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1. Introduction

Let (Ω,F , µ) be a measure space (µ is a positive measure). For any
mesurable functions f, g : Ω 7→ C on Ω, we recall the Hölder’s inequal-
ity:

Z
Ω
|fg|dµ ≤

µZ
Ω
|f |pdµ

¶ 1
p
µZ

Ω
|f |qdµ

¶ 1
q

, ∀p, q ≥ 1 with 1
p
+
1

q
= 1. (H)

If p = q = 2 then we obtain the cauchy-Schwarz inequality:

Z
Ω
|fg|dµ ≤

µZ
Ω
|f |2dµ

¶ 1
2
µZ

Ω
|f |2dµ

¶ 1
2

. (C.S)

Their discrete versions are respectively, given by:

nX
i=1

|xiyi| ≤
"

nX
i=1

|xi|p
# 1
p
"

nX
i=1

|yi|q
# 1
q

:= kxkpkykq, (H)d

and
nX
i=1

|xiyi| ≤
"

nX
i=1

|xi|2
# 1
2
"

nX
i=1

|yi|2
# 1
2

:= kxk2kyk2 (C.S)d

which are valid for all positive integer n and all vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ Kn, where the field K is real or complex.

Easily, we have (H) =⇒ (C.S).

It is natural to raise the question: is the converse true ?.

In fact, the converse was known to be true in the literature (see for
instance, [10], [12], [13], [11] and [9]).

There are many connections between classical discrete inequalities. Some
of these connections were noted in several chapters of the book [13], where
in particular the equivalence (H)d ⇐⇒ (C.S)d was obtained after some
intermidiate results.

It is known, from the book [12] of A. W. Marshall and I. Olkin, that
the Cauchy-Schwarz inequality implies Lyapunov’s inequality which itself
implies the arithmetic-geometric mean inequality. We can say that, in a
sense, the arithmetic-geometric mean inequality, Holder’s inequality, the
Cauchy-Schwarz inequality, and Lyapunov’s inequality are all equivalent
[[12], p. 457].
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Some refinements to Hölder’s inequality and applications ... 159

This paper is organised as follows: In section 2, we give some refinements
to Young’s inequality. In section 3, we provide some new refinements of
Hölder’s inequality. In section 4, we give applications to the extended
gamma function. In section 5, we give applications to the extended beta
function. In section 6, we apply our results to etablish the equivalence
between the integral inequalities (H) and (C−S). In section 7, we present
some conclusions and discuss the possibility of other applications, of our
results, to provide new refinements to certain classical inequalities involving
various special functions.

We notice that [15] contains a good list of references on the extended
Euler’s gamma and beta functions.

We point out that the inequalities obtained in the sections 4 and 5
generalize and refine some well known results concerning the gamma and
beta functions and their extensions (see [13], [8], [7], and [15]).

2. Refinements of Young’s inequality

Let a, b be two positive numbers and let α ∈ [0, 1]. We denote by Y (α) the
Young’s inequality:

aαb1−α ≤ αa+ (1− α)b. (Y (α))

If α = 1/2 then we find the Cauchy-Jensen (or geometric mean -arithmetic
mean) inequality :

√
ab ≤ a+ b

2
. (Y (1/2))

To prove our first result we need to recall the following result which is a
consequence from the paper [1].

Theorem 2.1 ([1]). Let (Xn)
∞
n=1 be a sequence of real integrable r.v.s

which are independent and equidistributed defined on a Probability space
(Ω,F , P ) and taking values in an interval I of R. Let φ : I → R be a
continuous convex function. Then the following inequalities hold:

φ(E[X1]) ≤ E[φ(Yn+1)] ≤ E[φ(Yn)] ≤ E[φ(X1)] for all positive integern,

where Yn :=
1
nΣ

n
i=1Xn for all positive integer n and E[X] designates the

esperance for all integrable random variable X on Ω.

Concerning Young’s inequality, we establish the following result.
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160 Mohamed Akkouchi and Mohamed Amine Ighachane

Theorem 2.2. Let a and b two positive numbers. Then for all n ≥ 1 and
α ∈]0, 1[ we have

aαb1−α ≤ (αa 1
n + (1− α)b

1
n )n ≤ αa+ (1− α)b,

moreover if we set Un(α, a, b) := (αa
1
n + (1− α)b

1
n )n then (Un(α, a, b))n≥1

is a nonincreasing sequence satisfying

lim
n→∞

Un(α, a, b) = aαb1−α.

Proof. (a) Choose x = a1/net y = b1/n. by Young inequality we have

xαy1−α = a
α
n b

1−α
n ≤ (αa1/n + (1− α)b1/n)

and so
aαb1−α ≤ (αa1/n + (1− α)b1/n)n.

