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Abstract

In this paper, we introduce and study a new subclass of mero-
morphic univalent functions defined by Rapid operator. We obtain
coefficient inequalities, extreme points, radius of starlikeness and con-
vexity. Finally we obtain partial sums and neighborhood properties for
the class

P∗
p(γ, k, µ, θ).
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1. Introduction

Let S be denote the class of all functions f(z) of the form

f(z) = z +
∞X
n=2

anz
n(1.1)

which are analytic and univalent in U = {z : z ∈ Cand|z| < 1} normalized
by f(0) = 0 and f 0(0) = 1. Denote by S∗(γ) and K(γ), 0 ≤ γ < 1 the
subclasses of functions in S that are starlike and convex functions of order
α respectively. Analytically f ∈ S∗(γ) if and only if f is of the form 1.1
and satisfies

<
½
zf 0(z)

f(z)

¾
> γ, z ∈ U.

Similarly, f ∈ K(γ) if and only if f is of the form 1.1 and satisfies

<
½
1 +

zf 00(z)

f 0(z)

¾
> γ, z ∈ U.

Also denote by T the subclasses of S consisting of functions of the form

f(z) = z −
∞X
n=2

anz
n, an ≥ 0(1.2)

introduced and studied by Silverman [21], let T ∗(γ) = T ∩S∗(γ), CV (γ) =
T ∩K∗(γ). The classes T ∗(γ) and K∗(γ) posses some interesting properties
and have been extensively studied by Silverman [21] and others. In 1991,
Goodman [10, 11] introduced an interesting subclass uniformly convex (uni-
formly starlike) of the class CV of convex functions (ST starlike functions)
denoted by UCV (UST). A function f(z) is uniformly convex (uniformly
starlike) in U if f(z) in CV (ST) has the property that for every circular
arc γ contained in U with center ξ also in U, the arc f(γ) is a convex arc
(starlike arc) with respect to f(ξ).

Motivated by Goodman [10, 11], Ronning [17, 18] introduced and stud-
ied the following subclasses of S. A function f ∈ S is said to be in the class
Sp(γ, k) uniformly k−starlike functions if it satisfies the condition

<
µ
zf 0(z)

f(z)
− γ

¶
> k

¯̄̄̄
zf 0(z)

f(z)
− 1

¯̄̄̄
, 0 ≤ γ < 1, k ≥ 0andz ∈ U(1.3)

and is said to be in the class UCV (γ, k), uniformly k−convex functions if
it satisfies the condition
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<
µ
1 +

zf 00(z)

f 0(z)
− γ

¶
> k

¯̄̄̄
zf 00(z)

f 0(z)

¯̄̄̄
, 0 ≤ γ < 1, k ≥ 0andz ∈ U.(1.4)

Indeed it follows from 1.3 and 1.4 that

f ∈ UCV (γ, k)⇔ zf 0 ∈ Sp(γ, k).(1.5)

Further Ahuja et al. [1], Bharathi et al. [7], Murugusundaramoorthy et
al. [12] and others have studied and investigated interesting properties for
the classes Sp(γ, k) and UCV (γ, k).

Let
P
denote the class of functions of the form

f(z) = z−1 +
∞X
n=1

anz
n, an ≥ 0(1.6)

which are analytic in the punctured open disk
U∗ = {z : z ∈ C, 0 < |z| < 1} = U \ {0}.

Let
P

s,
P∗(γ) and

P
k(γ)(0 ≤ γ < 1) denote the subclasses of

P
that

are meromorphic univalent, meromorphically starlike functions of order γ
and meromorphically convex functions of order γ respectively. Analytically,
f ∈P∗(γ) if and only if f is of the form 1.6 and satisfies

−<
µ
zf 0(z)

f(z)

¶
> γ, z ∈ U.

Similarly, f ∈Pk(γ) if and only if f is of the form 1.6 and satisfies

−<
µ
1 +

zf 00(z)

f 0(z)

¶
> γ, z ∈ U

and similar other classes of meromorphically univalent functions have been
extensively studied by (for example) Altintas et al. [2], Aouf [3], Mogra et
al. [13], Undegadi et al [24, 25, 26] and others (see [8, 14, 15]).

In [6], Athsan and Kulkarni introduced Rapid - operator for analytic
functions and Rosy and Sunil Varma [19] modified their operator to mero-
morphic functions as follows.

