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1. Introduction

Nonlinear dynamical systems are one of the most important tools to model
a large number of physical systems in nature, ranging from biological popu-
lations, coupled networks, market crisis, brain dynamics, chemical systems,
laser physics, granular dynamics, normal and anomalous transport, extreme
events, weather forecast, among many others. One of the more important
problem in nonlinear models is to identify what are the correct parameter
values, which lead to the desired dynamics (or avoid it). We cite [7] for a
nice overview about the subject.

In the main stream of the study of topological models in some applied
sciences, there are the unimodal maps. Among them, one of the simplest
continuous family of these maps are the family of tent maps which is the
family (Tλ)1<λ≤2 defined by

Tλ(x) =
λx, if 0 ≤ x ≤ 1/2;
λ(1− x), if 1/2 ≤ x ≤ 1.

This family provides a topological model for the study of many differ-
entiable unimodal maps (see the Figure 1 for the graph of T2).

Figure 1.1: The tent map T2(x)
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In the last quarter of the twentieth century, the real quadratic family
fc : R → R, fc : x 7→ x2 + c (c ∈ R) was recognized as a very inter-
esting and representative model of chaotic dynamics. It is a full family
of unimodal maps: any C1 unimodal map of the interval is semiconjugate
to a quadratic map and the semi-conjugacy is strictly monotone in the
backward orbit of the turning point (see Section 6 of Chapter II of [6]).
Complexification of this family leads to a beautiful interplay between real
and complex dynamics. If c < −2 then the set of orbits, which do not tend
to infinity, is a (regular) Cantor set (see [2]); in this case it is not difficult to
see that fc is topologically conjugate via an affine map to a map of the kind
gµ(x) = µx(1 − x), with µ > 4. If c > 1/4 then all orbits tend to infinity
(since in this case fc(x) > x for all x). For c = 1/4 the only orbit, which do
not tend to infinity, is the constant orbit of x = 1/2. For −2 ≤ c < 1/4, fc

leaves invariant the interval [−pc, pc], where pc = 1+
√
1−4c
2 is a fixed point of

fc (and the orbits of points not belonging to this interval tend to infinity).
For c = −2, we will see that the restriction of fc to [−pc, pc] = [−2, 2] is
topologically conjugate to the complete tent map T2. So, the dynamics of
f−2 is an interesting limit case in the quadratic family. Notice also that f−2
is topologically conjugate via the affine map h(x) = 2x to the Chebyshev
polynomial 2x2 − 1.

Now, let x be a real number and define the sequence (an(x))n≥0 by

a0(x) = x and an+1(x) = an(x)
2 − 2, for all n ≥ 0.

These sequences can be seen as iterations of the quadratic map f(x) :=
f−2(x) = x2 − 2. As we remark before, the choice of the initial parameter
x can lead to some chaotic (or not) dynamics for an(x). In a certain sense,
the measure of this behavior can be seen in the problem of determining
when an(x) belongs to some prescribed interval for all n ≥ 1. Surely, if the
interval is very small, the possibilities for x can be also very small (or even
empty).

In this work, we are interested in a critical interval I where uncountably
many of these sequences belong completely to an interval if and only if this
interval contains I. This leads to an uncountable profusion of such values
of x. This can be of wide interest in many fields and we leave to other
specialist the study of this model. Now, let us pose the mathematical
problem that we are interested.

We call the maximal invariant of the sequence an(x), restricted to an
interval [c, d], the set
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Kc,d = {x ∈ [−2, 2] : c ≤ an(x) ≤ d,∀n ≥ 1}
= {x ∈ [−2, 2] : fn(x) ∈ [c, d],∀n ≥ 1}.

Also, for tents maps, we have: Let J be a closed subinterval of [0, 1],
the maximal invariant Mλ,J of Tλ|J is defined by

Mλ,J :=
∞\
n=0

T−nλ (J).

In other words,Mλ,J is the set of all real numbers y ∈ [0, 1] such that
the Tn

λ (y) ∈ J , for all n ≥ 0. We point out to the reader the strong relation
of the maximal invariant and the basin of attraction (i.e., the set of all
initial conditions in the phase space whose trajectories go to the set of all
attractors). We point the reader to some basic literature on the invariant
sets of one-dimensional maps (see [4, 5, 1, 3] and references therein).

We must point out that the set invariance theory has been subject to
an extensive study over the last 50 years due to its close relationship with
basic concepts of control theory, some of which are control synthesis under
uncertainty, reachability analysis and stability theory (see more in [9]).

