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1. Introduction

The study of dynamical systems involves various types of calculus equa-
tions. There are several existence theorems for solutions in literature pre-
dating to 18th century. But infinite systems of equations (Differential,
Integral, Integro-Differential etc.) is rather a new fascination. The theory
of measure of noncompactness (MNC) has it’s wide use as a tool in
non- linear functional analysis. It finds its use in investigating the
theories of differential equations and many other types of calculus
equations and operator theories as well as fixed point theory. Over the
years Kuratowski [1], Goldens̆tein and Markus [3], Istrăţescu [6]
introduced the idea of differenttypes of measure of noncompactness. In
1980, Banás and Goebel [7] gavethe axiomatic definition for MNC. Since
many years MNC has been an efficient tool of analysis in various
branches of mathematics. Existence andsolvability conditions for infinite
system of differential equations of variousorders after its introduction by
Persidskii [8, 9, 10] led to several works in the line of MNC. Over the
years, several authors have applied the concept of MNC in various
branches of mathematics. Banaś and Lecko [15] provedthe solvability of
infinite systems of differential equations in Banach sequence spaces.
Mursaleen and Mohiuddine [19] proved existence theoremsfor the infinite
system of differential equations in the sequence space cp. Srivastava et
al. [26] studied the existence of solutions of infinite systemsof differential
equations of general order with boundary conditions in thespaces c0 and
c1 via the MNC. Mursaleen and Rizvi [25] proved existence of infinite
systems of second order differential equations in the sequencespaces c0
and c1 by Meir-Keeler condensing operators. Alotaibi et al. [23]discussed
the solvability of infinite system of linear equations in sequence spaces.
Aghajani et al. [21] gave a generalization of Darbo’s fixed pointtheorem
with application to the solvability of systems of integral equations.Agarwal
et al. [17] discussed the application of MNC to the existence ofsolutions
for fractional differential equations. Mursaleen and Noman [18]discussed
compactness of some operators by the Hausdorff MNC. Apart from
these, many more applications of MNC’s can be obtained in [11], [13],[14],
[27], [28], [29].

The aim of this paper is to study the existence of solutions of the second
order differential equation

(D2 + 1)ui = fi(t, u1, u2, u3, ...); i = 1, 2, 3, · · ·

in the sequence spaces
R
c1 and

R
bv where, ui(0) = ui(T ) = 0, t ∈
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[0, T ], 0 < T < π and D2 ≡ d2

dt2
.

Here, notation
R
c1 and

R
bv represents integrated sequence spaces of

well known sequence spaces c1 and bv respectively. The concept of inte-
grated sequence space was initiated by Goes and Goes [5]. If E is any

sequence space, then

Z
E = {x = (xk) : {kxk} ∈ E} is defined as the inte-

grated space of E. And hence by definition,

Z
c1 =

(
x = (xk) :

X
k

|kxk| <∞
)

Z
bv =

(
x = (xk) :

X
k

|kxk − (k − 1)xk−1| <∞
)
.

2. Preliminaries and Background

Let (X, ||.||) be a Banach space over R. Let MX be the family of all non-
empty and bounded subsets of X and let MC

X be the subfamily of MX

consisting of all closed sets. Further, let NX be the family of all non-empty
and relatively compact subsets of X. If E ⊆ X, then by Ē and Conv(E),
we denote the closure of E and convex closure of E respectively.

The following definition of measure of noncompactness is due to Banaś
and Goebel [7].

Definition 2.1. Let X be a Banach space. A function µ :MX → [0,+∞)
is said to be a measure of noncompactness in X if it satisfies the following
axioms:

1. The family ker µ = {A ∈ MX : µ(A) = 0} is nonempty and ker µ ⊂
NX .

2. A1 ⊂ A2 ⇒ µ(A1) ≤ µ(A2).

3. µ(A) = µ(A).

4. µ(Conv(A)) = µ(A).

5. µ (λA+ (1− λ)B) ≤ λµ(A) + (1− λ)µ(B) for all λ ∈ (0, 1) .

6. If (Fn) is a decreasing sequence in MC
X and lim

n→∞
µ(Fn) = 0, then

∞T
n=1

Fn 6= ∅.



