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1. Introduction

By a graphG = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m,
respectively. For basic graph theoretic terminology we refer to [4]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length
of a shortest x-y path in G. It is known that the distance d is a metric
on the vertex set of G. An x-y path of length d(x, y) is called an x-y
geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of
P including the vertices x and y. For any vertex u of G, the eccentricity
of u is e(u) = max{d(u, v) : v ∈ V }. A vertex v is an eccentric vertex of u
if e(u) = d(u, v). The radius rad G and diameter diam G are defined by
rad G = min{e(v) : v ∈ V } and diam G = max{e(v) : v ∈ V }, respectively.
The neighborhood of a vertex v is the set N(v) consisting of all vertices
u which are adjacent with v. A vertex v is an extreme vertex of G if the
subgraph induced N(v) is complete. The closed interval I[x, y] consists of
all vertices lying on some x-y geodesic of G. A vertex v is a weak extreme
vertex of G if there exists a vertex u in G such that u, v ∈ I[x, y] for a
pair of vertices x, y in G, then v = x or v = y. Equivalently, a vertex
v in a connected graph is a weak extreme vertex if there exists a vertex
u in G such that v is either an initial vertex or a terminal vertex of any
interval containing both u and v. Each extreme vertex of a graph is weak
extreme. For the graph G in Figure 1, it is easily seen that each vertex is
weak extreme. However, no vertex of G is extreme.
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For S ⊆ V , let I[S] =
S

x,y∈S
I[x, y]. A set S of vertices is a geodetic

set of G if I[S] = V, and the minimum cardinality of a geodetic set is the
geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of
G. A total geodetic set S of G is a geodetic set such that the subgraph G[S]
induced by S has no isolated vertices. The minimum cardinality of a total
geodetic set of G is the total geodetic number of G and is denoted by gt(G).
A total geodetic set of cardinality gt(G) is called a gt-set of G. The geodetic
number of a graph was introduced in [1, 5] and further studied in [2, 3, 6].
Let 2V denote the set of all subsets of V . The mapping I : V × V →
2V defined by I[u, v] = {w ∈ V : w lies on a u− v geodesic in G} is the
interval function of G. One of the basic properties of I is that u, v ∈ I[u, v]
for any pair u, v ∈ V . Hence the interval function captures every pair of
vertices and so the problem of double geodetic sets is trivially well-defined
while it is clear that this fails in many graphs already for triplets (for
example, complete graphs). This is the motivation for introducing and
studying double geodetic sets.

A set S of vertices in G is called a double geodetic set of G if for each
pair of vertices x, y there exist vertices u, v ∈ S such that x, y ∈ I[u, v].
The double geodetic number dg(G) is the minimum cardinality of a double
geodetic set. Any double geodetic of cardinality dg(G) is called a dg-set of
G. The double geodetic number of a graph was introduced and studied in
[8]. The following theorems will be used in the sequel.

Theorem 1.1. [8] Every double geodetic set of a connected graph G con-
tains all the weak extreme vertices of G. In particular, if the set W of all
weak extreme vertices is a double geodetic set, then W is the unique dg-set
of G.

Theorem 1.2. [8] For the odd cycle G = C2n+1 (n ≥ 1), dg(G) = 2n+1.

Theorem 1.3. [9] Each cutvertex of a connected graph G belongs to
every connected double geodetic set of G.

2. The total double geodetic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A
total double geodetic set of a graph G is a double geodetic set S such that
the subgraphG[S] induced by S has no isolated vertices. The minimum car-
dinality of a total double geodetic set ofG is the total double geodetic number
of G and is denoted by dgt(G).
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Example 2.2. For the graph G given in Figure 2.1, S = {v1, v2, v7, v6}
is the minimum double geodetic set of G so that dg(G) = 4. Note that
the subgraph induced by S has isolated vertices so that S is not a total
double geodetic set of G. It is easily seen that T = {v1, v2, v3, v7, v5, v6} is
a minimum total double geodetic set of G and so dgt(G) = 6.

Further, it is easily verified that U = {v1, v2, v3, v4, v5, v6, v7} is the
unique minimum connected double geodetic set of G so that dgc(G) = 7
for the graph G given in Figure 2.1. Thus for the graph G given in Figure
2.1, dg(G) = 4, dgt(G) = 6 and dgc(G) = 7.

It follows from Theorem 1.1 that every weak extreme vertex of a con-
nected graph G belongs to every total double geodetic set of G. Hence for
the complete graph Kn(n ≥ 2), dgt(Kn) = n.

Theorem 2.3. For a connected graph G of order n, 2 ≤ dg(G) ≤ dgt(G) ≤
dgc(G) ≤ n.

Proof. Any double geodetic set needs at least two vertices and so
dg(G) ≥ 2. Since every total double geodetic set is a double geodetic set, we
have dg(G) ≤ dgt(G), and every connected double geodetic is a total double
geodetic set of G so that dgt(G) ≤ dgc(G). Also, since G is connected, it is
clear that dgc(G) ≤ n. Thus 2 ≤ dg(G) ≤ dgt(G) ≤ dgc(G) ≤ n. 2

A vertex v of a connected graph G is called a support of G if it is
adjacent to an endvertex of G.
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Theorem 2.4. Every total double geodetic set of a connected graph G
contains all the weak extreme vertices and the support vertices of G. In
particular, if the set S of all weak extreme vertices and support vertices is
a total double geodtic set, then S is the unique dgt-set of G.