Lemma 1.1. For f ∈ P given by 1.1, 0 ≤ µ ≤ 1 and 0 ≤ θ ≤ 1, if the
operator Sθ

µ :
P→P

is defined by

Sθ
µf(z) =

1

(1− µ)θΓ(θ + 1)

∞Z
0

tθ+1e
−t
1−µ f(tz)dt(1.7)
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then

Sθ
µf(z) =

1

z
+

∞X
n=1

L(n, θ, µ)anz
n(1.8)

where L(n, θ, µ) = (1− µ)n+1 Γ(n+θ+2)Γ(θ+1) and Γ is the familiar Gamma func-
tion.

In order to prove our results wee need the following lemmas.

Lemma 1.2. If γ is a real number and ω = −(u+ iv) is a complex number
then

<(ω) ≥ γ ⇔ |ω + (1− γ)|− |ω − (1− γ)| ≥ 0.

Lemma 1.3. If ω = u + iv is a complex number and γ is a real number
then

−<(ω) ≥ k|ω + 1|+ γ ⇔ −<
³
ω(1 + keiθ) + keiθ

´
≥ γ,−π ≤ θ ≤ π.

Motivated by Sivaprasad Kumar et al. [16] and Atshan et al . [5], now
we define a new subclass

P∗(γ, k, µ, θ) of
P

.

Definition 1.4. For 0 ≤ γ < 1, k ≥ 0, 0 ≤ µ ≤ 1 and 0 ≤ θ ≤ 1, we letP∗(γ, k, µ, θ) be the subclass of
P

s consisting of functions of the form 1.6
and satisfying the analytic criterion

− <
Ã
z(Sθ

µf(z))
0

Sθ
µf(z)

+ γ

!
> k

¯̄̄̄
¯z(Sθ

µf(z))
0

Sθ
µf(z)

+ 1

¯̄̄̄
¯ .(1.9)

The main object of this paper is to study some usual properties of the
geometric function theory such as the coefficient bounds, extreme points,
radii of meromorphic starlikeness and convexity for the class

P∗(γ, k, µ, θ).
Further, we obtain partial sums and neighborhood properties for the class
also.

2. Coefficient estimates

In this section we obtain necessary and sufficient condition for a function
f to be in the class

P∗(γ, k, µ, θ).
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Theorem 2.1. Let f ∈P be given by 1.6. Then f ∈P∗(γ, k, µ, θ) if and
only if

∞X
n=1

[n(k + 1) + (k + γ)]L(n, θ, µ)an ≤ (1− γ).(2.1)

Proof. Let f ∈P∗(γ, k, µ, θ). Then by definition and using Lemma 1.2,
it is enough to show that

−<
(
z(Sθ

µf(z))
0

Sθ
µf(z)

+ (1 + keiθ) + keiθ
)
> γ,−π ≤ θ ≤ π.(2.2)

For convenience
C(z) = −

h
z(Sθ

µf(z))
0
i
(1 + keiθ)− keiθSθµf(z)

D(z) = Sθ
µf(z)

That is, the equation 2.2 is equivalent to

−<
µ
C(z)

D(z)

¶
≥ γ.

In view of Lemma 1.2, we only need to prove that

|C(z) + (1− γ)D(z)|− |C(z)− (1− γ)D(z)| ≥ 0.

Therefore
|C(z) + (1− γ)D(z)| ≥ (2− γ) 1|z|

−
∞P
n=1
[n(k + 1) + (k + γ − 1)]L(n, θ, µ)an|z|n

and |C(z)− (1− γ)D(z)| ≤ (γ) 1|z|

+
∞P
n=1
[n(k + 1) + (k + γ + 1)]L(n, θ, µ)an|z|n.

It is to show that
|C(z) + (1− γ)D(z)|− |C(z)− (1 + γ)D(z)|

≥ 2(1− γ) 1|z| − 2
∞P
n=1
[n(k + 1) + (k + γ)]L(n, θ, µ)an|z|n

≥ 0,by the given condition 2.1.