576 Rituparna Das and Niraj Sapkota

The following definitions and results will be used in order to establish
the results of this paper.

Definition 2.2. ( Akhmerov et. al. [12]) Let µ1 and µ2 be two
arbitrary measures of noncompactness on the Banach spaces E1 and E2
respectively. A (µ1, µ2)-condensing operator is defined as an operator
F : E1 → E2 such that

1. F is continuous,

2. for every set A in E1 which is bounded as well as noncompact, we
have µ2(F (A)) < µ1(A).

It is to be noted that a (µ1, µ2)-condensing operator is called a µ-condensing
operator if µ1 = µ2 = µ and is defined on the same Banach space.

Theorem 2.1. (Darbo [2]) Let E be a Banach space and A ∈ MC
E . A

continuous mapping F : A→ A has a fixed point in A if

1. A is convex,

2. µ(F (A)) ≤ kµ(A) for some k ∈ [0, 1) and for any arbitrary measure
of noncompactness µ in E.

Definition 2.3. (Meir and Keeler [4]) Let (E, d) be a metric space. A
Meeir-Keeler contraction on E is defined as a mapping F on E such that
for any � > 0, there exists δ > 0 with d(Fx,Fy) < � whenever � ≤ d(x, y) <
�+ δ for all x, y ∈ E.

Theorem 2.2. (Meir and Keeler [4]) A Meir-Keeler contraction F on
a metric space (E, d) has a unique fixed point if E is complete.

Definition 2.4. (Aghajani et. al. [22]) Let µ be an arbitrary measure
of noncompactness on a Banach space E and let C be a nonempty subset
of E. A Meir-Keeler condensing operator on C is defined as an operator
F : C → C such that for any � > 0, there exists δ > 0 with µ(F (B)) < �
whenever � ≤ µ(B) < �+ δ for any bounded subset B of C.

Theorem 2.3. (Aghajani et. al. [22]) Let E be a Banach space and
A ∈ MC

E . Let µ be an arbitrary measure of noncompactness on E. A
continuous mapping F : A→ A has at least one fixed point and the set of
all fixed points of F in A is compact if
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1. A is convex,

2. F is a Meir-Keeler condensing operator.

Now, we shall recall some definitions related to BK-Space and AK-
Space.

Definition 2.5. (Banaś and Mursaleen [20]) A metric space (X, d),
where X is a linear space over K(= R or C), is said to be a linear metric
space if and only if

1. d(x+ z, y + z) = d(x, y), for all x, y, z ∈ X.

2. the vector addition (x, y)→ x+y is a continuous function fromX×X
into X.

3. the scalar multiplication map (λ, x) → λx is a continuous function
from K×X into X.

Definition 2.6. (Banaś and Mursaleen [20]) A complete linear metric
space is called a Fréchet space.

Definition 2.7. (Banaś and Mursaleen [20]) A linear topological space
(or topological vector space) X is a linear space (vector space) over K(=
R or C) which is endowed with a topology such that vector addition X ×
X → X and scalar multiplication K×X → X are continuous functions.

Throughout w denotes the space of all real or complex valued sequences.

By e(n) = {e(n)1 , e
(n)
2 , e

(n)
3 , · · ·}, (n = 1, 2, · · ·), we denote the sequence such

that e
(n)
n = 1 and e

(n)
k = 0 for k = n. For any sequence x = (xk), let

x[n] =
nP

k=1
xke

(k) be its n-section.

Definition 2.8. (Banaś and Mursaleen [20])
1. A sequence space X with a linear topology is said to be a K-space if
each of the maps pn : X → C defined by pn(x) = xn is continuous for
each n ∈ N.

2. A K-space is said to be an FK-space if X is a complete linear metric
space , that is, X is an FK-space ifX is Fréchet space with continuous
coordinates.
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3. A normed FK-space is called a BK-space, that is, a BK-space is a
Banach sequence space with continuous coordinates.

4. A sequence (b(k))∞k=1 in a linear metric space X is called a Schauder
basis for X if for every x ∈ X, there exists a unique sequence (λn)

∞
n=1

of scalars such that x =
∞P
n=1

λnb
(n).

5. An FK-space X is said to have AK if every sequence x = (xn) ∈ X

has a unique representation x =
∞P
k=1

xke
(k), that is, x = lim

n→∞
x[n]. An

FK-space with AK property is also called an AK-space.