By convexity of function f(t) = tn n ≥ 2 we find that

(αa1/n + (1− α)b1/n)n ≤ αa+ (1− α)b

It follows that

aαb1−α ≤ (αa 1
n + (1− α)b

1
n )n ≤ αa+ (1− α)b.

We have

lim
n→+∞

Un(α, a, b) = lim
n→+∞

(αa1/n + (1− α)b1/n)n

= lim
n→+∞

exp

µ
n ln(αa1/n + (1− α)b1/n)

¶
= lim

h→0
exp

µ
1

h
ln(αah + (1− α)bh)

¶
= lim

h→0
exp

µ
1

h
ln(bh(1 + α((

a

b
)h − 1))

¶
= b lim

h→0
exp

µ
1

h
ln((1 + α((

a

b
)h − 1))

¶
= b expα ln(

a

b
) = aαb1−α.

(b) It remains to show that the sequence (Un(α, a, b)) is nonincreasing.
To this end, we apply Theorem 2.1, for independent and equidistributed
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Some refinements to Hölder’s inequality and applications ... 161

random variables with the same probability law µ := αδln(a)+(1−α)δln(b),
where δc means the Dirac measure with mass one concentrated at the point
c for each c ∈ R.

(c) We set I := R and consider the convex function x 7→ ex defined on
I = R.

Indeed, we observe that for all positive integer n, we have

Un(α, a, b) = E

µ
e
X1+X2+...Xn

n

¶
.

We use Theorem 2.1 to conclude that this sequence is nondecreasing. This
ends the proof. 2

In the next result, we prove that the inequalities (Y (α)) and (Y (12)) are
equivalent.

Theorem 2.3. The inequalities of Young Y (12) and Y (α) are equivalent.

Proof. Suppose that Y (12) is statisfied, then for all k a postive integer,
we have

(a1....a2n)
1/2n ≤ 1

2n
(a1 + ....+ a2n).

We choose ai = a for 1 ≤ i ≤ k and ai = b for k + 1 ≤ i ≤ 2n. Then we get

(akb2
n−k)1/2

n ≤ 1/2n(ka+ (2n − k)b).

It follows that

a
k
2n b1−

k
2n ≤ k

2n
a+ (1− k

2n
)b.

By density of the set { k
2n : 1 ≤ k ≤ 2n} in [0, 1] we obtain

aαb1−α ≤ αa+ (1− α)b.

This completes the proof. 2

We point out that J. M. Aldaz (see [3] and the references therein) dis-
cussed other types of improvements to the AM-GM inequality and gave
some applications of them.
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162 Mohamed Akkouchi and Mohamed Amine Ighachane

3. Refinements of Hölder’s inequality

The main result of this section reads as follows.

Theorem 3.1. Let p and q tow numbers such that 1/p + 1/q = 1 and
p, q > 1, and f, g nonnegative µ−mesurable fonctions. Then for all n ≥ 2
we have:

Z
Ω
|f(x)g(x)|dµ(x) ≤

µ
1

pn
+
1

qn

¶
||f ||p||g||q

+
n−1X
k=1

Ã
n

k

!
1

pkqn−k
||f ||1−

kp
n

p ||g||1−
(n−k)q

n
q

Z
Ω
|f |

kp
n |g|

(n−k)q
n dµ

≤
µZ

Ω
|f |pdµ

¶ 1
p
µZ

Ω
|g|qdµ

¶ 1
q

,

where
¡n
k

¢
:= n!

(n−k)!k! is the usual binomial coefficient, for all k ∈ {0, 1, 2, . . . n}.

Proof. we have

ab = (ap)
1
p (bq)

1
q ≤

µ
1

p
a
p
n +

1

q
b
q
n

¶n
=

nX
k=0

Ã
n

k

!µ
ap/n

p

¶kµbq/n
q

¶n−k
.

We set a = |f(x)|
||f ||p and b = |g(x)|

||g||q then

|f(x)g(x)|
||f ||p||g||q

≤ |f(x)|p
pn||f ||pp

+
|g(x)|q
qn||g||qq

+
n−1X
k=1

Ã
n

k

!
1

pkqn−k
|f(x)|(kp)/n

||f ||(kp)/np

|g(x)|(n−k)q/n

||g||(n−k)q/nq

.

It follows thatZ
Ω

|f(x)g(x)|
||f ||p||g||q

dµ(x) ≤ 1

pn
+
1

qn
+

Z
Ω

µ n−1X
k=1

Ã
n

k

!
1

pkqn−k
|f(x)|(kp)/n

||f ||(kp)/np

|g(x)|(n−k)q/n

||g||(n−k)q/nq

¶
dµ(x).