Proof. This follows from Theorem 1.1. 2

For a nontrivial tree T , the set S of all endvertices and all support
vertices forms a total double geodetic set of T so that dgt(T ) = |S|.

Theorem 2.5. For a nontrivial tree T of order n, dgt(T ) = n if and only
if T is a caterpillar with all its cutvertices are support vertices.

Proof. Let dgt(T ) = n. By Theorem 2.4, all the vertices of T are end
vertices and support vertices. Hence it follows that T is a caterpillar. The
converse part is clear. 2

Theorem 2.6. For the complete bipartite graph G = Km,n,

dgt(G) =

⎧⎪⎨⎪⎩
2 if m = n = 1
n+ 1 if m = 1, n ≥ 2
min{m,n}+ 1 if m,n ≥ 2.

Proof. The first two parts are clear as G is a tree. Form,n ≥ 2, let X =
{x1, x2,
. . . , xm}, Y = {y1, y2, . . . , yn} be the partite sets of G. Let S be a double
geodetic set of G. We claim that X ⊆ S or Y ⊆ S. Otherwise, there exist
vertices x, y such that x ∈ X, y ∈ Y and x, y /∈ S. Now, since the pair
of vertices x, y lie only on the intervals I[x, y], I[x, t] or I[s, y] for some
t ∈ X and s ∈ Y , it follows that x ∈ S or y ∈ S, which is a contradiction.
Hence X ⊆ S or Y ⊆ S. Also it is clear that both X and Y are double
geodetic sets of Km,n and so dg(G) = min{m,n}. Assume that m ≤ n.
Then S = X ∪ {y}, where y ∈ Y , is a total double geodtic set of G and so
dgt(G) = m+ 1 = min{m,n}+ 1. 2

Theorem 2.7. For an even cycle G = C2n, dgt(G) =

(
3 if n = 2
4 if n ≥ 3.
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Proof. For n = 2, it is clear that any set of three vertices is a minimum
total double geodetic set of G so that dgt(G) = 3. For n ≥ 3, let G be the
cycle C2n : v1, v2, . . . , vn, vn+1 . . . , v2n, v1. Since S = {v1, vn+1} is a double
geodetic set, it is easily seen that S1 = S ∪ {v2, vn} is a minimum total
double geodetic set of G so that dgt(G) = 4. 2

Theorem 2.8. For the odd cycle G = C2n+1(n ≥ 1), dgt(G) = 2n+ 1.

Proof. This follows from Theorem 1.2. 2

Theorem 2.9. For any connected graph G, dgt(G) = 2 if and only if
G = K2.

Proof. Let dgt(G) = 2 and let S = {u, v} be a total double geodetic set
of G. Then uv is an edge. It is clear that a vertex different from u and v
cannot lie on a u-v geodesic and so G = K2. The converse is clear. 2

Theorem 2.10. Let G be a connected graph with at least two vertices.
Then dgt(G) ≤ 2 dg(G).

Proof. Let S = {v1, v2, . . . , vk} be a minimum double geodetic set of G.
Let ui ∈ N(vi) for i = 1, 2, . . . , k and T = {u1, u2, . . . , uk}. Then S ∪T is a
total double geodtic set of G so that dgt(G) ≤ |S ∪ T | ≤ 2k = 2dg(G). 2

In view of Theorem 2.10, we have the following realization result.

Theorem 2.11. For integers a, b with 4 ≤ a ≤ b and b ≤ 2a, there exists
a connected graph G such that dg(G) = a and dgt(G) = b.

Proof. Case 1. For a = b, the complete graph Ka has the desired
properties.

Case 2. a < b. Let b = a + p, where 1 ≤ p ≤ a. For p = 1, the
star K1,a has the desired properties. Now, let p ≥ 2. For each integer
i with 1 ≤ i ≤ p − 1, let Fi be a copy of the cycle C4 with vertex set
V (Fi) = {xi, yi, zi, wi}. Let H be a graph formed by identifying all these
Fi at xi, and let x be the identified vertices. Let Pb : u1, u2, . . . , ub be a
path of order b. Let H 0 be the graph obtained by identifying the vertex
u1 of Pb with the vertex x of H. Let G be the graph obtained from H 0

by adding the new vertices v1, v2, . . . , va−p, and joining v1 with ub−1, and
each vi(2 ≤ i ≤ a − p) with both ub−2 and ub. The graph G is shown in
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Figure 2.2. Let S = {v1, v2, . . . , va−p, ub, z1, z2, . . . , zp−1} be the set of all
weak extreme vertices of G. Since S is a double geodetic set of G, it follows
from Theorem 1.1 that dg(G) = a.

