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Abstract:

For a connected graph G of order n, a set S of vertices is called a
double geodetic set of G if for each pair of vertices x, y in G there exist
vertices u, v € S such that x, y € I[u, v]. The double geodetic number
dg(G) is the minimum cardinality of a double geodetic set. Any
double godetic set of cardinality dg(G) is called a dg-set of G. A con-
nected double geodetic set of G is a double geodetic set S such that
the subgraph G[S] induced by S is connected. The minimum cardi-
nality of a connected double geodetic set of G is the connected
double geodetic number of G and is denoted by dgc(G). A connected
double geodetic set of cardinality dgc(G) is called a dgc-set of G. A
total double geodetic set of a graph G is a double geodetic set S such
that the subgraph G[S] induced by S has no isolated vertices. The
minimum cardinality of a total double geodetic set of G is the total
double geodetic number of G and is denoted by dgt(G). For positive
integersr,d and k > 4 withr < d < Zr, there exists a connected graph
Gwithrad G =r, diam G = d and dgt(G) = k. It is shown thatifn, a, b
are positive integers such that 4 < a < b < n, then there exists a con-
nected graph G of order n with dgt(G) = a and dgc(G) = b. Also, for
integers a, b with 4 < a < b and b < 2a, there exists a connected
graph G such that dg(G) = a and dgt(G) = b.
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1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m,
respectively. For basic graph theoretic terminology we refer to [4]. For
vertices  and y in a connected graph G, the distance d(x,y) is the length
of a shortest z-y path in G. It is known that the distance d is a metric
on the vertex set of G. An z-y path of length d(z,y) is called an z-y
geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of
P including the vertices x and y. For any vertex u of G, the eccentricity
of u is e(u) = max{d(u,v) : v € V'}. A vertex v is an eccentric vertex of u
if e(u) = d(u,v). The radius rad G and diameter diam G are defined by
rad G = min{e(v) : v € V} and diam G = max{e(v) : v € V'}, respectively.
The neighborhood of a vertex v is the set N(v) consisting of all vertices
u which are adjacent with v. A vertex v is an extreme vertex of G if the
subgraph induced N (v) is complete. The closed interval I[x,y] consists of
all vertices lying on some z-y geodesic of G. A vertex v is a weak extreme
vertex of G if there exists a vertex w in G such that u,v € I[x,y] for a
pair of vertices x,y in G, then v = x or v = y. Equivalently, a vertex
v in a connected graph is a weak extreme vertex if there exists a vertex
u in G such that v is either an initial vertex or a terminal vertex of any
interval containing both uw and v. Each extreme vertex of a graph is weak
extreme. For the graph GG in Figure 1, it is easily seen that each vertex is
weak extreme. However, no vertex of G is extreme.

e
g
Figure 1: &
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For S C V, let I[S] = U I[z,y]. A set S of vertices is a geodetic
T, yeS

set of G if I[S] = V, and the minimum cardinality of a geodetic set is the
geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of
G. A total geodetic set S of G is a geodetic set such that the subgraph G[S]
induced by S has no isolated vertices. The minimum cardinality of a total
geodetic set of G is the total geodetic number of G and is denoted by ¢:(G).
A total geodetic set of cardinality g;(G) is called a gi-set of G. The geodetic
number of a graph was introduced in [1, 5] and further studied in [2, 3, 6].
Let 2 denote the set of all subsets of V. The mapping I : V x V —
2V defined by I[u,v] = {w € V : w lies on a u — v geodesic in G} is the
interval function of G. One of the basic properties of I is that u, v € I[u,v]
for any pair u, v € V. Hence the interval function captures every pair of
vertices and so the problem of double geodetic sets is trivially well-defined
while it is clear that this fails in many graphs already for triplets (for
example, complete graphs). This is the motivation for introducing and
studying double geodetic sets.

A set S of vertices in G is called a double geodetic set of G if for each
pair of vertices z,y there exist vertices u,v € S such that z,y € I[u,v].
The double geodetic number dg(G) is the minimum cardinality of a double
geodetic set. Any double geodetic of cardinality dg(G) is called a dg-set of
G. The double geodetic number of a graph was introduced and studied in
[8]. The following theorems will be used in the sequel.

Theorem 1.1. [8] Every double geodetic set of a connected graph G con-
tains all the weak extreme vertices of GG. In particular, if the set W of all
weak extreme vertices is a double geodetic set, then W is the unique dg-set

of G.
Theorem 1.2. [8] For the odd cycle G = Copq1 (n > 1), dg(G) = 2n+1.