Therefore, we haveZ
Ω
|fg|dµ ≤

µ
1

pn
+
1

qn

¶
||f ||p||g||q

+
n−1X
k=1

Ã
n

k

!
1

pkqn−k
||f ||1−

kp
n

p ||g||1−
(n−k)q

n
q

Z
Ω
|f |(kp)/n|g|(n−k)q/ndµ.

This proves the first inequality in the right hand side of (3.1).

rvidal
Cuadro de texto
158



Some refinements to Hölder’s inequality and applications ... 163

For the second inequality in the right hand side of (3.1), we make use
of Hölder’s inequality. For 1 ≤ k ≤ n− 1, We get

Z
Ω
|f |

kp
n |g|

(n−k)q
n dµ ≤

∙Z
Ω
(|f |

kp
n )

n
k dµ

¸ k
n
∙Z

Ω
(|g|

(n−k)q
n )

n
n−k dµ

¸n−k
n

= ||f ||
kp
n
p ||g||

(n−k)q
n

q .

Taking into account of these inequalities, we deduce the last inequality. This
ends the proof. 2 For the discrete case, we have the following inequality:

Corollary 3.1. Let p and q two positive numbers show that p ≥ 1 and
1
p +

1
q = 1. For all vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Kn with n ≥ 1, we

have:

mX
i=1

|xiyi| ≤ (
1

pn
+
1

qn
)||x||p||y||q

+
n−1X
k=1

Ã
n

k

!
1

pkqn−k
||x||1−

kp
n

p ||y||1−
(n−k)q

n
q

mX
i=1

|xi|
kp
n |yi|

(n−k)q
n

≤ ||x||p||y||q

4. Applications to the extended gamma function

In [8] we find a proof of the following result.

Theorem 4.1. ([8]) Let a, b be nonnegative numbers with a + b = 1 and
x, y be positive numbers. Then

Γ(ax+ by) ≤ Γ(x)aΓ(y)b, (4.1)

i.e., the mapping Γ is logarithmically convex on (0,+∞).

This result was extended to the so called extended Gamma functions.

In 1994, Chaudhry and Zubair (see [7]) introduced the extended gamma
function by setting

Γw(x) :=

Z +∞

0
tx−1e−t−wt

−1
dt, <(x) > 0, w ∈ [0,+∞).

If w = 0, then Γ0 coincides with the classical gamma function usually
denoted by Γ.

The generalization of the inequality (4.1) to the setting was made in [7]
and [15].
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164 Mohamed Akkouchi and Mohamed Amine Ighachane

Theorem 4.2. ([7] - [15]) Let w ≥ 0. Let a, b be nonnegative numbers
with a+ b = 1 and x, y be positive numbers. Then

Γw(ax+ by) ≤ Γw(x)aΓw(y)b, (4.2)

i.e., the mapping Γw is logarithmically convex on (0,+∞).

By using Theorem 3.1, we obtain the following refinements of the inequality
(4.2) for the extended gamma function.

Theorem 4.3. Let w ≥ 0. Let a, b ≥ 0 with a+ b = 1 and x, y > 0. Then
for all n ≥ 2

Γw(ax+ by) ≤ (an + bn)Γw(x)
aΓw(y)

b

+
n−1X
k=1

Ã
n

k

!
akbn−kΓw(x)

a− k
nΓw(y)

b−n−k
n Γw(

k

n
x+

n− k

n
y)

≤ Γw(x)
aΓw(y)

b.

Proof. To apply our Theorem 3.1, we set Ω := (0 +∞) and take the
measure µ given by dµ(t) := e−t−wt

−1
dt. Then we choose f(s) = sa(x−1)

and g(s) = sb(y−1) and p = 1/a, b = 1/b. Then we have 1/p+1/q = a+b = 1
and easy computations give the following:

||f ||p =
µZ ∞

0
s(x−1)dµ(s)

¶a
= Γw(x)

a, ||g||q =
µZ ∞

0
s(y−1)dµ(s)

¶b
= Γw(y)

b

and Z ∞
0

sa(x−1)sb(y−1)dµ(s) = Γw(ax+ by).

Then by Theorem 3.1, we have

Γw(ax+ by) ≤ (an + bn)Γw(x)
aΓw(y)

b

+
n−1X
k=1

Ã
n

k

!
akbn−kΓw(x)

a− k
nΓw(y)

b−n−k
n

Z ∞
0

s
k
n
(x−1)s

(n−k)
n

(y−1)dµ(s)

= (an + bn)Γw(x)
aΓw(y)

b

+
n−1X
k=1

Ã
n

k

!
akbn−kΓw(x)

a− k
nΓw(y)

b−n−k
n Γw(

k

n
x+

n− k

n
y).