3. Hausdorff Measure of Noncompactness on Banach Spaces

Definition 3.1. Let Q a bounded subset of a metric space (X, d). Then
the Hausdorffmeasure of noncompactness ofQ, denoted by X (Q), is defined
as

X (Q) = inf
(
� > 0 : Q ⊂

n[
i=1

B(xi, ri), xi ∈ X, ri < �, 1 ≤ i ≤ n, n ∈ N
)

(3.1)

where, B(xi, ri) is an open ball in X.

Theorem 3.1. (Banaś and Mursaleen [20]) Let X be a BK space with
AK and monotone norm, Q ∈MX , Pn : X → X, (n ∈ N) be the operator
(projection) defined by Pn(x1, x2, · · ·) = x[n] = (x1, x2, · · · , xn, 0, 0, · · ·) for
all x = (x1, x2, · · ·) ∈ X. Then

X (Q) = lim
n→∞

Ã
sup
x∈Q

||(I − Pn)(x)||
!
.

Kirişci [24] proved that the integrated sequence spaces R c1 and R bv are
BK-spaces with AK-property with respect to the norms

||x||R c1
=
X
k

|kxk| and ||x||R bv =
X
k

|kxk − (k − 1)xk−1|

respectively, where the norms are also monotone.
In view of the Theorem (3.1), in the Banach Sequence Space (

R
c1, k.kR c1

),

the Hausdorff measure of noncompactness X can be formulated as

X (B) = lim
n→∞

⎧⎨⎩supu∈B

⎡⎣X
k≥n

|kuk|

⎤⎦⎫⎬⎭(3.2)
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where, u(t) = (ui(t))
∞
i=1 ∈

R
c1 for each t ∈ [0, T ] and B ∈MR c1

.

In the Banach Sequence Space (
R
bv, k.kR bv), the Hausdorff measure of

noncompactness X can be formulated as

X (B) = lim
n→∞

⎧⎨⎩supu∈B

⎡⎣X
k≥n

|kuk − (k − 1)uk−1|

⎤⎦⎫⎬⎭(3.3)

where, u(t) = (ui(t))
∞
i=1 ∈

R
bv for each t ∈ [0, T ] and B ∈MR bv.

In this study, we consider the following infinite system of second order
differential equations

(D2 + 1)ui = fi(t, u1, u2, u3, ...); ‘i = 1, 2, 3, · · ·(3.4)

where, ui(0) = ui(T ) = 0, t ∈ [0, T ], 0 < T < π and D2 ≡ d2

dt2 .
Let C([0, T ],R) denotes the space of all real valued continuous functions
over [0, T ] and C2([0, T ],R) denotes the set of all functions with the second
continuous derivative on [0, T ]. A function u ∈ C2([0, T ],R) is a solution
of (3.4) if and only if u ∈ C([0, T ],R) is a solution of the infinite system of
integral equation

ui(t) =

Z T

0
G(t, s)fi(s, u(s))ds, for t ∈ [0, T ](3.5)

where, fi(t, u) ∈ C([0, T ],R), i = 1, 2, 3, .... The Green’s function associ-
ated with the system (3.4) is given by (see Duffy [16])

G(t, s) =

(
sin(s−T ) sin t

sinT , 0 ≤ t ≤ s ≤ T
sin s sin(t−T )

sinT , 0 ≤ s ≤ t ≤ T
(3.6)

From (3.5) and (3.6),

ui(t) =

Z t

0

sin s sin(t− T )

sinT
fi(s, u(s))ds+

Z T

t

sin(s− T ) sin t

sinT
fi(s, u(s))ds

Now,

d

dt
ui(t) =

Z t

0

sin s cos(t− T )

sinT
fi(s, u(s))ds+

Z T

t

sin(s− T ) cos t

sinT
fi(s, u(s))ds

Again differentiating, we get
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d2

dt2
ui(t) =

sin t cos(t− T )

sinT
fi(t, u(t))−

Z t

0

sin s sin(t− T )

sinT
fi(s, u(s))ds

− sin(t− T ) cos t

sinT
fi(t, u(t))−

Z T

t

sin(s− T ) sin t

sinT
fi(s, u(s))ds

= −ui(t) + fi(t, u(t))

In this paper, we establish the solvability of the system (3.4) in Banach
sequence spaces

R
c1 and

R
bv.