The distribution of the iterations of fc(x) (the values of an(x)) is scat-
tered and appears to be random. The next figure shows the orbit of x0 = 0.1
under f−2(x) (with 10, 000 iterations). From this graphic, we can appreci-
ate that the distribution of the orbit does not run evenly over the interval
of (−2, 2). It is clear that the orbit favors points along the edges of the
interval. If the orbit was truly distributed randomly, we would see no such
patterns. This occurrence suggests the presence of chaos within the orbit.

We remark the importance of the study of these sequences. For example,
the search for big prime numbers has been a very popular area of research
and many mathematicians and computer scientists have devoted time to
find these numbers (since they are very important in cryptography). The
bigger prime numbers known to this date are Mersenne primes, i.e., primes
of the form 2p − 1, where p is prime. A very useful test for primality for
Mersenne numbers (the Lucas-Lehmer test) works as follows: Let Mp =
2p − 1 be the Mersenne number and p be an odd prime. Then Mp is
prime if and only if ap−2(4) ≡ 0 (mod Mp). The Lucas-Lehmer test is the
primality test used by the Great Internet Mersenne Prime Search (GIMPS)
to locate large primes.
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Figure 1.2: Orbit of x0 = 0.1 under f−2(x) or an(0.1), for 1 ≤ n ≤ 10, 000

The aim of this work is to study the dynamics of the unimodal map
f−2(x) and to find the interval of critical invariance for this map. We
will study maximal invariant sets Kc,d of the sequence an(x), restricted to
intervals [c, d] ⊂ R. There is no loss of generality in assuming [c, d] ⊂
[−2, 2], since |x| > 2 lim an(x) = +∞. More precisely, we proved that

Theorem 1. (i) If [c, d] ⊆ [−2, 2], then Kc,d 6= ∅ if and only if [c, d] ∩
{−1, 2} 6= ∅.
(ii) If [c, d] ⊆ [−2, 2], then Kc,d is infinite if and only if [c, d] ⊇ [−1, 2] or
[c, d] ⊇ [−(1+

√
5

2 ),
√
5−1
2 ] = [−1.61803 . . . , 0.61803 . . .].

Theorem 2. If [c, d] ⊆ [−2, 2], then there exists an explicit interval [c0, d0]
such that Kc,d is uncountable if and only if [c, d] ⊇ [c0, d0]. In fact, c0 =
2cos(2mπ) = −1.70497 . . . and d0 = 2cos((2− 4m)π) = 0.90695 . . ., where
m is the Thue-Morse constant.

2. Proof of the theorems

Set f(x) = x2− 2 and let h : [0, 1]→ [−2, 2] be the homomorphism defined
by h(y) = 2 cos(πy). We have the following commutative diagram:

pc
fi-2
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[0, 1] T2−−→
[0, 1]

h

⏐⏐⏐⏐y
⏐⏐⏐⏐y h

[−2, 2] f
−−→

[−2, 2]

In fact, this diagram commutes since

f(h(y)) = 4 cos2(πy)− 2 = 2(2 cos2(πy)− 1) = 2 cos(2πy)
= 2 cos(π(2− 2y)) = 2 cos(πT2(y)) = h(T2(y)).

More generally, fn ◦ h = h ◦ Tn
2 , for all n ≥ 1. Indeed, to prove that we

shall use induction on n. The case n = 1 is already proved. So, suppose
that this equality is true for n. Then fn+1 ◦h = f ◦ (fn ◦h) = f ◦ (h◦Tn

2 ) =
(f ◦h)◦Tn

2 = (h◦T2)◦Tn
2 = h◦Tn+1

2 . In particular, the study of dynamics
of f(x) is related to the one of T2(x). Therefore, we have that

Kc,d = {x ∈ [−2, 2] : c ≤ an(x) ≤ d,∀n ≥ 1}
= {x ∈ [−2, 2] : fn(x) ∈ [c, d],∀n ≥ 1}
= h({y ∈ [0, 1] : Tn

2 (y) ∈ h−1([c, d]) = [h−1(d), h−1(c)],∀n ≥ 1}).

SinceM2,[a,b] =
T∞
n=0 T

−n
2 ([a, b]) = {y ∈ [0, 1] : Tn

2 (y) ∈ [a, b],∀n ≥ 1},
it follows that Kc,d = h(M2,[a,b]), where a = h−1(d) and b = h−1(c). So,
from now on, in order to study Kc,d, we set a = h−1(d) and b = h−1(c).