By using the inequality (4.2), for all 1 ≤ k ≤ n− 1, we have

Γw(
k

n
x+

n− k

n
y) ≤ Γw(x)

k
nΓw(y)

n−k
n .
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Therefore, we have

Γw(ax+ by) ≤ (an + bn)Γw(x)
aΓw(y)

b

+
n−1X
k=1

Ã
n

k

!
akbn−kΓw(x)

a− k
nΓw(y)

b−n−k
n Γw(

k

n
x+

n− k

n
y)

≤ Γw(x)
aΓw(y)

b.

This ends the proof. 2

5. Applications to the extended beta function

S. S. Dragomir et al. [8] proved the following result.

Theorem 5.1. ([8]) Let a, b be nonnegative numbers with a+b = 1. Then,
for all (p1, q1), (p2, q2) ∈ (0,+∞)2 we have

B(ap1 + bq1, ap2 + bq2) ≤ B(p1, p2)
aB(q1, q2)

b, (5.1)

i.e., the mapping B is logarithmically convex on (0,+∞)2 as a function of
two variables.

In 1997, Chaudhry et al. (see [6]) introduced the extended Euler’s beta
function by setting

Bw(x, y) :=

Z 1

0
tx−1(1−t)y−1e−w/t(1−t) dt, <(x),<(y) > 0, w ∈ [0,+∞).

If w = 0, then β0 coincides with the classical beta function usually
denoted by β.

The generalization of the inequality (5.1) to the setting was made in [6]
and [15].

Theorem 5.2. ([6] - [15]) Let w ≥ 0. Let a, b be nonnegative numbers
with a+ b = 1. Then, for all (p1, q1), (p2, q2) ∈ (0,+∞)2 we have

Bw(ap1 + bq1, ap2 + bq2) ≤ Bw(p1, p2)
aBw(q1, q2)

b, (5.2)

i.e., the mapping Bw is logarithmically convex on (0,+∞)2 as a function
of two variables.

By using Theorem 3.1, we obtain the following refinements of the inequality
(5.2).
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Theorem 5.3. Let w ≥ 0. Let a, b ≥ 0 with a+ b = 1 and x, y ≥ 0. Then
for all n ≥ 2, we have

Bw(ap1 + bq1, ap2 + bq2) ≤
µ
an + bn

¶
Bw(p1, p2)

aBw(q1, q2)
b

+
n−1X
k=1

Ã
n

k

!
akbn−kBw(p1, p2)

a− k
nBw(q1, q2)

b−n−k
n Bw

µ
k

n
(p1, p2)+

n− k

n
(q1, q2)

¶
≤ Bw(p1, p2)

aBw(q1, q2)
b. (5.3)

Proof. Let (p1, p2), (q1, q2) ∈]0,+∞[2 and a, b ≥ 0 with a + b = 1. We
have

Bw(ap1 + bq1, ap2 + bq2) =

Z 1

0
tap1+bq1−1(1− t)

ap2+bq2−1
e−w/t(1−t) dt

=

Z 1

0

∙
tp1−1(1− t)p2−1

¸a∙
tq1−1(1− t)q2−1

¸b
e−w/t(1−t) dt.

We apply Theorem 3.1, by setting Ω := (0, 1) and considering the measure
dµ(t) := e−w/t(1−t) dt on (0, 1). We set p = 1/a, q = 1/b.

Choose f(t) =

∙
tp1−1(1− t)p2−1

¸a
and g(t) =

∙
tq1−1(1− t)q2−1

¸b
. Then

we have:

||f ||p =
µZ 1

0

∙
tp1−1(1− t)p2−1

¸
dµ(t)

¶a
= Bw(p1, p2)

a

and

||g||q =
µZ 1

0

∙
tq1−1(1− t)q2−1

¸
dµ(t)

¶b
= Bw(q1, q2)

b.