4. Solvability of the system of equations (3.4) in the sequence
space

R
c1

Let us assume that
(H1) The functions fi are defined on the set [0, T ] × R∞ and take real
values. The operator f defined on the space [0, T ]×

R
c1 as

(t, u) 7→ (fu)(t) = (f1(t, u), f2(t, u), f3(t, u), ...)

is such that the class of all functions ((fu)(t))t∈[0,T ] is equicontinuous at
every point of the space

R
c1.

(H2) The following inequality holds:

|fn(t, u1, u2, u3, ...)| ≤
gn(t)

n
+ hn(t)|un(t)| ,

where gn(t) and hn(t) are real functions defined and continuous on I, such
that

P
k≥1 gk(t) converges uniformly on [0, T ] and the sequence (hn(t)) is

equibounded on [0, T ].
We also assume that:

g(t) =
X
k≥1

gk(t), for each t ∈ [0, T ]

G = sup{g(t) : t ∈ [0, T ]}
H = sup{hn(t) : n ∈ N, t ∈ [0, T ]}

Theorem 4.1. Under the hypotheses (H1)-(H2), the infinite system of dif-
ferential equations (3.4) has at least one solution u(t) = (ui(t)) whenever
HT

sinT
< 1 such that u(t) ∈

R
c1, for all t ∈ [0, T ].
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Proof. From the relation (3.6) and the hypothesis (H2), we have for an
arbitrary t ∈ [0, T ]

||u(t)||R c1
=

∞X
i=1

|iui(t)|

=
∞X
i=1

¯̄̄̄
¯i
Z T

0
G(t, s)fi(s, u(s))ds

¯̄̄̄
¯

≤
∞X
i=1

i

Z T

0
|G(t, s)||fi(s, u(s))|ds

≤
∞X
i=1

i

Z T

0
|G(t, s)|

µ
gi(s)

i
+ hi(s)|ui(s)|

¶
ds

=
∞X
i=1

Z T

0
|G(t, s)|gi(s)ds+

∞X
i=1

Z T

0
i|G(t, s)|hi(s)|ui(s)|ds

≤
Z T

0

∞X
i=1

|G(t, s)|gi(s)ds+H
∞X
i=1

Z T

0
|iui(s)||G(t, s)|ds

≤ GT

sinT
+

HT

sinT
||u||R c1

Hence, we get

||u||R c1
≤ GT

sinT −HT
= r

Let u0(t) = (u0i (t)) where u
0
i (t) = 0,∀t ∈ [0, T ]. Let B = B(u0, r1), the

closed ball centered at u0 and radius r1 ≤ r. Then B is a nonempty,
bounded, closed and convex subset of

R
c1.

Let us consider the operator F = (Fi) on C([0, T ], B), defined as follows:
For t ∈ [0, T ],

(Fu)(t) = {(Fiu)(t)} =
(Z T

0
G(t, s)fi(s, u(s))ds

)
,

where u(t) = (ui(t)) ∈ B and ui(t) ∈ C([0, T ],R).
Since, (fi(t, u(t))) ∈

R
c1 for each t ∈ [0, T ], so we have

∞X
i=1

|i(Fiu)(t)| =
∞X
i=1

|
Z T

0
iG(t, s)fi(s, u(s))|ds
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≤
∞X
i=0

Z T

0
i|G(t, s)|

µ
gi(s)

i
+ hi(s)|ui(s)|

¶
ds

≤ GT

sinT
+

HT

sinT
||u||R c1

<∞

Therefore, (Fu)(t) = {(Fiu)(t)} ∈
R
c1 for each t ∈ [0, T ].