Theorem 1.3. [9] Each cutvertex of a connected graph G belongs to
every connected double geodetic set of G.

2. The total double geodetic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices. A
total double geodetic set of a graph G is a double geodetic set S such that
the subgraph G[S] induced by S has no isolated vertices. The minimum car-
dinality of a total double geodetic set of G is the total double geodetic number
of G and is denoted by dg:(G).
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Example 2.2. For the graph G given in Figure 2.1, S = {v1,v2,v7,v6}
is the minimum double geodetic set of G so that dg(G) = 4. Note that
the subgraph induced by S has isolated vertices so that S is not a total
double geodetic set of G. It is easily seen that T' = {v1, va, v3, v7,v5,v6} 1S
a minimum total double geodetic set of G and so dg;(G) = 6.

™

Figure 2.1: &

Further, it is easily verified that U = {v1,ve,vs,v4,vs, v, v7} is the
unique minimum connected double geodetic set of G so that dg.(G) = 7
for the graph G given in Figure 2.1. Thus for the graph G given in Figure
2.1, dg(G) =4, dg:(G) = 6 and dg.(G) = T.

It follows from Theorem 1.1 that every weak extreme vertex of a con-
nected graph G belongs to every total double geodetic set of G. Hence for
the complete graph K, (n > 2),dg(K,) = n.

Theorem 2.3. For a connected graph G of order n, 2 < dg(G) < dg:(G) <
dgc(G) < n.

Proof. Any double geodetic set needs at least two vertices and so
dg(G) > 2. Since every total double geodetic set is a double geodetic set, we
have dg(G) < dg:(G), and every connected double geodetic is a total double
geodetic set of G so that dg;(G) < dg.(G). Also, since G is connected, it is
clear that dg.(G) < n. Thus 2 < dg(G) < dg:(G) < dg.(G) < n.

A vertex v of a connected graph G is called a support of G if it is
adjacent to an endvertex of G.
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Theorem 2.4. Every total double geodetic set of a connected graph G
contains all the weak extreme vertices and the support vertices of G. In
particular, if the set S of all weak extreme vertices and support vertices is
a total double geodtic set, then S is the unique dgs-set of G.

Proof. This follows from Theorem 1.1.
For a nontrivial tree T', the set S of all endvertices and all support
vertices forms a total double geodetic set of T" so that dg:(T") = |S].

Theorem 2.5. For a nontrivial tree T' of order n, dg;(T) = n if and only
if T is a caterpillar with all its cutvertices are support vertices.

Proof. Let dg:(T) = n. By Theorem 2.4, all the vertices of T" are end
vertices and support vertices. Hence it follows that T is a caterpillar. The
converse part is clear.

Theorem 2.6. For the complete bipartite graph G = K, 5,

2 iftm=n=1
dgi(G) =¢ n+1 ifm=1n>2
min{m,n}+1 if m,n > 2.

Proof. The first two parts are clear as G is a tree. For m,n > 2 let X =
{21, 22,

o Zmt, Y ={y1,92,...,yn} be the partite sets of G. Let S be a double
geodetic set of G. We claim that X C S or Y C 5. Otherwise, there exist
vertices z,y such that x € X,y € Y and z,y ¢ S. Now, since the pair
of vertices z,y lie only on the intervals I[x,y], I[x,t] or I[s,y] for some
t e X and s €Y, it follows that z € S or y € S, which is a contradiction.
Hence X € SorY C S. Also it is clear that both X and Y are double
geodetic sets of K, and so dg(G) = min{m,n}. Assume that m < n.
Then S = X U{y}, where y € Y, is a total double geodtic set of G and so
dg(G) =m+ 1 =min{m,n} + 1.

3 fn=2

Theorem 2.7. For an even cycle G = Cy,, dg:(G) = { A if n>3
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Proof. For n =2, it is clear that any set of three vertices is a minimum
total double geodetic set of G so that dg;(G) = 3. For n > 3, let G be the
cycle Cop, 1 V1,02, ..., Up,y Upt1 - ., V2an, v1. Since S = {v1,vp41} is a double
geodetic set, it is easily seen that S; = S U {ve,v,} is a minimum total
double geodetic set of G so that dg;(G) = 4.

Theorem 2.8. For the odd cycle G = Cor1(n > 1), dg:(G) = 2n + 1.

Proof. This follows from Theorem 1.2.

