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1. Introduction

Denote by A the collection of holomorphic functions in the open unit disk
D = {z ∈ C : |z| < 1} that have the form:

f(z) = z +
∞X
n=2

anz
n.(1.1)

Further, let S indicate the sub-collection of A consisting of functions in
D satisfying (1.1) which are univalent in D.

Also, let S∗sc be the subclass of S consisting of functions given by (1.1)
satisfying

Re

(
zf 0(z)

f(z)− f(−z)

)
> 0, z ∈ D.

These functions are called starlike with respect to symmetric conjugate
points and were introduced by El-Ashwah and Thomas [6]. The class can
be extended to other class in D, namely convex functions with respect to
symmetric conjugate points. Let Csc denote the class of convex functions
with respect to symmetric conjugate points and satisfy the conditions

Re

⎧⎪⎨⎪⎩ (zf 0(z))0³
f(z)− f(−z)

´0
⎫⎪⎬⎪⎭ > 0, z ∈ D.

According to the Koebe One-Quarter Theorem [5] ”every function f ∈ S
has an inverse f−1 defined by f−1(f(z)) = z, (z ∈ D) and f(f−1(w)) = w,
(|w| < r0(f), r0(f) ≥ 1

4)”, where

g(w) = f−1(w) = w−a2w2+
³
2a22 − a3

´
w3−

³
5a32 − 5a2a3 + a4

´
w4+· · · .

(1.2)

A function f ∈ A is said to be bi-univalent in D if both f and f−1

are univalent in D. Let Σ stands for the class of bi-univalent functions in
D given by (1.1). In fact, Srivastava et al. [16] has apparently revived
the study of holomorphic and bi-univalent functions in recent years, it was
followed by such works as those by Bulut [4], Altınkaya and Yalçın [2, 3],
Adegani et al. [1] and others (see, for example [13, 14, 15, 17, 18, 19]).
We notice that the class Σ is not empty. For example, the functions z,
z
1−z , − log(1 − z) and 1

2 log
1+z
1−z are members of Σ. However, the Koebe

function is not a member of Σ. Until now, the coefficient estimate problem
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for each of the following Taylor-Maclaurin coefficients |an|, (n = 3, 4, · · ·)
for functions f ∈ Σ is still an open problem.

”With a view to recalling the principal of subordination between holo-
morphic functions, let the functions f and g be holomorphic in D. We say
that the function f is said to be subordinate to g, if there exists a Schwarz
function w holomorphic in D with w(0) = 0 and |w(z)| < 1 (z ∈ D) such
that f(z) = g(w(z)). This subordination is denoted by f ≺ g or f(z) ≺ g(z)
(z ∈ D). It is well known that (see [12]), if the function g is univalent in
D, then f ≺ g if and only if f(0) = g(0) and f(D) ⊂ g(D)”.

The Horadam polynomials hn(r) are defined by the following repetition
relation (see [8]):

hn(r) = prhn−1(r) + qhn−2(r) (r ∈ R, n ∈ N = {1, 2, 3, · · ·}),(1.3)

with h1(r) = a and h2(r) = br, for some real constant a, b, p and q. The
characteristic equation of repetition relation (1.3) is t2 − prt− q = 0. This

equation has two real roots x =
pr+
√
p2r2+4q
2 and y =

pr−
√
p2r2+4q
2 .

Remark 1.1. By selecting the particular values of a, b, p and q, the Ho-
radam polynomial hn(r) reduces to several polynomials. Some of them are
illustrated below:

1. Taking a = b = p = q = 1, we obtain the Fibonacci polynomials
Fn(r).

2. Taking a = 2 and b = p = q = 1, we attain the Lucas polynomials
Ln(r).

3. Taking a = q = 1 and b = p = 2, we have the Pell polynomials Pn(r).

4. Taking a = b = p = 2 and q = 1, we get the Pell-Lucas polynomials
Qn(r).

5. Taking a = b = 1, p = 2 and q = −1, we obtain the Chebyshev
polynomials Tn(r) of the first kind.

6. Taking a = 1, b = p = 2 and q = −1, we have the Chebyshev
polynomials Un(r) of the second kind.
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These polynomials, the families of orthogonal polynomials and other
special polynomials as well as their generalizations are potentially impor-
tant in a variety of disciplines in many of sciences, specially in the mathe-
matics, statistics and physics. For more information associated with these
polynomials see [7, 8, 10, 11].