Also, we have

(Fi)(0) =

Z T

0
G(0, s)fi(s, u(s))ds

=

Z T

0
0.fi(s, u(s))ds = 0

(Fi)(T ) =

Z T

0
G(T, s)fi(s, u(s))ds

=

Z T

0
0.fi(s, u(s))ds = 0

Therefore, each (Fiu)(t) satisfies boundary conditions given in (3.4).
Since ||(Fu)(t) − u0(t)||R c1

= ||(Fu(t))||R c1
≤ r, therefore, it follows that

F is a self mapping on B.
Also, by the assumption (H1), it is clear that the operator F is continuous
on C([0, T ], B). We now show that F is a Meir-Keeler condensing operator
for which for any given � > 0, we need to find δ > 0 such that X (FB) < �
whenever � ≤ X (B) < �+ δ. Using equation (3.2), we have

X (FB) = lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

¯̄̄̄
¯k
Z T

0
G(t, s)fk(s, u(s))ds

¯̄̄̄
¯
⎤⎦⎞⎠

≤ lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

|k|
Z T

0
|G(t, s)fk(s, u(s))ds|

⎤⎦⎞⎠
≤ lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

k

Z T

0
|G(t, s)|

µ
gk(s)

k
+ hk(s)|uk(s)|

¶
ds

⎤⎦⎞⎠
= lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

Z T

0
|G(t, s)|gk(s)ds+

X
k≥n

k

Z T

0
|G(t, s)|hk(s)|uk(s)|ds

⎤⎦⎞⎠
≤ lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣Z T

0
|G(t, s)|

X
k≥n

gk(s)ds+H
X
k≥n

k|uk|
Z T

0
|G(t, s)|ds

⎤⎦⎞⎠
< lim

n→∞
T

sinT

X
k≥n

gk(s) +
HT

sinT
lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

k|uk|

⎤⎦⎞⎠
=

HT

sinT
X (B)
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Thus, we get X (FB) < X (B) HT

sinT
< � =⇒ X (B) < � sinT

HT
.

Taking δ =
sinT −HT

HT
�, we get � ≤ X (B) < �+ δ. This shows that F is

a Meir-Keeler condensing operator defined on the set B ⊂
R
c1 and so, it

satisfies all conditions of Theorem (2.3). Therefore F has fixed point in B,
which is a solution of the system of equations (3.4). 2

Example 4.1. Let us consider the system of differential equations

d2un(t)

dt2
+ un(t) =

n
√
t

n3n−1
+

∞X
m=n

t cos t um(t)

m3
, n ∈ N, t ∈ [0, T ],(4.1)

where, 0 < T < π, and ui(0) = ui(T ) = 0, for each i.

Clearly, the functions
n
√
t

n3n−1
and

∞X
m=n

t cos t um(t)

m3
are continuous on

[0, T ], for each n ∈ N.

Here, fn(t, u(t)) =
n
√
t

n3n−1
+

∞X
m=n

t cos t um(t)

m3
, n ∈N, t ∈ [0, T ].

Now,

∞X
k=1

|kfk(t, u(t))| =
∞X
k=1

¯̄̄̄
¯ k
√
t

3k−1
+ k

∞X
m=k

t cos t um(t)

m3

¯̄̄̄
¯

≤
∞X
k=1

k
√
t

3k−1
+

∞X
k=1

k
∞X

m=k

¯̄̄̄
t cos t um(t)

m3

¯̄̄̄

≤ 3T

2
+

∞X
k=1

k
∞X

m=k

t

m4
|mum(t)|

≤ 3T

2
+ T

∞X
k=1

1

2

µ
1

k
+
1

k2

¶
|uk(t)|

<
3T

2
+ T

∞X
k=1

|kuk(t)|

=
3T

2
+ T ||u(t)||R c1

<∞

Therefore, for each t ∈ [0, T ], (fi(t, u(t))) ∈
R
c1.

We now show that the hypothesis (H1) is satisfied.
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Let � > 0 be arbitrary and u(t) = (un(t)) ∈
R
c1. Then taking v(t) =

(vn(t)) ∈
R
c1 with ||u(t)− v(t)||R c1

≤ δ(�) =
�

T
, we have

|f(t, u(t))− f(t, v(t))| =
∞X

m=n

t(um(t)− vm(t))

m3

≤
∞X

m=1

tm(um(t)− vm(t))

m4

≤ T ||u(t)− v(t)||R c1

≤ Tδ < �,

which implies continuity as assumed in (H1).
Now, we show that assumption (H2) is satisfied.

