we choose ε = 1

n , then we get
Md(µ, λx, t) = limn→∞Md(µ, λx, t+

1
n) ≥ 1−r. Implies that λx ∈ B[µ, r, t].

2

Theorem 4.20. Let (IX ,Md, ∗) be a complete induced fuzzy metric space
and let B1, B2, ... be a countable number of fuzzy dense fuzzy open balls in
(IX ,Md, ∗), then

T∞
i=1Bi is also fuzzy dense in (I

X ,Md, ∗).

Proof. Let G0 be any open ball in (I
X ,M, ∗). Since B1 is dense, so

G0 ∩ B1 6= φ, let λ1 ∈ G0 ∩ B1. Hence, by Proposition 3.15, there exists
0 < r1 < 1 and t1 > 0 such that B(λ1, r1, t1) ⊆ G0 ∩ B1. We can take
r1
0 < r1 and t1

0 < t1 such that B[λ1, r1
0, t10] ⊆ B(λ1, r1, t1) ⊆ G0 ∩B1. Let

G1 = B(λ1, r1
0, t10) and since B2 is dense, so G1∩B2 6= φ, let λ2 ∈ G1∩B2.

Again by Proposition 3.15, there exists 0 < r2 <
1
2 and t2 > 0 such that

B(λ2, r2, t2) ⊆ G1 ∩B2. Choosing r20 < r2 and t2
0 = min.{t2, 12} such that

B[λ2, r2
0, t20] ⊆ B(λ2, r2, t2) ⊆ G1 ∩B2, let G2 = B(λ2, r2

0, t20). Continuing
in this manner we can find λn ∈ Gn−1∩Bn and 0 < rn < 1

n and tn > 0 such
that B(λn, rn, tn) ⊆ Gn−1 ∩ Bn. take rn

0 < rn and tn
0 = min.{tn, 1n} such

that B[λn, rn
0, tn0] ⊆ B(λn, rn, tn) ⊆ Gn−1 ∩ Bn, let Gn = B(λn, rn

0, tn0).
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For any m > n we have λm ∈ B(λn, rn
0, tn0). Now for a given ε > 0 we

can choose K such that 1
K < t and 1

K < ε. Hence for m > n > K, we
have Md(λn, λm, t) ≥ Md(λn, λm,

1
K ) ≥ 1 −

1
K > 1 − ε. Hence < λn > is

a fuzzy Cauchy sequence. Since (IX ,Md, ∗) is a complete induced fuzzy
metric space, so < λn > fuzzy converges to some fuzzy point λ. We have
λk ∈ B[λn, rn

0, tn0] for all k ≥ n, so by Theorem 4.19, we obtain that
λ ∈ B[λn, rn

0, tn0] ⊆ Gn−1 ∩Bn for all n. Hence, we get

G0 ∩ (
∞\
i=1

Bi) = φ.

This implies that
T∞
i=1Bi is fuzzy dense in IX . 2

5. Conclusion

In this paper, we introduced a new type of fuzzy metric space and gave
several of its properties. Also we studied some topological properties of
this space. The concept of fuzzy convergence and fuzzy Cauchy sequences
are investigated and some results on these concepts are obtained. Further, a
fuzzy complete space is defined and a connection between a fuzzy complete
and a complete metric spaces are discussed.
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