The generating function of the Horadam polynomials hn(r) (see [9]) is
given by

Π(r, z) =
∞X
n=1

hn(r)z
n−1 =

a+ (b− ap)rz

1− prz − qz2
.(1.4)

2. Main Results

We begin this section by defining the family GΣ(λ, η, r) as follows:
Definition 2.1. For 0 ≤ η ≤ λ ≤ 1 and r ∈ R, a function f ∈ Σ with
an ∈ R is said to be in the class GΣ(λ, η, r) if it fulfills the subordinations:

2
£
ληz3f 000(z) + (λ+ η(2λ− 1)) z2f 00(z) + zf 0(z)

¤
ληz2

³
f(z)− f(−z)

´00
+ (λ− η)z

³
f(z)− f(−z)

´0
+ (1− λ+ η)

³
f(z)− f(−z)

´
≺ Π(r, z) + 1− a

and

2
£
ληw3g000(w) + (λ+ η(2λ− 1))w2g00(w) + wg0(w)

¤
ληw2

³
g(w)− g(−w)

´00
+ (λ− η)w

³
g(w)− g(−w)

´0
+ (1− λ+ η)

³
g(w)− g(−w)

´
≺ Π(r, w) + 1− a,

where a is real constant and the function g = f−1 is given by (1.2).

Theorem 2.1. For 0 ≤ η ≤ λ ≤ 1 and r ∈ R, let f ∈ A with an ∈ R be
in the class GΣ(λ, η, r). Then

|a2| ≤
|br|

p
|br|r

2
¯̄̄h
(6λη + 2(λ− η) + 1) b− 2p (2λη + λ− η + 1)2

i
br2 − 2qa (2λη + λ− η + 1)2

¯̄̄
and

|a3| ≤
|br|

2 (6λη + 2(λ− η) + 1)
+

b2r2

4 (2λη + λ− η + 1)2
.
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Proof. Let f ∈ GΣ(λ, η, r). Then there are two holomorphic functions
u, v : D −→ D given by

u(z) = u1z + u2z
2 + u3z

3 + · · · (z ∈ D)(2.1)

and

v(w) = v1w + v2w
2 + v3w

3 + · · · (w ∈ D),(2.2)

with u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1, z, w ∈ D such that

2
£
ληz3f 000(z) + (λ+ η(2λ− 1)) z2f 00(z) + zf 0(z)

¤
ληz2

³
f(z)− f(−z)

´00
+ (λ− η)z

³
f(z)− f(−z)

´0
+ (1− λ+ η)

³
f(z)− f(−z)

´
= Π(r, u(z)) + 1− a

and

2
£
ληw3g000(w) + (λ+ η(2λ− 1))w2g00(w) + wg0(w)

¤
ληw2

³
g(w)− g(−w)

´00
+ (λ− η)w

³
g(w)− g(−w)

´0
+ (1− λ+ η)

³
g(w)− g(−w)

´
= Π(r, v(w)) + 1− a.

Or, equivalently

2
£
ληz3f 000(z) + (λ+ η(2λ− 1)) z2f 00(z) + zf 0(z)

¤
ληz2

³
f(z)− f(−z)

´00
+ (λ− η)z

³
f(z)− f(−z)

´0
+ (1− λ+ η)

³
f(z)− f(−z)

´
= 1 + h1(r) + h2(r)u(z) + h3(r)u

2(z) + · · ·(2.3)

and

2
£
ληw3g000(w) + (λ+ η(2λ− 1))w2g00(w) + wg0(w)

¤
ληw2

³
g(w)− g(−w)

´00
+ (λ− η)w

³
g(w)− g(−w)

´0
+ (1− λ+ η)

³
g(w)− g(−w)

´
= 1 + h1(r) + h2(r)v(w) + h3(r)v

2(w) + · · · .(2.4)

Combining (2.1), (2.2), (2.3) and (2.4) yields

2
£
ληz3f 000(z) + (λ+ η(2λ− 1)) z2f 00(z) + zf 0(z)

¤
ληz2

³
f(z)− f(−z)

´00
+ (λ− η)z

³
f(z)− f(−z)

´0
+ (1− λ+ η)

³
f(z)− f(−z)

´
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= 1 + h2(r)u1z +
h
h2(r)u2 + h3(r)u

2
1

i
z2 + · · ·(2.5)

and

2
£
ληw3g000(w) + (λ+ η(2λ− 1))w2g00(w) + wg0(w)

¤
ληw2

³
g(w)− g(−w)

´00
+ (λ− η)w

³
g(w)− g(−w)

´0
+ (1− λ+ η)

³
g(w)− g(−w)

´
= 1 + h2(r)v1w +

h
h2(r)v2 + h3(r)v

2
1

i
w2 + · · · .(2.6)

It is quite well-known that if |u(z)| < 1 and |v(w)| < 1, z, w ∈ D, then

|ui| ≤ 1 and |vi| ≤ 1 for all i ∈ N.(2.7)

Comparing the corresponding coefficients in (2.5) and (2.6), after sim-
plifying, we have

2 (2λη + λ− η + 1) a2 = h2(r)u1,(2.8)

2 (6λη + 2(λ− η) + 1) a3 = h2(r)u2 + h3(r)u
2
1,(2.9)