By Theorem 2.4, every total double geodetic set of G contains S. It
is clear that S1 = S ∪ {y1, y2, . . . , yp−1, ub−1} is a minimum total double
geodetic set of G so that dgt(G) = b. 2

For every connected graph G, rad G ≤ diam G ≤ 2 rad G. Ostrand
[7] showed that every two positive integers a and b with a ≤ b ≤ 2a are
realizable as the radius and diameter, respectively of some connected graph.
Now, Ostrand’s theorem can be extended so that the total double geodetic
number can also be prescribed.

Theorem 2.12. For positive integers r, d and k ≥ 4 with r ≤ d ≤ 2r, there
exists a connected graph G with rad G = r, diam G = d and dgt(G) = k.

Proof. If r = 1, then d = 1 or 2. For d = 1, let G = Kk. Then
dgt(G) = k. For d = 2, let G = K1, k−1. Then dgt(G) = k. Now, let r ≥ 2.
We construct a graph G with the desired properties as follows.
Case 1. r = d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r. Let
G be the graph given in Figure 2.3, obtained by adding the new vertices
v1, v2, . . . , vk−3 and joining each vi(1 ≤ i ≤ k − 3) with u1 and u2r of C2r.
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It is easily verfied that the eccentricity of each vertex of G is r so that
rad G = diam G = r. Let S = {v1, v2, . . . , vk−3, ur+1} be the set of all
weak extreme vertices of G. By Theorem 1.1, every total double geodetic
set of G contains S. It is clear that for any x /∈ S, S ∪ {x} is not a total
double geodetic set of G. Since S1 = S ∪ {u1, ur} is a total double geodetic
set of G, we have, dgt(G) = k.

Case 2. r < d. First, assume that k ≥ 7. Let C2r : u1, u2, . . . , u2r, u1
be a cycle of order 2r and let Pd−r+1 : v0, v1, . . . , vd−r be a path of order
d− r+1. Let H be the graph obtained from C2r and Pd−r+1 by identifying
v0 of Pd−r+1 and u1 of C2r. Now, add k−6 new vertices w1, w2, . . . , wk−6 to
the graphH and join w1 to ur, and join each vertex wi(2 ≤ i ≤ k−6) to both
ur+1 and ur−1, thereby obtaining the graph G in Figure 2.4. Then rad G =
r and diam G = d. Let S1 = {w1, w2, . . . , wk−6, ur+1, u2r, vd−r, ur, vd−r−1}
be set of all weak extreme vertices and support vertices of G. By Theorem
2.4, every total double geodetic set contains S1. It is clear that S1 is not
a total double geodetic set of G. Since S2 = S1 ∪ {u1} is a total double
geodetic set of G, we have dgt(G) = k.
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Now, for k = 4, 5, 6, let G1 be the graph obtained from H by adding
(k − 4) new vertices y1, y2, . . . , yk−4 and joining each yi(1 ≤ i ≤ k − 4)
to both ur and ur+2. Then rad G1 = r and diam G1 = d. Let T =
{y1, y2, . . . , yk−4, ur+1, vd−r−1, vd−r} be the set of all weak extreme vertices
and support vertices of G1. By Theorem 2.4, every total double geodetic
set contains T . It is clear that T1 = T ∪ {ur} is a minimum total double
geodetic set of G1 so that dgt(G) = k. 2

Theorem 2.13. If n, a, b are integers such that 4 ≤ a ≤ b ≤ n, then there
exists a connected graph G of order n with dgt(G) = a and dgc(G) = b.

Proof. We prove this theorem by considering four cases.

Case 1. a = b = n. Let G = Kn. Then dgt(G) = dgc(G) = n.

Case 2. a < b < n. Let Pb−a+4 : u1, u2, . . . , ub−a+4 be a path of order
b− a+ 4. Add n+ a− b− 4 new vertices v1, v2, . . . , vn−b, w1, w2, . . . , wa−4
to Pb−a+4 and join w1 to u2, and join w2, w3, . . . , wa−4 with u1 and u3 and
also join v1, v2, . . . , vn−b with both u2 and u4 to get the graph G of order
n given in Figure 2.5. Let S = {w1, w2, . . . , wa−4, u1, u2, ub−a+3, ub−a+4}
be the set of all weak extreme vertices and support vertices of G. Since
S is a total double geodetic set of G, by Theorem 2.4, dgt(G) = a. Let
S1 = {w1, w2, . . . , wa−4, u1, ub−a+4, u2, u4, u5, . . . , ub−a+3} be the set of all
weak extreme vertices and cutvertices. By Theorems 1.1 and 1.3, every
connected double geodetic set of G contains S1. It is clear S1 is not a
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connected double geodetic set of G. Since T = S1 ∪ {u3} is a minimum
connected double geodetic set of G, we have dgc(G) = b.

Case 3. a = b < n. Let P3 : u1, u2, u3 be a path of order 3. Add the new
vertices v1, v2, . . . , vn−a and join each vi(1 ≤ i ≤ n − a) with u1 and u3.
Also, add new vertices w1, w2, . . . , wa−3 and join each wi(1 ≤ i ≤ a − 3)
with u1, thereby obtaining the graph G of order n given in Figure 2.6.
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