In order to prove Theorem 1, notice that, if −1 < c ≤ d < 2, then
0 < a ≤ b < 2/3. If 1/2 ≤ y < 2/3 then T2(y) > 2/3, so T2(y) /∈ [a, b].
This implies that M2,[a,b] ∩ [1/2, 1] = ∅. On the other hand, if 0 < y <

1/2, there is a positive integer k such that 2−k−1 ≤ y < 2−k, and thus
T k
2 (y) = 2

k · y ∈ [1/2, 1), and so, sinceM2,[a,b] ∩ [1/2, 1] = ∅, y /∈M2,[a,b].
ThereforeM2,[a,b] = ∅. On the other hand, since f(−1) = −1 and f(2) = 2,
if −1 ∈ [c, d] then −1 ∈ Kc,d and, if 2 ∈ [c, d] then 2 ∈ Kc,d. This proves
(i).

To prove (ii), notice that, since cos(0) = 1, cos(2π3 ) = −
1
2 , cos(

2π
5 ) =√

5−1
4 and cos(4π5 ) = −(

1+
√
5

4 ), we have [c, d] ⊇ [−1, 2] ⇐⇒ [a, b] ⊃ [0, 2/3]
and [c, d] ⊇ [−(1+

√
5

2 ),
√
5−1
2 ] ⇐⇒ [a, b] ⊃ [2/5, 4/5]. If a > 2/5 and y ∈

[a, 1/2] then T2(y) > 4/5 and T
2
2 (y) < 2/5 < a, so y /∈M2,[a,b]. This implies

thatM2,[a,b]∩ [0, 1/2] = ∅, and soM2,[a,b] ⊂M2,[1/2,b] ⊂M2,[1/2,1] = {2/3}
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(indeed, if there was an element z ∈ M2,[1/2,1] \ {2/3}, we would have
|Tn
2 (z) − 2/3| = 2n|z − 2/3| for all positive integer n, a contradiction). If

b < 4/5 and y ∈ [1/2, b] then T2(y) > 2/5. SinceM2,[1/2,1] = {2/3}, given
any z ∈ [1/2, b] ∩M2,[a,b] with z 6= 2/3, there is a natural number n with
Tn
2 (z) ∈ [1/2, b], Tn+1

2 (z) ∈ [0, 1/2), but then Tn+1
2 (z) = T2(T

n
2 (z)) > 2/5

and so Tn+2
2 (z) > 4/5 > b, and thus z /∈ M2,[a,b]. This implies that, if

w ∈M2,[a,b] \ {2/3}, then w = 0 or there is a natural number n such that

T j
2 (w) ∈ (0, 1/2] for 0 ≤ j ≤ n and Tn+1

2 (w) = 2/3, thus w = 2−n/3. If a >
0 then there are only finitely many values of n for which 2−n/3 ≥ a, and so
M2,[a,b] is finite. On the other hand, if b ≥ 2/3, thenM2,[0,b] ⊃ {2−n/3, n ∈
N} is infinite. And if [a, b] ⊃ [2/5, 4/5] then M2,[a,b] ⊃ M2,[2/5,4/5] =

{2/5}∪{2/3}∪{23 +(−
1
2)

n · 215 ;n ≥ 0} is infinite. This concludes the proof
of Theorem 1.

In order to prove our Theorem 2, we first notice that, by [8, Theorem
4], there exists an interval [a0, b0] such that

∞\
n=0

T−n2 ([a, b]) = {y ∈ [0, 1];Tn
2 (y) ∈ [a, b],∀n ≥ 1}

is uncountable if and only if [a, b] ⊇ [a0, b0]. Thus, Kc,d is uncountable if and
only if [h−1(d), h−1(c)] ⊇ [a0, b0], that is, if and only if [c, d] ⊇ [h(b0), h(a0)].
So, [c0, d0] := [h(b0), h(a0)] is our desired interval. In fact, it was proved
also in [8] that [a0, b0] = [2−4m, 2m], wherem = (0.0110100110010110 . . .)2
is the binary representation of the Thue-Morse constant which is approx-
imately 0.41245 . . .. Thus, c0 = h(2m) and d0 = h(2 − 4m). The proof is
then complete.

3. Conclusion

In this paper, we study the maximal invariant set of a quadratic map related
to a class of unimodal maps. This map is very important and has direct
application in many branches of science (e.g., computer science search for
big primes). In particular, our result asserts the existence of a critical
interval I with the property that the maximal invariant of f |J has a chaotic
behavior for any interval J containing I. This implies the existence of
uncountably many sequences an(x) lying inside of [c, d], for all n ≥ 1 (this
shows the highly sensitive behavior of the dynamics in relation to the initial
conditions).
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Acknowledgement

D. B and P.T were supported by Project of Excelence PrF UHK 01/2018.
D. M and C. G. M thanks to CNPq for the financial support. Part of
this work was done during two very enjoyable visits of D. M to IMPA
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