− 2 (2λη + λ− η + 1) a2 = h2(r)v1(2.10)

and

2 (6λη + 2(λ− η) + 1)
³
2a22 − a3

´
= h2(r)v2 + h3(r)v

2
1.(2.11)

In view of (2.8) and (2.10), we conclude that

u1 = −v1(2.12)

and

8 (2λη + λ− η + 1)2 a22 = h22(r)(u
2
1 + v21).(2.13)

If we add (2.9) to (2.11), we find that

4 (6λη + 2(λ− η) + 1) a22 = h2(r)(u2 + v2) + h3(r)(u
2
1 + v21).(2.14)

Substituting the value of u21+ v21 from (2.13) into (2.14), it follows that
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a22 =
h32(r)(u2 + v2)

4
h
h22(r) (6λη + 2(λ− η) + 1)− 2h3(r) (2λη + λ− η + 1)2

i .(2.15)

Further computations using (1.3), (2.7) and (2.15), we deduce that

|a2| ≤
|br|

p
|br|r

2
¯̄̄h
(6λη + 2(λ− η) + 1) b− 2p (2λη + λ− η + 1)2

i
br2 − 2qa (2λη + λ− η + 1)2

¯̄̄ .
To determinate the bound on |a3|, by subtracting (2.11) from (2.9), we

can easily see that

4 (6λη + 2(λ− η) + 1) (a3 − a22) = h2(r)(u2 − v2) + h3(r)(u
2
1 − v21).(2.16)

Also, by using (2.12) and (2.13) together with (2.16), we conclude that

a3 =
h2(r)(u2 − v2)

4 (6λη + 2(λ− η) + 1)
+

h22(r)(u
2
1 + v21)

8 (2λη + λ− η + 1)2
.

Thus applying (1.3), we obtain

|a3| ≤
|br|

2 (6λη + 2(λ− η) + 1)
+

b2r2

4 (2λη + λ− η + 1)2
.

This completes the proof of Theorem 2.1 2

In the next theorem, we discuss the ”Fekete-Szegö problem” for the
family GΣ(λ, η, r).

Theorem 2.2. For 0 ≤ η ≤ λ ≤ 1 and r, µ ∈ R, let f ∈ A with an ∈ R be
in the family GΣ(λ, η, r). Then

¯̄̄
a3 − µa22

¯̄̄
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|br|
2(6λη+2(λ−η)+1)

for |µ− 1| ≤ |[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)
2]br2−2qa(2λη+λ−η+1)2|

b2r2(6λη+2(λ−η)+1) ,
|br|3|µ−1|

2|[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)2]br2−2qa(2λη+λ−η+1)2|
for |µ− 1| ≥ |[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)

2]br2−2qa(2λη+λ−η+1)2|
b2r2(6λη+2(λ−η)+1) .
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Proof. In the light of (2.15) and (2.16), we find that

a3 − µa22 = h2(r)(u2−v2)
4(6λη+2(λ−η)+1) + (1− µ) a22

= h2(r)(u2−v2)
4(6λη+2(λ−η)+1) +

h32(r)(u2+v2)(1−µ)
4[h22(r)(6λη+2(λ−η)+1)−2h3(r)(2λη+λ−η+1)

2]

= h2(r)
4

h³
ψ(µ, r) + 1

(6λη+2(λ−η)+1)

´
u2 +

³
ψ(µ, r)− 1

(6λη+2(λ−η)+1)

´
v2
i
,

where

ψ(µ, r) =
h22(r) (1− µ)

h22(r) (6λη + 2(λ− η) + 1)− 2h3(r) (2λη + λ− η + 1)2
.

According to (1.3), we deduce that

¯̄̄
a3 − µa22

¯̄̄
≤
( |br|

2(6λη+2(λ−η)+1) , 0 ≤ |ψ(µ, r)| ≤ 1
6λη+2(λ−η)+1 ,

1
2 |br| |ψ(µ, r)| , |ψ(µ, r)| ≥ 1

6λη+2(λ−η)+1 .

After some computations, we obtain

¯̄̄
a3 − µa22

¯̄̄
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|br|
2(6λη+2(λ−η)+1)

for |µ− 1| ≤ |[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)
2]br2−2qa(2λη+λ−η+1)2|

b2r2(6λη+2(λ−η)+1)
|br|3|µ−1|

2|[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)2]br2−2qa(2λη+λ−η+1)2|
for |µ− 1| ≥ |[(6λη+2(λ−η)+1)b−2p(2λη+λ−η+1)

2]br2−2qa(2λη+λ−η+1)2|
b2r2(6λη+2(λ−η)+1) .

2

Putting µ = 1 in Theorem 2.2, we obtain the following result:

Corollary 2.1. For 0 ≤ η ≤ λ ≤ 1 and r ∈ R, let f ∈ A be in the family
GΣ(λ, η, r). Then

¯̄̄
a3 − a22

¯̄̄
≤ |br|
2 (6λη + 2(λ− η) + 1)

.
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