Conversely suppose f ∈ P∗(γ, k, µ, θ). Then by Lemma 1.3, we have
2.2.
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Choosing the values of z on the positive real axis the inequality 2.2
reduces to

<

⎧⎪⎪⎨⎪⎪⎩
[1− γ − 2λ(1 + keiθ)] 1

z2
+

∞P
n=1
[n(1 + keiθ) + (γ + keiθ)]L(n, θ, µ)zn−1

1
z2 +

∞P
n=1

L(n, θ, µ)anzn−1

⎫⎪⎪⎬⎪⎪⎭ ≥ 0.
Since <(−eiθ) ≥ −|eiθ| = −1, the above inequality reduces to

<

⎧⎪⎪⎨⎪⎪⎩
[1− γ] 1r2 +

∞P
n=1
[n(1 + k) + (γ + k)]L(n, θ, µ)anr

n−1

1
r2 +

∞P
n=1

L(n, θ, µ)rn−1

⎫⎪⎪⎬⎪⎪⎭ ≥ 0.
Letting r → 1− and by the mean value theorem, we have obtained the
inequality 2.1. 2

Corollary 2.2. If f ∈P∗(γ, k, µ, θ) then

an ≤
(1− γ)

[n(1 + k) + (γ + k)]L(n, θ, µ)
.(2.3)

Theorem 2.3. If f ∈P∗(γ, k, µ, θ) then for 0 < |z| = r < 1,

1

r
− (1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
r ≤ |f(z)|

≤ 1
r
+

(1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
r.(2.4)

This result is sharp for the function

f(z) =
1

z
+

(1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
z, atz = r, ir.(2.5)

Proof. Since f(z) = 1
z +

∞P
n=1

anz
n, we have

|f(z)| = 1

r
+

∞X
n=1

anr
n ≤ 1

r
+ r

∞X
n=2

an.(2.6)

Since n ≥ 1, (2k + γ + 1) ≤ n(k + 1)(k + γ)L(n, θ, µ), using Theorem
2.1, we have
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(2k + γ + 1)
∞P
n=1

an ≤
∞P
n=1

n(k + 1)(k + γ)L(n, θ, µ)

≤ (1− γ)

⇒
∞P
n=1

an ≤ (1−γ)
(2k+γ+1)(1−µ)2(θ+1)(θ+2) .

Using the above inequality in 2.7, we have

|f(z)| ≤ 1
r
+

(1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
r

and |f(z)| ≥ 1
r −

(1−γ)
(2k+γ+1)(1−µ)2(θ+1)(θ+2)r.

The result is sharp for the function f(z) = 1
z+

(1−γ)
(2k+γ+1)(1−µ)2(θ+1)(θ+2)z.

2

Corollary 2.4. If f ∈P∗(γ, k, µ, θ) then

1

r2
− (1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
≤ |f 0(z)|

≤ 1

r2
+

(1− γ)

(2k + γ + 1)(1− µ)2(θ + 1)(θ + 2)
.

The result is sharp for the function given by 2.6

3. Extreme points

Theorem 3.1. Let f0(z) =
1
z and

fn(z) =
1

z
+

∞X
n=1

(1− γ)

[n(1 + k) + k]L(n, θ, µ)
zn, n ≥ 1.(3.1)

Then f ∈P∗(γ, k, µ, θ) if and only if it can be expressed in the form

f(z) =
∞X
n=0

unfn(z), un ≥ 0and
∞X
n=1

un = 1.(3.2)



560 B. Venkateswarlu, P. T. Reddy, R. N. Ingle and S. Sreelakshmi

Proof. Suppose f(z) can be expressed as in 3.2. Then

f(z) =
∞P
n=0

unfn(z) = u0f0(z) +
∞P
n=1

unfn(z)

= 1
z +

∞P
n=1

un
(1−γ)

[n(1+k)+k]L(n,θ,µ)z
n.

Therefore
∞P
n=1

un
(1−γ)

[n(1+k)+k]L(n,θ,µ)
[n(1+k)+k)]L(n,θ,µ)

(1−γ) zn

=
∞P
n=1

un = 1− u0 ≤ 1.

So by Theorem 2.1, f ∈P∗(γ, k, µ, θ).
Conversely suppose that f ∈P∗(γ, k, µ, θ). Since

an ≤
(1− γ)

[n(1 + k) + k]L(n, θ, µ)
n ≥ 1.

We set un =
[n(1+k)+(γ+k)]L(n,θ,µ)

(1−γ) an, n ≥ 1 and u0 = 1−
∞P
n=1

un.

Then we have f(z) =
∞P
n=0

unfn(z) = u0f0(z) +
∞P
n=1

unfn(z).

