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Abstract

In this article, we study the existence and multiplicity of solutions
for a class of anisotropic elliptic equations

=00 Oy ailw, o) + b(@) Ul 2w = (@) (@, w) + p(@)g(w,w) in O,
(P) { u=0 on on. e

First we establisch that anisotropic space is separable and by using
the Fountain theorem, and dual Fountain theorem we prove, under
suitable conditions, that the problem (P) admits two sequences of weak
solutions.
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1. Introduction

Let Q ¢ RY(N > 3) be a bounded domain with smooth boundary. In this
paper we will study the multiplicity of weak solutions of the anisotropic
problem:

Py |~ E On, i, 0uu) + b(@)|ul ™ Pu = @) f(@,u) + p(@)g(au) in Q,
u=0 on 09,

where A Z 0 and u # 0, b € L*®(Q), f,g : QxR — R, and q; :
QxR — R are Carathéodory functions fulfilling some natural hypotheses.
The anisotropic differential operator 32N ; 9, a;(x, dy,u) is a p’(.)-Laplace
type operator, where p (x) = (p1(z), p2(z), ..., pn(x)) and

ij = max _supp;(z)fori=1,..., N, we assume that p; is a continuous
16{172 ..... N} e

function on Q for all i € {1,2,..., N}. We denote by a;(z,n) the continuous
derivative with respect to n of the mapping 4; : QxR — R, A; = A;(z,n),
that means a;(z,n) = (%Ai(x,n). We make the following assumptions on
the mapping A;:
(Ag) Ai(x,0) =0 for a.e. = €.
(A1) There exists a positive constant T; such that a; satisfies the growth
condition

|ai($777)’ < Ei(l + ’n’pi(‘r)il)v

for all x € 2 and n € R.
(A2) The inequalities

[P < ai(,m)n < pi(@)Ai(w,m),

are verified for all z € 2 and n € R.
(As) assume that a; is strictly monotone, that is,

(az‘@?ﬂ?) - az(%ﬁ))(n - §) >0,

for all z € 2 and n, & € R, with n # £.
(Ay) Aj(x,—n) = Aj(z,n) for all x € Q, n € R.
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Examples

1) If we take a;(z,n) = |n|P"®~2p for all i € {1,..., N}, we have 4;(z,n) =

pix)ln\pi(m) for all © € {1,..., N}. Obviously, (Ap) - (A4) are verified, and

we obtain the p’(z) -Laplace operator

N
Sy = ;axi(’aximpi(m)%@xiu).
2) If we take a;(z,7) = (1 + 772)%77 for all ¢ € {1,..., N}, we have

pi(z)

Ai(z,m) = ﬁ[(l +n?)"2 —1] for all i € {1,..., N}, then (Ap) - (A4)
are verified, and we find the anisotropic variable exponent mean curvature
operator

N pi(a)=2

> 00 (1 4 |00ul?) 2 Opyu).

i=1

Anisotropic elliptic equations has been received a rising interest, in the

recent years. This is due to the some nonhomogeneous materials which
could not be treated on the classical Sobolev space. For example we can
point out to the electro-rheological fluids or to the thermo-rheological flu-
ids (see for example [17], [19], [23]), image restoration [22], and contact
mechanics [18]. We give in this work an extension of the article [1] where
the authors considered the following problem

() { = SN O, aq(, D) + 0(@) |l Pu = flou) in Q
u=20 on 09,

and they considered f(z,u) = Mu|9®) =2y + p|u|"®) 2y, where X and p are
constant, and they established the existence of two unbounded sequences
of weak solutions, their proof is based on Fountain theorem [20].

This kind of equation are treated in several works by many authors , we
refer here to the articles ( [3], [6], [15], [16]). In [16], the authors considered
the problem (.5), without b(:c)\u\Pi*QU, where f(x,u) = Au|?®) =2y, and
established the existence of a continuous spectrum in several distinct situ-
ations. But in [15], the authors took the same problem with A depends on
the variable z, using the mountain-pass theorem of Ambrosetti and Rabi-
nowitz [3] and the Ekelandes variational principle, they proved that under
suitable conditions, problem (S) has two nontrivial weak solutions. In [6],
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M. M. Boureanu, P. Pucci, and V. Radulescu proved that problem (S) has
a sequence of weak solutions by means of the symmetric mountain-pass
theorem .