Theorem 2.9. For any connected graph G, dg;(G) = 2 if and only if
G = K.

Proof. Let dg;(G) =2 and let S = {u,v} be a total double geodetic set
of G. Then wv is an edge. It is clear that a vertex different from u and v
cannot lie on a u-v geodesic and so G = Ks. The converse is clear.

Theorem 2.10. Let G be a connected graph with at least two vertices.
Then dg:(G) < 2 dg(G).

Proof. Let S = {vy,va,...,v;} be a minimum double geodetic set of G.
Let u; € N(v;) fort =1,2,...,kand T = {uy,u2,...,ux}. Then SUT is a
total double geodtic set of G so that dg;(G) < [SUT| < 2k = 2dg(G).

In view of Theorem 2.10, we have the following realization result.

Theorem 2.11. For integers a,b with 4 < a < b and b < 2a, there exists
a connected graph G such that dg(G) = a and dg:(G) = b.

Proof. Case 1. For a = b, the complete graph K, has the desired
properties.

Case 2. a < b. Letb=a+p, where 1 < p < a. For p = 1, the
star K1, has the desired properties. Now, let p > 2. For each integer
i with 1 <4¢ < p—1, let F; be a copy of the cycle Cy with vertex set
V(F;) = {xi,yi, zi,w;}. Let H be a graph formed by identifying all these
F; at x;, and let = be the identified vertices. Let Py, : ui, uo,...,u; be a
path of order b. Let H' be the graph obtained by identifying the vertex
uy of P, with the vertex x of H. Let G be the graph obtained from H’
by adding the new vertices v1,v2,...,0q—p, and joining v; with u,_y, and
each v;(2 < i < a — p) with both u_s and u. The graph G is shown in


rvidal
Cuadro de texto
172

rvidal
Cuadro de texto

rvidal
Cuadro de texto

rvidal
Cuadro de texto

rvidal
Cuadro de texto


The total double geodetic number of a graph ... 173

Figure 2.2. Let S = {vi,v2,...,Vq—p, Up, 21,22, ..., 2p—1} be the set of all
weak extreme vertices of G. Since S is a double geodetic set of G, it follows
from Theorem 1.1 that dg(G) = a.

By Theorem 2.4, every total double geodetic set of G contains S. It
is clear that S1 = S U {y1,¥2,...,Yp—1,Up—1} is a minimum total double
geodetic set of G so that dg:(G) = b.

™

o U

Z.!-‘—l

Figure 2.2: &

For every connected graph G, rad G < diam G < 2 rad G. Ostrand
[7] showed that every two positive integers a and b with a < b < 2a are
realizable as the radius and diameter, respectively of some connected graph.
Now, Ostrand’s theorem can be extended so that the total double geodetic
number can also be prescribed.

Theorem 2.12. For positive integers r,d and k > 4 with r < d < 2r, there
exists a connected graph G with rad G = r,diam G = d and dg;(G) = k.

Proof. Ifr=1 thend =1or 2. Ford =1, let G = Ki. Then
dgi(G) = k. For d =2, let G = K ;1. Then dg:(G) = k. Now, let r > 2.
We construct a graph G with the desired properties as follows.

Case 1. r = d. Let Co : uy,us,...,us,u; be a cycle of order 2r. Let
G be the graph given in Figure 2.3, obtained by adding the new vertices
v1,v2,...,Vk_3 and joining each v;(1 < i < k — 3) with uy and ug, of Cy,.
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It is easily verfied that the eccentricity of each vertex of G is r so that
rad G = diam G = r. Let S = {v1,v2,...,Uk_3,ur+1} be the set of all
weak extreme vertices of G. By Theorem 1.1, every total double geodetic
set of G contains S. It is clear that for any = ¢ 5,5 U {z} is not a total
double geodetic set of G. Since S; = SU{u,u,} is a total double geodetic
set of G, we have, dg:(G) = k.