Hence the results follows. 2

4. Radii of meromorphically starlike and meromorphically
convexity

Theorem 4.1. Let f ∈P∗(γ, k, µ, θ). Then f is meromorphically starlike
of order δ, (0 ≤ δ ≤ 1) in the unit disc |z| < r1, where

r1 = inf
n

∙
(1− δ)

(n+ 2− δ)

[n(1 + k) + k]L(n, θ, µ)

(1− γ)

¸ 1
n+1

, n ≥ 1.

The result is sharp for the extremal function f(z) given by 3.1.

Proof. The function f ∈ P∗(γ, k, µ, θ) of the form 1.6 is meromorphi-
cally starlike of order δ is the disc |z| < r1 if and only if it satisfies the
condition ¯̄̄̄

zf 0(z)

f(z)
+ 1

¯̄̄̄
< (1− δ).(4.1)
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Since

¯̄̄̄
zf 0(z)

f(z)
+ 1

¯̄̄̄
≤

¯̄̄̄
¯̄̄̄
∞P
n=1
(n+ 1)anz

n+1

1 +
∞P
n=1

anzn+1

¯̄̄̄
¯̄̄̄ ≤

∞P
n=1
(n+ 1)|an||z|n+1

1−
∞P
n=1

|an||z|n+1
.

The above expression is less than (1− δ) if
∞P
n=1

(n+2−δ)
(1−δ) an|z|n+1 < 1.

Using the fact that f(z) ∈P∗(γ, k, µ, θ) if and only if

∞X
n=1

[n(1 + k) + k]L(n, θ, µ)

(1− γ)
an ≤ 1.

Thus, 4.1 will be true if (n+2−δ)(1−δ) |z|n+1 <
[n(1+k)+(γ+k)]L(n,θ,µ)

(1−γ) or

equivalently |z|n+1 < (1−δ)
(n+2−δ)

[n(1+k)+k]L(n,θ,µ)
(1−γ) which yields the starlikeness

of the family. 2

The proof of the following theorem is analogous to that of Theorem 4.1,
and so we omit the proof.

Theorem 4.2. Let f ∈ P∗(γ, k, µ, θ). Then f is meromorphically convex
of order δ, (0 ≤ δ ≤ 1) in the unit disc |z| < r2, where

r2 = inf
n

∙
(1− δ)

n(n+ 2− δ)

[n(1 + k) + (γ + k)]L(n, θ, µ)

(1− γ)

¸ 1
n+1

, n ≥ 1.

The result is sharp for the extremal function f(z) given by 3.1.

5. Partial Sums

Let f ∈P be a function of the form 1.6. Motivated by Silverman [22] and
Silvia [23] and also see [4], we define the partial sums fm defined by

fm(z) =
1

z
+

mX
n=1

anz
n, (m ∈ N).(5.1)

In this section we consider partial sums of function from the classP∗(γ, k, µ, θ) and obtain sharp lower bounds for the real part of the ra-
tios of f to fm and f 0 to f 0m.
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Theorem 5.1. Let f ∈P∗(γ, k, µ, θ) be given by 1.6 and define the partial
sums f1(z) and fm(z) by

f1(z) =
1

z
andfm(z) =

1

z
+

mX
n=1

|an|zn, (m ∈ N \ {1}).(5.2)

Suppose also that
∞P
n=1

dn|an| ≤ 1, where

dn ≥
1, if n = 1, 2, · · · ,m
[n(1+k)+(γ+k)]L(n,θ,µ)

(1−γ) , if n = m+ 1,m+ 2, · · · .(5.3)

Then f ∈P∗(γ, k, µ, θ). Furthermore

<
µ

f(z)

fm(z)

¶
> 1− 1

dm+1

and <
³
fm(z)
f(z)

´
> dm+1

1+dm+1
.