Given Q Cc RV, we set

C(@) = {h € C@)| minh(z) > 1}.

For any h € C (), we define

hT =suph(z) and h~ = inf h(x).
z€Q €2

Let p € C(Q), then Lp(x)(Q) is called variable exponent Lebesgue space
which is defined as follow

LP®)(Q) = {u: uis a measurable real-valued function such that

[ lu@l) do < oo},
Q

endowed with the Luxemburg norm

p(z)
dx <1}

u(z)
I

!Wumxm==Wbuf=mﬂu>0:A;
is a separable and reflexive Banach space (see [21]).

In order to study the problem (P) we have to introduce the vectors
?+, P_cRY , p+(x) and p_(z) which are defined in the following way
— — o _ _
P+ = (pfvpéra 7]7})7 P* = (pl 7p2 ) "'7pN)7
pi (@) = max{py(a), ., pa(2)}, p (%) = min{p1(2), ., pa(2)},
and the positive real numbers Pjrr, P*, P~ as the following
Pt =max{p{,..,p%}, P =max{py,..,py}, P~ =min{p,....,py}-

We say that p is logarithmic Hoélder continuous if

M
log(|z — yl)

(1.1) |p(z) — p(y)| < Vz, y € Q such that |z —y| < 1/2.
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The variable exponent Sobolev space WP (Q) is defined by
WP@/(Q) = {u € LPW(Q) : Vu € [LPO(Q))V].

For all u € W) (Q), we have lull1p@) = |Ulp@) + [Vl If p satisfies
(1.1), the space Wol’p(m)(Q) is the closure of C§°(Q) in WP (Q) under
the norm |[[ul|; (). For u € Wol’p(x)(Q), we can define an equivalent norm
[ullpy = [Vulp)

Now, we introduce a natural generalization of the function space W) (Q),

which is called anisotropic variable exponent Sobolev space WL () (Q) and
we have

WLPE@(Q) = {u e LP+@)(Q) : 8,,u € LP@(Q), Vi € {1,...,N}}.

If 7 Q — RN, 7(2) = (p1(x),p2(x),...,pn(x)), and for each i €
{1,2,..., N}, we have p; € C1(2), and satisfy (1.1), the anisotropic variable

—

exponent Sobolev space Wo P (@) (©) is defined as the closure of C§°(2)
under the norm

[all = llull 3, Z [0t

and ites a reflexive Banach space (see[9, 16]).
Throughout this paper, we assume that

Noq
(1.2) > —>1
i—1 Pi
Define P*, P_ .. € R by
N
P* = —————, P_ o =max{P" P}
2im1y- — 1

In this paper, we have P < P_ o, = max{P*, P*} = P*.
From now on, we put X = Wol’?(x)(Q).

Let us define F(z,t) = [3 f(x,s)ds and G(z,t) = [ g(z, s)ds, and we
assume that the following hypotheses are fulfilled:

(fo) |f(z,t)] < cft|*®=1 for all (z,t) € Q x R where ¢ > 0 is a con-
stant, « € C1 () such that o™ = supa(z) < P~ < P < s(z) <
z€Q
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s(z) —
P_ o, Yz € Qand A € L5 @ (Q), with s € C1(Q) and a(z)+1 <
s(x) < P- o, Yz €.

2
z.
-+
=
0

S+
A

(f1) F(z,t)
1

z,t) > ho(2)t*@) when t — 01, and ag € C(
) h0($) >0

Vz € Q, # 0, and also hg € C(2,R).
(f2) f(l‘, _t) = —f(l‘,t) Vo € Qa teR.