We have

|fn(t, u(t))| = |
n
√
t

n3n−1
+

∞X
m=n

t cos t um(t)

m3
|

≤ 1

n

√
t

3n−1
+

∞X
m=n

t

m3
|um(t)|

≤ 1

n

√
t

3n−1
+

∞X
m=1

t

m3
|um(t)|

≤ gn(t)

n
+ hn(t)|un(t)|.

The function gn(t) =

√
t

3n−1
is continuous and

P
n≥1 gn(t) converges uni-

formly to
3
√
t

2
; also hn(t) = tζ(3) is continuous and the sequence (hn(t)) is

equibounded on [0, T ] by H = Tζ(3). Also
HT

sinT
< 1 is satisfied by taking

T = 0.7 (i.e. 0 ≤ t ≤ 0.7 < π), which gives H ≈ 0.84144 and G ≈ 1.05.
Thus, from Theorem (4.1), for a suitable value of r, the operator F as

defined in Theorem (4.1) on B(u0, r) has a fixed point u(t) = (ui(t)) ∈
R
c1,

which is a solution of system of equations (4.1).
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5. Solvability of the system of equations (3.4) in the sequence
space

R
bv

Let us now consider the assumptions:

(H3) The functions fi are defined on the set [0, T ] × R∞ and take real
values. The operator f defined on the space [0, T ]×

R
bv as

(t, u) 7→ (fu)(t) = (f1(t, u), f2(t, u), f3(t, u), ...)

is such that the class of all functions ((fu)(t))t∈[0,T ] is equicontinuous at
every point of the space

R
bv.

(H4) The following inequality holds:

|nfn(t, u1, u2, ...)−(n−1)fn−1(t, u1, u2, ...)| ≤ gn(t)+hn(t)|nun(t)−(n−1)un−1(t)|

where gn(t) and hn(t) are real functions defined and continuous on [0, T ],
such that

P
k≥1 gk(t) converges uniformly on [0, T ] and the sequence (hn(t))

is equibounded on [0, T ].

We also assume that:

g(t) =
X
k≥1

gk(t), for each t ∈ [0, T ]

G = sup{g(t) : t ∈ [0, T ]}
H = sup{hn(t) : n ∈ N, t ∈ [0, T ]}

Theorem 5.1. Under the hypotheses (H3)-(H4), the infinite system of dif-
ferential equations (3.4) has at least one solution u(t) = (ui(t)) whenever
HT

sinT
< 1 such that u(t) ∈

R
bv,∀t ∈ [0, T ].

Proof. Using the relation (3.3) and the hypothesis (H4), we have for an
arbitrary t ∈ [0, T ],

||u(t)||R bv =
∞X
i=1

|iui(t)− (i− 1)ui−1(t)|

=
∞X
i=1

¯̄̄̄
¯i
Z T

0
G(t, s)fi(s, u(s))ds− (i− 1)

Z T

0
G(t, s)fi−1(s, u(s))ds

¯̄̄̄
¯
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≤
∞X
i=1

Z T

0
|G(t, s)||(ifi(s, u(s))ds− (i− 1)fi−1(s, u(s)))|ds

≤
∞X
i=1

Z T

0
|G(t, s)| (gi(s) + hi(s)|iui(s)− (i− 1)ui−1(s)|) ds

=
∞X
i=1

Z T

0
|G(t, s)|gi(s)ds+

∞X
i=1

Z T

0
|G(t, s)|hi(s)|iui(s)− (i− 1)ui−1(s)|ds

≤
Z T

0

∞X
i=1

|G(t, s)|gi(s)ds+H
∞X
i=1

Z T

0
|iui(s)− (i− 1)ui−1(s)|G(t, s)ds

≤ GT

sinT
+

HT

sinT
||u||R bv

Hence, we get

||u||R bv ≤
GT

sinT −HT
= r

Let u0(t) = (u0i (t)) where u
0
i (t) = 0,∀t ∈ [0, T ]. Take B = B(u0, r1), the

closed ball centered at u0 and radius r1 ≤ r. Clearly, B is a nonempty,
bounded, closed and convex subset of

R
bv.