Proof. For the coefficient dn given by 5.3 it is not difficult to verify that

dm+1 > dm > 1.(5.4)

Therefore we have

mX
n=1

|an|+ dm+1

∞X
n=m+1

|an| ≤
∞X
n=1

|an|dm ≤ 1(5.5)

by using the hypothesis 5.3. By setting

g1(z) = dm+1

µ
f(z)

fm(z)
−
µ
1− 1

dm+1

¶¶
= 1 +

dm+1
∞P

n=m+1
anz

n−1

1 +
∞P
n=1

|an|zn−1

then it sufficient to show that

<
³
g1(z)

´
≥ 0 or

¯̄̄̄
g1(z)− 1
g1(z) + 1

¯̄̄̄
≤ 1, (z ∈ U)

and applying 5.7, we find that
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¯̄̄
g1(z)−1
g1(z)+1

¯̄̄
≤

dm+1

∞P
n=m+1

|an|

2−2
mP
n=1

|an|−dm+1
∞P

n=m+1

|an|

≤ 1, (z ∈ U)

which ready yields the assertion 5.4 of Theorem 5.1. In order to see that

f(z) =
1

z
+

zm+1

dm+1
(5.6)

gives sharp result, we observe that for

z = re
iπ
m that

f(z)

fm(z)
= 1− rm+2

dm+1
→ 1− 1

dm+1
asr → 1−.

Similarly, if we takes g2(z) = (1 + dm+1)
³
fm(z)
f(z) −

dm+1
1+dm+1

´
and making use of 5.7, we denote that

¯̄̄̄
g2(z)− 1
g2(z) + 1

¯̄̄̄
<

(1 + dm+1)
∞P

n=m+1
|an|

2− 2
mP
n=1

|an|− (1− dm+1)
∞P

n=m+1
|an|

which leads us immediately to the assertion 5.5 of Theorem 5.1.
The bound in 5.5 is sharp for each m ∈ N with extremal function f(z)
given by 5.8 . 2

The proof of the following theorem is analogous to that of Theorem 5.1,
so we omit the proof.

Theorem 5.2. If f ∈ P∗(γ, k, µ, θ) be given by 1.6 and satisfies the con-
dition 2.1 then

<
µ
f 0(z)

f 0m(z)

¶
> 1− m+ 1

dm+1

and <
³
f 0m(z)
f 0(z)

´
> dm+1

m+1+dm+1
,

where

dn ≥
n, if n = 2, 3, · · · ,m
[n(1+k)+(γ+k)]L(n,θ,µ)

(1−γ)) , if n = m+ 1,m+ 2, · · · .

The bounds are sharp with the extremal function f(z) of the form 2.3.
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6. Neighbourhoods for the class
P∗ξ(γ, k, µ, θ)

In this section, we determine the neighborhood for the class
P∗ξ(γ, k, µ, θ)

which we define as follows

Definition 6.1. A function f ∈P is said to be in the class
P∗ξ(γ, k, µ, θ)

if there exits a function g ∈P∗(γ, k, µ, θ) such that¯̄̄̄
¯̄f(z)g(z)

− 1

¯̄̄̄
¯̄ < 1− ξ, (z ∈ E, 0 ≤ ξ < 1).(6.1)

Following the earlier works on neighbourhoods of analytic functions by
Goodman [9] and Ruscheweyh [20], we define the δ−neighbourhoods of
function f ∈P by

Nδ(f) =

½
g ∈

X
: g(z) =

1

z
+

∞X
n=1

bnz
nand

∞X
n=1

n|an − bn| ≤ δ

¾
.(6.2)

Theorem 6.2. If g ∈P∗(γ, k, µ, θ) and

ξ = 1− δ(2k + γ + 1)L(1, θ, µ)

(2k + γ + 1)L(1, θ, µ)− (1− γ)
(6.3)

then Nδ(g) ⊂
P∗ξ(γ, k, µ, θ).

Proof. Let f ∈ Nδ(g). Then we find from 7.2 that

∞X
n=1

n|an − bn| ≤ δ(6.4)

which implies the coefficient inequality

∞X
n=1

|an − bn| ≤ δ, n ∈ N.(6.5)

Since g ∈P∗(γ, k, µ, θ), we have

∞X
n=1

bn ≤
(1− γ)

(2k + γ + 1)L(1, θ, µ)
.(6.6)

So that



On a subclass of meromorphic functions with positive coefficients ...565

¯̄̄̄
¯̄f(z)g(z) − 1

¯̄̄̄
¯̄ <

∞P
n=1

|an−bn|

1−
∞P
n=1

bn

= δ(2k+γ+1)L(1,θ,µ)
(2k+γ+1)L(1,θ,µ)−(1−γ)

= 1− ξ

provided ξ is given by 7.3. Hence by definition, f ∈ P∗ξ(γ, k, µ, θ) for ξ
given by which completes the proof. 2
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