(90) lg(z,t)| < d[t*@®)=1, for all (x,t) € Q x R where d > 0 is a con-
stant, and v € C4(Q) satisfying P <y~ <47 < P_ o, and p €

r(z) —
L@ (), withr € C(Q), and y(z)+1 < r(x) < P_ o Vz € Q.

g1 ere exists a constant 6 > such that 0 < z,t) < tg(z,t),
Th i 0 Pi h that 0 < 0G
for a.e. x € Q,t € R.

(91) There exist constants 8 > v(x) > 6 > P} such that 0 < 0G(z,t) <
tg(x,t) < BG(x,t), for ae. x € Q,t € R.

(92) g(z,—t) = —g(x,t) forallz e Q, teR.
(B) be L*™®(Q) and there exists by > 0 such that b(z) > by for all z € €.

The main result of this paper is as follows.

Theorem 1.1. Assume (Ag) — (A4), (fo) — (f2) and (go) — (g2) and (B),
then

1. If p(z) > 0 a.e. z € Q and N(x) € R, problem (P) has a sequence of
weak solutions (+uy) such that ®(+uy) — 400 as k — +o0.

2. If \M(z) > 0, p(x) > 0 a.e. z € Q, problem (P) has a sequence of weak
solutions (fwvy) such that ®(+vg) — 0 as k — +oc.

3. If M(z) > Oa.e.x € Q and p(z) keeps a constant sign in R, and
g satisfies (g,) instead of (g1), problem (P) has a sequence of weak
solutions (fwvy) such that ®(+vg) — 0 as k — +oc.
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Remark 1.1. 1. Among the difficulties we have raised in this pape is to
prove that anisotropic space is separable. To my knowledge, I believe
that the demonstration of this result is not found in the literature.

2. For f(z,u) = |[u|*®2u, g(z,u) = |[u[Y®2u, Az) =) € R and
w(z) = p for all z € Q with a(z) < P~ < P{ < P_ o, Vx € Q, and
Pt <y~ <yt < P_, we obtain the result in the article [1].

This paper is divided into two sections. In the first section we will give
some known results, in the second we will give the proof of our main results.

2. Preliminaries

We recall some important definitions and properties of the Lebesgue and

Sobolev spaces with variable exponent LP(®)(Q) and VVO1 (@) (©), where Q
is a bounded domain in RY.

Proposition 2.1. (see [8, 13, 12])

1. The space (L*™)(Q), |ul(z)) is a separable, uniformly convex Banach
1

@ = 1. For any

space and its dual space is L‘J(C”)(Q), where ﬁ +
u € LP@)(Q) and v € L) (Q), we have

/ uv dx
Q

2. If pr(2), pa() € C1(Q), pi(x) < pa(2), Yo € Q, then LP2()(Q) —
LP1(®)(Q) and the embedding is continuous.

11
< ——|——)u DVlotz) < 2|8 p2) V] o(z) -
(p_ = |ulp(@) [Vlg@) < 2lulp@) [v]g()

Remark: If ﬁ + ﬁ + Tlx) = 1, then for any u € LP®(Q), v €

LI®)(Q), w € L'®)(Q), we have

/ wow dx
Q

(2.1)

1 1 1
< —+——i——>u DNVlot) W2 < 31U ) Vo) W () -
<p— T |ulp(@)Vlg(@) [wlr @) [ulp(a) [Vlg(2) (Wl (@)
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Lemma 2.1. (see[2]) Let q¢,s € C4(Q) with q(z) < s(z) for all z € Q, and
s(x)
u € L*@)(Q), then |u|?®) € L@ (Q) and

“u’q(w

s(x) — ’u‘s(m + ‘u’g(;;)?
a(z)

or there exists a number ¢ € [q~,q"] such that

T
) — |U|S(x)

‘|u|q<m
q(z

Proposition 2.2. (see[l1]) Denote ppy,)(u) = [q|u(z )|P®) dz. Then for
u e LP@(Q), (u,) C LPW)(Q) we have

L Julpm) < H(=1> 1) © ppay(u) < 1(=1;> 1),

2. Julyay > 1= [ul) < ppoy(w) < ul’y,,

3. Julpay < 1= [ully < ppiay () < Julfy,,

4. |ulpz) = 0(— 00) & pp(z)(u) — 0(— o0),

5. 1imy, o0 |Un — Ulpez) = 0 & limy 00 Pp(a) (Un — u) = 0.