Let us consider the operator F = (Fi) on C([0, T ], B), defined as follows:

(Fu)(t) = {(Fiu)(t)} =
(Z T

0
G(t, s)fi(s, u(s))ds

)
, t ∈ [0, T ]

where u(t) = (ui(t)) ∈ B and ui(t) ∈ C([0, T ],R).
We first show that (Fu)(t) = {(Fiu)(t)} ∈

R
bv for each t ∈ [0, T ].

Since, (fi(t, u(t))) ∈
R
bv for each t ∈ [0, T ], so we have

∞X
i=1

|i(Fiu)(t) − (i− 1)(Fi−1u)(t)|

=
∞X
i=1

¯̄̄̄
¯i
Z T

0
G(t, s)fi(s, u(s))ds− (i− 1)

Z T

0
G(t, s)fi−1(s, u(s))ds

¯̄̄̄
¯

=
∞X
i=1

¯̄̄̄
¯
Z T

0
G(t, s)(ifi(s, u(s))− (i− 1)fi−1(s, u(s)))ds

¯̄̄̄
¯

≤
∞X
i=1

Z T

0
|G(t, s)|(gi(s) + hi(s)|iui(s)− (i− 1)ui−1(s)|)ds

≤ GT

sinT
+

HT

sinT
||u||R bv <∞
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Therefore, (Fu)(t) = {(Fiu)(t)} ∈
R
bv for each t ∈ [0, T ].

Also, we have

(Fi)(0) =

Z T

0
G(0, s)fi(s, u(s))ds

=

Z T

0
0.fi(s, u(s))ds = 0

(Fi)(T ) =

Z T

0
G(T, s)fi(s, u(s))ds

=

Z T

0
0.fi(s, u(s))ds = 0

Therefore, each (Fiu)(t) satisfies boundary conditions given in the sys-
tem (3.4).
Since ||(Fu)(t)− u0(t)||R bv = ||(Fu(t))||R bv ≤ r, thus F is a self mapping

on B. The operator F is continuous on C([0, T ], B) by the assumption
(H3).
We now show that F is a Meir-Keeler condensing operator.
Let � > 0. We need to find δ > 0 such that X (FB) < � whenever
� ≤ X (B) < �+ δ.

Using equation (3.3), we obtain

X (FB)

= lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

¯̄̄̄
¯k
Z T

0

G(t, s)fk(s, u(s))ds− (k − 1)
Z T

0

G(t, s)fk−1(s, u(s))ds

¯̄̄̄
¯
⎤⎦⎞⎠

≤ lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

Z T

0

|G(t, s)||kfk(s, u(s))− (k − 1)fk−1(s, u(s))|ds

⎤⎦⎞⎠
≤ lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

Z T

0

|G(t, s)|(gk(s) + hk(s)|kuk(s)− (k − 1)uk−1(s)|

⎤⎦⎞⎠
= lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

Z T

0

|G(t, s)|gk(s)ds+
X
k≥n

Z T

0

|G(t, s)|hk(s)|kuk(s)− (k − 1)uk−1(s)|ds

⎤⎦⎞⎠
≤ lim

n→∞

⎛⎝ sup
u(t)∈B

⎡⎣Z T

0

|G(t, s)|
X
k≥n

gk(s)ds+H
X
k≥n

|kuk − (k − 1)uk−1|
Z T

0

|G(t, s)|ds

⎤⎦⎞⎠
< lim

n→∞

T

sinT

X
k≥n

gk(s)ds+
HT

sinT
lim
n→∞

⎛⎝ sup
u(t)∈B

⎡⎣X
k≥n

|kuk − (k − 1)uk−1|

⎤⎦⎞⎠
=

HT

sinT
X (B)
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Therefore,

X (FB) < X (B) HT

sinT
< � =⇒ X (B) < � sinT

HT

Taking δ =
sinT −HT

HT
�, we get � ≤ X (B) < � + δ. This shows that, F is a

Meir-Keeler condensing operator defined on the set B ⊂
R
bv and so it satisfies all

conditions of Theorem (2.3). Hence, F has fixed point in B, which is a solution of
the system (3.4). 2

Example 5.1. Let us consider the system of differential equations

d2un(t)

dt2
+ un(t) =

t

n3nn!
+

∞X
m=n

√
t sin2 t (mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)
,(5.1)

n ∈N, t ∈ [0, T ], 0 < T < π and ui(0) = ui(T ) = 0, for each i.