Uy i2 .
iy
Uy o Uz
Figure 2.3: &

Case 2. r < d. First, assume that &k > 7. Let Co. : uy,uo,...,us, u1
be a cycle of order 2r and let Py_,4+1 : vg,v1,...,U4— be a path of order
d—r—+1. Let H be the graph obtained from Cy, and P;_,,1 by identifying
vg of Py_,11 and uj of Cy,. Now, add k—6 new vertices wy,wa, ..., wy_g to

the graph H and join w; to u,., and join each vertex w;(2 < i < k—6) to both
ur+1 and u,_1, thereby obtaining the graph G in Figure 2.4. Then rad G =
r and diam G = d. Let S1 = {w1,wa, ..., Wk_g, Ur+1, U2r, Vd—r Up, Vg—r—1}
be set of all weak extreme vertices and support vertices of G. By Theorem
2.4, every total double geodetic set contains S7. It is clear that Sy is not
a total double geodetic set of G. Since Sy = S; U {u1} is a total double
geodetic set of G, we have dg;(G) = k.
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Uzy

U1 (%23 Usg Ud—r—2 Ud—p

/ul = Uy Ud—r—1

Figure 24: G

Now, for k = 4,5,6, let G1 be the graph obtained from H by adding
(k — 4) new vertices y1,%2,...,Yr—4 and joining each y;(1 < i < k —4)
to both u, and u,42. Then rad Gi = r and diam G; = d. Let T =
{y1,Y2, -+ Yk—a, Ur+1,Vd—r—1, Vi—r } be the set of all weak extreme vertices
and support vertices of G;. By Theorem 2.4, every total double geodetic
set contains T'. It is clear that 77 = T'U {u,} is a minimum total double
geodetic set of G so that dg,(G) = k.

Theorem 2.13. If n,a,b are integers such that 4 < a < b < n, then there
exists a connected graph G of order n with dg;(G) = a and dg.(G) = b.

Proof.  We prove this theorem by considering four cases.
Case 1. a =b=n. Let G = K,,. Then dg:(G) = dg.(G) = n.

Case 2. a < b < n. Let Pp_giq : u1,u2,...,Uup_q+a be a path of order
b—a+4. Add n+a — b — 4 new vertices v1,v9,...,Up_p, W1, W, ..., Wa_4
to Py_q14 and join wj to ug, and join wag, ws, ..., we—q with u; and ug and
also join wv1,vs,...,v,_p with both us and uy to get the graph G of order
n given in Figure 2.5. Let S = {wi,wa,...,We—1,U1, U2, Up—q+3, Ub—q+4}
be the set of all weak extreme vertices and support vertices of G. Since
S is a total double geodetic set of G, by Theorem 2.4, dg;(G) = a. Let
S1 = {wi,wa, ..., Wa—g, U1, Up—qtd, U2, Us, Us, - . ., Up—q+3} De the set of all
weak extreme vertices and cutvertices. By Theorems 1.1 and 1.3, every
connected double geodetic set of G contains S7. It is clear Sy is not a
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connected double geodetic set of G. Since T' = S; U {uz} is a minimum

connected double geodetic set of G, we have dg.(G) = b.

[ Ub—atl Uh_atd

Wa—g Un_b

Figure 2.5: G

Case 3. a = b < n. Let P : ui,u9,u3 be a path of order 3. Add the new
vertices v1,vg,...,Un—q and join each v;(1 < i < n — a) with u; and us.
Also, add new vertices wy, ws, ..., w,—3 and join each w;(1 < i < a — 3)
with uj, thereby obtaining the graph G of order n given in Figure 2.6.

b Wy o Wi 3

l'i"".—l'l

Figure 2.6: &
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Let So = {wy,wa, ..., we—3,u1,us} be the set of all weak extreme vertices
and support vertices of G. By Theorems 1.3 and 2.4, every total double
geodetic set as well as every connected double geodetic set of G contains
So. Since Sy is neither a total double geodetic set nor a connected double
geodetic set of G and since Sz U {ug} is a connected double geodetic set of
G, we have dg.(G) = dg;(G) = a =b.

Case 4. a < b =mn. Let P44 @ ui,ug,...,up_q+4 be a path of or-
der b — a + 4. Add a — 4 new vertices vy,v2,...,05—4 to Py_q1q and
join vy to Up—q13 and join wva,vs,...,ve—4 with both up_qio and up_g+4,
thereby producing the graph G of order n given in Figure 2.7. Let S3 =
{uy,ug,v1,v2,...,Vq—4,Up_q+3, Up—qr+4} De the set of all weak extreme ver-
tices and support vertices of G. Since S3 is a total double geodetic set of
G, it follows from Theorem 2.4 that dg:(G) = a. Since each vertex of G is
either a weak extreme vertex or a cutvertex of G, it follows from Theorems
1.1 and 1.3 that dg.(G) =n =

Uy tz g iy Ub—a42 |Ub—a43 Ub—atd 4

Figure 2.7: ¢
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