We recall now some results which concerning the embedding theorem.

Proposition 2.3. (see[16]) Suppose that @ C RY(N > 3) is a bounded
domain with smooth boundary and relation ( 1.2) is fulfilled.

1. For any q € C(Q) verifying
1<q(z) < Pooo Yz €Q,

the embedding
W7 @(Q) o L9 ()

is continuous and compact.

2. Assume that P~ > N, then the embedding

Wy P @ Q) — c@)

is continuous and compact.
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Under the conditions (A4;), i = 0,1,2,3, we have the proposition below
which is useful.

Proposition 2.4. (cf.[14, 5]) Let
Ai(u) = / Ai(x, 0p,u) dz
Q
Forie {1,2,..., N}, we have:

e A; is well defined on X,

the functional A; € C1(X,R) and

<~Az(u)790> :/ ai(xvaﬂciu)aﬂffz’@dwa
Q
for all u,p € X.
o A; is weakly lower semi-continuous.
o Let
N
Alu) = / S Ay, Ogyu) da,
&=
then A’ is an operator of type (Sy) (cf.[5]).

The following lemma plays an important role to define the weak solu-
tion.

Lemma 2.2. Let B(u) = [ [AN@)F(z,u) + p(z)G(z,u)] de. Suppose that
(fo) and (go) are verified, then we have

1. B is well defined and B € C*(X,R).

2. B, B are weakly-strongly continuous.

Proof. 1.) As f and g satisfy (fy) and (go), using lemma 2.1 and proposi-
tion 2.3, we have
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DB(u,p) = lim
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Fla,w) +p@)Gewlde < [ Mo)lIF@w]de+ | |u@)|Gla,w)|do

< 2—!)\! @ @] )
@)@ &)
+2 —W O LU
@) @)
< 201—|>\| e Hu\|a+2d1—|ﬂl ) [l 7.

)—~(z)

The last expression is obtained by the compact embeddings X —
L@ (Q) and X < L"®)(Q), which means that there exist constants ¢; > 0
and di; > 0 such that |uly,) < eif|ull, and |ul,z) < diflull, so B is well
defined. Let us prove that B € C'(X, R). We show first that B is Gateaux
differentiable. Using the Mean-value theorem, we have

B(u+ ty) — B(u)

t—0 t
i [ A@F@ ) “A@)F () + @G ut ) — p@)Glaw)
t—0 JQ t

:gggwaﬂau+w@+uummw+wwnmwm,

where 0 < 6 < 1. From (fy), (go), Young’s inequality, and the convexity of
the function h(a) = |a[P with p > 1, for |¢| < 1, we have

[A@) f (2, u+ t0p) + p(x)g(@, u + t0p)] o(x)

< c|A(@)[[u + 0] * @ o(a)| + d|u(@)|[u + o)~ 1|90( B

s(z)
< c(s(z)fa(:r))‘)\( )T 4 C(‘“—[\u+t9cp\a r)-1)a CoR

J_L
+elipla)|*) 4 S (@) T
4@ 1y 4 41T + ()|,

TfE

s(x)—alx (— clalx s(x)— s(x s(x
Q‘)\( )’s(z) a(x) +%))1)2 () 1[’11/’ ( )+‘90’ ( )]

S

+

JJ
X
+elp(a)|*(®) 4 ALy ) T
20D @1 @) + @) + ()|,

+
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The last right expression is independent on ¢ and it is in L'(£2), then
by the Lebesgue dominated convergence theorem, we have

(2.2) DB(u,¢) = /Q (@) f (@ u) + p(@)g(z, u)] o(z) de.