Clearly, the functions
t

n3nn!
and

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)
are continuous on [0, T ], for each n ∈N.

Here, fn(t, u(t)) =
t

n3nn!
+

∞X
m=n

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)
.

Now,
∞X
k=1

|kfk(t, u(t))− (k − 1)fk−1(t, u(t))|

=
∞X
k=1

¯̄̄̄
¯̄ t

3kk!
− t

3k−1(k − 1)!

+k
∞X

m=k

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)

−(k − 1)
∞X

m=k−1

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)

¯̄̄̄
¯̄

≤ T
∞X
k=1

¯̄̄̄
1

3k−1(k − 1)!
1− 3k
3k

¯̄̄̄
+ T

∞X
k=1

¯̄̄̄
(1− k)

(kuk(t)− (k − 1)uk−1(t))
(k + 1)(k + 2)(k + 3)

+
∞X

m=k

(mum(t)− (m− 1)um−1(t))
(m+ 1)(m+ 2)(m+ 3)

¯̄̄̄

≤ Te
1
3 + 2T

∞X
k=1

k|kuk(t)− (k − 1)uk−1|
(k + 1)(k + 2)(k + 3)

≤ Te
1
3 + 2T ||u(t)||R bv <∞
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Therefore, for any t ∈ [0, T ], (fi(t, u(t))) ∈
R
bv.

We will show that the assumption (H3) is satisfied.
Let � > 0 be given and u(t) = (un(t)) ∈

R
bv. Then taking v(t) = (vn(t)) ∈R

bv with ||u(t)− v(t)||R bv ≤ δ(�) =
�

T
, we have

|f(t, u(t)) − f(t, v(t))|

=
∞X

m=n

√
t((mum(t)− (m− 1)um−1(t))− (mvm(t)− (m− 1)vm−1(t)))

(m+ 1)(m+ 2)(m+ 3)

≤
∞X

m=1

√
t(m(um(t)− vm(t))− (m− 1)(um−1(t)− vm−1(t)))

(m+ 1)(m+ 2)(m+ 3)

≤ T ||u(t)− v(t)||R bv

≤ Tδ < �,

which implies continuity as assumed in (H3).
Now, we show that assumption (H4) is satisfied:

|nfn(t, u(t))− (n− 1)fn−1(t, u(t))|

=

¯̄̄̄
¯̄ t

3nn!
− t

3n−1(n− 1)! + n
∞X

m=n

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)

−(n− 1)
∞X

m=n−1

√
t sin2 t(mum(t)− (m− 1)um−1(t))

(m+ 1)(m+ 2)(m+ 3)

¯̄̄̄
¯̄

≤
¯̄̄̄

t

3n−1(n− 1)!
1− 3n
3n

¯̄̄̄
+ n

∞X
m=1

¯̄̄̄
¯̄
√
t(mum(t)− (m− 1)um−1(t))
(m+ 1)(m+ 2)(m+ 3)

¯̄̄̄
¯̄

+(n− 1)
∞X

m=1

¯̄̄̄
¯̄
√
t(mum(t)− (m− 1)um−1(t))
(m+ 1)(m+ 2)(m+ 3)

¯̄̄̄
¯̄

≤ t

3n−1(n− 1)! + (2n− 1)
∞X

m=1

√
t|(mum(t)− (m− 1)um−1(t))|
(m+ 1)(m+ 2)(m+ 3)

≤ gn(t) + hn(t)|nun(t)− (n− 1)un−1(t)|.

The function gn(t) =
t

3n−1(n− 1)! is continuous and
P

n≥1 gn(t) converges

uniformly to te1/3. Also, hn(t) =

√
t

12
is continuous and the sequence (hn(t))

is equibounded on I by H =

√
T

12
. Also

HT

sinT
< 1 is satisfied by taking

T = 2.73 (i.e. 0 ≤ T ≤ 0.7 < π), which givesH ≈ 0.12693 andG ≈ 3.81002.
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Thus, from the Theorem 5.1, for some suitable value of r, the operator F
as defined in Theorem 5.1 onB(u0, r) has a fixed point u(t) = (ui(t)) ∈

R
bv,

which is a solution of system of equations (5.1).
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