Then

Z 1

0
|f(t)| kan |g(t)|

n−k
bn dµ(t) =

Z 1

0

∙
tp1−1(1− t)p2−1

¸a( k
an
)∙
tq1−1(1− t)q2−1

¸b (n−k)
bn

dµ(t)

=

Z 1

0

∙
tp1−1(1− t)p2−1

¸ k
n
∙
tq1−1(1− t)q2−1

¸ (n−k)
n

dµ(t)

=

Z 1

0

∙
t
k
n
(p1−1)(1− t)

n−k
n
(q2−1)

¸∙
t
n−k
n
(q1−1)(1− t)

k
n
(p2−1)

¸
dµ(t)
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=

Z 1

0

∙
t
k
n
(p1−1)+n−k

n
(q1−1)(1− t)

k
n
(p2−1)+n−k

n
(q2−1)

¸
dµ(t)

=

Z 1

0

∙
t
k
n
p1+

n−k
n

q1−1(1− t)
k
n
p2+

n−k
n

q2−1
¸
dµ(t)

= Bw(
k

n
(p1, p2),

n− k

n
(q1, q2)).

By virtue of Theorem 3.1, we have

Bw(a(p1, p2) + b(q1, q2)) ≤ (an + bn)Bw(p1, p2)
aBw(q1, q2)

b

+
n−1X
k=1

Ã
n

k

!
akbn−kBw(p1, p2)

a− k
nBw(q1, q2)

b−n−k
n Bw

µ
k

n
(p1, q2)+

n− k

n
(q1, q2)

¶
.

By the inequality (5.2), we have

Bw

µ
k

n
(p1, p2),

n− k

n
(q1, q2)

¶
≤ Bw

µ
(p1, p2)

¶ k
n

Bw

µ
(q1, q2)

¶n−k
n

.

Therefore

Bw(a(p1, q1) + b(p2, q2)) ≤ (an + bn)Bw(p1, p2)
aBw(q1, q2)

b

+
Pn−1

k=1

¡n
k

¢
akbn−kBw(p1, p2)

a− k
nBw(q1, q2)

b−n−k
n Bw

µ
k
n(p1, q1) +

n−k
n (p2, q2)

¶
≤ Bw(p1, p2)

aBw(q1, q2)
b.

This ends the proof. 2

6. Equivalence of Hölder’s and Cauchy-Schwarz inequalities

In 2006, Y-C Li and S-Y Shaw [11] gave a proof of Hölder’s inequality by
using the Cauchy-Schwarz inequality. Their method lies on the fact that
the convexity of a function on an open and finite interval is equivalent to
continuity and midconvexity.

In 2007, the equivalence between the integral inequalities (H) and (C−
S) was studied by C. Finol and M. Wójtowicz in [9]. They gave a proof
that (C − S) implies (H) by using density arguments and mathematical
induction.

A discussion of the implication (C − S) ⇒ (H) was recently reported
in [2].
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168 Mohamed Akkouchi and Mohamed Amine Ighachane

The aim of this section is to give a proof of this implication by using
Theorem 3.1. By this way, we provide a new proof of the equivalence
between the Hölder’s and Cauchy-Schwarz inequalities.

Theorem 6.1. Let p and q two numbers show that p > 1 and 1
p +

1
q = 1.

ThenZ
Ω
|f(x)g(x)|dµ(x) ≤

µ
1− 2

pq

¶
||f ||p||g||q

+
2

pq
||f ||1−

p
2

p ||g||1−
q
2

q

Z
Ω
|f(x)|

p
2 |g(x)|

q
2dµ(x)

≤
µZ

Ω
|f(x)|pdµ(x)

¶ 1
p
µZ

Ω
|g(x)|qdµ(x)

¶ 1
q

.

Proof. The first inequality in the right hand side is implied by Theorem
3.1, for n = 2.

For the second inequality in the right hand side, by using Cauchy-
Schwarz inequality, we getZ

Ω
|f |

p
2 |g|

q
2dµ ≤

µZ
Ω
(|f |

p
2 )2
¶1/2 Z

Ω
(|g(x)|

q
2 )2
¶1/2

= ||f ||p/2p ||g||q/2q

so µ
1− 2

pq

¶
||f ||p||g||q +

2

pq
||f ||1−

p
2

p ||g||1−
q
2

q

Z
Ω
|f |

p
2 |g|

q
2dµ ≤ ||f ||p||g||q.

Thus our result is proved. 2

7. Conclusions

In this paper, we have given some new refinements to the Hölder inequal-
ity. We have applied them to provide some refinements to the extended
Euler’s gamma and beta functions. By using our main results, we have
given a new proof of the equivalence between the Hölder inequality and
the Cauchy-Schwarz inequality. We expect in a near future to look for ap-
plications to other special functions like the incomplete gamma function,
Polygamma functions, Exponential integral function, Abramowitz’s func-
tion and Hurwitz-Lerch zeta function. We point out some new inequalities
for these functions were recently obtained by P. K. Bhandari and S. K.
Bissu in [5]. We hope that our results allow some improvements to cer-
tain inequalities obtained in [5]. We expect also to apply our results to
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