s(x)
So using the fact that Ny : L3@)(Q) — L3@-1(Q); u — f(v,u) and N, :

r(z)
'@ (Q) — L7&1(Q); u — g(z,u) are continuous bounded operators.
Then, by (fo), (go), and Proposition 2.1, we obtain

DB(u) = | N@)f(aw)+ p@)g(a, 0] o) da

| eh@Ilf @ wlle@) de+ | du@)lga. )o@ do
< 30!)\\ SO \f(w u)| Fxll’@(x)‘s(z)

3dW r(w)( \g(fb‘ )| ((;Ql!w(iff)!r(z)

IN

_l’_

So DB(u, ), as a function of ¢, is a continuous linear functional on X,
then it is the Gateaur differential of B. Let’s prove that it’s continuous,
then for u, v, ¢ € X, from (2.2), we get

[(DB(u) — DB(v), )]

SN _s _[F(z,0) = F(@0)] s [lsta

s(z)—a(x)

< (

+ 3’“’ 7(30) | ( ) (37 'l))’ 7"(90 |()0|r:c
(=

<

r(z)—~(z)

Kl f (2, u) — f(%v)!%\\leKzlg(, w)

— 9(@,9)| @ el
vy(z)—1

where K7 > 0 and K3 > 0 are constants. Then,

IDB(u)=DB(v)|x- < Kilf(x,u)=f(2,0)|_sw_+Ka|g(x,u)=g(z,0)|_rw) -

a(z)—1 ~y(x)—1

Thus, DB(u) is continuous, so B is Frechet differentiable and B € C1(X, R)
with

(B'w).0) = [ NS (@.0) + nla)gle,w)] o(@) da.
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2.) Suppose by contradiction that there exists a sequence (uy) C X such
that u, — w and B(uy,)B(u), then there exists g9 and subsequence still
denoted (u,) such that:

0 < eo < |B(up) — B(u)).
For 0 < 0,, < 1, and by finite increment theorem we have
0 <eo < (B (un + On(un —u)), un — u)|.

Put wy, = U405 (un—u). As B (u)(w) = [o[A)f(z, w)wtp(z)g(z, v)w) dz,
using (2.1), proposition 2.3, (fp) and (go) we obtain

B (). (= )] = [ A (@ 00) (= ) + p{a)g o 0n) 1 — )| do
< [ 1@l ullf @ w0)| + (o) — g wo)]} do
< [ eb@)lhen O — o] dal|
[ dlute)|wa ) wn — ul do
< 3@ [l g —uly

s(z)—a(x

+ Sd“413|_412_7HUthwgilL%1?T|un'_lqdwy
y(z)—

r(z)—y(z

Since lim _|wy|4q) # 00 and  lim_ |wy|,;) # oo, then by the propo-
n—-—+00 n—-+o0o

sition 2.2, we deduce that

lim  ||w,|*® 1 s # ooand lim |[w,, [~ EOR # 00.
n—++00 )T —+00 ST
So, as the embeddings X — L*@)(Q) and X — L"(*(Q) are compact,
then the last expression on the right goes to 0 as n — +o00. Finally, B is
weakly-strongly continuous.
Let’s prove that B’ is also weakly-strongly continuous. We know that

/)\ (x,u vdw—i—/ wu(z)g(x, w)vde,
Q

where v € X. For u,, — u, then (u,) is bounded, using relation (2.1), we
have
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B/ (w) = B @) < [ M@ @) = F )] do.

[ 0@l ) = g(a,w)e da,
< 3|>\|§ sty | f (=, un)_f(xau)|%|v|s(m)

+ 3|y ) l9(z,un) — g(2,u)| _r@) [V]rea)

r(z)—~y(x) y(x)—1

The compact embedding X — L3®)(Q) (respectively X — L™(*)(Q))
guarantees the existence of subsequence (u,,) which converges to u in L**)(Q)
(respectively L"(*)(Q)). So, using the continuity of Ny and N,, we deduce
eagsily that B'is weakly-strongly continuous.

Let us define now the functional ® associated with the problem (P): @ :
X —R

®(u) = /Q[ZA $8xzu)+(—_’_)|u|P+ M) F(z,u) — p(z)G(z,u)| de.

=1

Under assumptions (Ao), (A1), (fo), (B) and (go), we have ® is well defined
on X and ® € C'(X,R), moreover the conditions (A44), (f2) and (go) imply
that ® is even. So we can define a weak solution as below.

Definition 2.1. A function u is a weak solution of the problem (P) if and
only if

J

for all p € X.

N
S ai(@, )y + b(@)ul P+ "2ugp — M) f (2, u)p — p(a)g(z,u)p| dz =0,
=1

3. Existence of sequences of weak solutions

We start with proving some results and lemmas before to deduce the proof
of our main results.

Proposition 3.1. X is a separable Banach space.
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Proof Let us define Y = LP" @) (Q) x LP1(®)(Q) x LP2(#)(Q) x ... x LPN(@)(Q)),
endowed with the product norm is a separable Banach space, and consider
the operator T : WL 7 (#)(Q) — Y, defined by T(u) = (u, Vu). We have
1T (u)lly = |ulpr@) + Zfil |0, Uy () = HuHWL?(I)(Q). Thus T is an iso-

metric isomorphism of W17 (#)(Q) onto a subspace W = T(WL P @)(Q))
of Y. As WLP (@) (Q) is complete, then W is a closed subspace of Y. As
Y is a separable banach space, we will show that W is a separable space.
Let us consider a sequence (yn)n>0 which is dense in Y. For all n € N*,
let us fix a point w, € W which verifies ||y, — wy|| < wlél‘f;[/ lyn — w| + L.

For w € W, for all ¢ > 0 and there exists n > % such that ||y, —w|| < £, so
by the definition of the sequence (wy), we have |jy, — wy,|| < £+ 1 < Z¢,
therefore

[wn = wll < flyn —wll + [lyn — wnll <e.

Thus, (wy,) is a countable dense sequence in W. Consequently, W is a sepa-

rable Banach space. Thus W and W7 (#)(Q) = T—1(W) are separable. By

the definition of X, and the equivalence of the norms ||.|| and ||.||W1,?(I)(Q),

we can prove easily that X is a closed subspace of W7 @ (©) and then X
is a separable Banach space.

Lemma 3.1. (see[6]) Let u € X.

+
p
[Laal]_*

-
NP+ 1

1. When |ju|| < 1, we have S0 [o |0, () [P do >

P
2. When |lul| > 1, we have SN [ |0z, (w)[Pi®) dz > Al = _ N,

NPo1

Lemma 3.2. The functional ® satisfies the Palais-Smale condition.

Proof. Let {u,} be a (PS) sequence, namely, |®(u,)| < R, where R > 0,
and @' (u,) — 0, as n — oo, then when |ju,| > 1, and A\(z) € R, for all
z € Q, using (fo), (1), (B) and 6 > P, we have

’

1+ R+ lunll = @(un) = 2{(® (un), un)

i(, Op un) + %)\unypi — A=) F(z,un)

vV
S—
—N
I
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— p(z)G(z,up)} dx

— 1/ {%a(x O, U ) O, Uy, + () |10 !Pi—/\(w)f(ft Up ) U
99i:127xinzin n y T

— w(@)g(z, un)un} dx

ol 1
/ {Z Ai(x, 0p,un) — gai(a:,amiun)axiun} dx
Q

=1

+ ( )/b ) un| P+ dm—i—/ w(x )(%g(m,un)un—G(x,un)> dx

+ /Q)\(:L‘) (ef(:r Up Uy, — F(, Un)) de
/{ZA T, Og,Unp,) —0 a;(z, axzun)axlun} de

1
_o(is L o@
(5% 2) [ M@l da.

From (As), for all z € Q and ¢ € {1,..., N} we have

Y]

v

1 P
— aai(x,amiun)()miun > —%Ai(:n,aziun).

On the other hand, we have by the Lemma 2.1 and Proposition 2.1

(3.1)

N

[ @ < 20 [l
Q s(z)—a(x) a(x)

2w |unlS
@)@

IN

where & € [a™, a].
Since the embedding X «— L*®)(Q) is compact, then there exists a constant
c1 > 0 such that

unls@) < cillunll.

Then,

(3:2) JA@Il* £ Ol

s(z)—a(zx)

where C' > 0. From (3.1) and (3.2), we get

Q.Z —a(x

1+ R+ |Jug > (1_p+>z/‘4 (@, Og;un) dz = CoIA__stmy _[fun|
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where C7 > 0. Again from (Az2) we have

1 1
Oty [P > — 10
pz($)| i Un| P+’ :czun|

forall z € Qand i € {1,..., N}, so

1+R+||UnH > ( )Z/ ‘833111/ |p’($ da:—C’ﬂMJﬁLHunHa

sxfaac

Using 2. of Lemma 3.1, we get

Lo L) (] ™ ;
1+ R+ ||uyll > N — - _ —CiIN an . a’
lunll = <p¢ 9) (NP—1 1IN _stoy_flun

and consequently {u,} is bounded because § > P and P~ > &. As X
is reflexive, then there exists a subsequence still denoted by {w,} which
converges weakly to ug in X.

Using the fact that @ (u,) — 0, as n — 400, we can deduce that:

lim (® (), uy, — ug) = 0,

n—oo

more precisely,

N
=1

n—oo Q

b [ | 7 2t (0 —110) = A () £ (2, 1) (s —00) () (&, 14 ) (i —110)] dz = 0.

Using Holder inequality we have

//\ xun —UO)<SC’)\’5(71 |u]0‘("”)*1 s(z) ]un—u0|s(m).
SCL‘*DLIE Oé(fl?)*l
L @) s =00 < 3l [luP O oy = w0l
'rzf'yz
+_
[ Bl = 00) < 20l [l g = ol
1
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As s(z), r(z) and P} fulfill Proposition 2.3, thus (u,) converges strongly

to ug in L*@(Q), L™®)(Q) and Lt (©). By these facts the relation above
reduces to

N
lim / Zai(x,ﬁxiun)(amiun — Oy, up) dz = 0.
Qi

n—oo

Using Proposition 2.4, we deduce that (u,) converges strongly to ug in X,
that is to say that ® satisfies Palais-Smale condition.

Since X is a reflexive and separable Banach space, then X ™ is too. Then
there exist (see[11]) {e;} C X and {ej} C X* such that

and

Now, we define

k 00
ijspan{ej}, Yk:@Xj, Zk:@X]‘.
j=1 j=k

Lemma 3.3. (see[10]) Suppose that r(z), s(z) € C+ () and r(x), s(x) <
P_ , for all z € Q. Denote

Br = sup{|u|r(z) : Hu|| =1l ue Zk}, O = Sup{|u|s(m) : ||’LL|| =1l ue Zk}

Then,
lim B =0, lim 6 =0.
k—o0 k—o0

Lemma 3.4. For every k € N, there exists r, > 0 such that

inf  ®(u) > o0, ask — +o0.
€ Zp,||ull=rg

Proof. By (Az), (B), (fo), (go), Proposition 2.1, Lemma 2.1 and 2. Lemma
3.1, for any u € Zy, ||u|]| = rx > 1, when p(z) > 0, a.e.x € Q, and A\(x) € R,
we have
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N
D) = /{zpn () + 2D - <wﬂam—u@mmwﬁdx
i Py
Al
> Oz, (u p“”)dm%——/ PLg —c/‘—uo‘(“’)dm
_}¢;/|1| N el
— d/ @‘u,v(w) dz,
2 7(z)
] ™=
> - - = 4 C )\ s(z u @ - r(x u 7 - S
Z ey 1 | sl = 2= |“|m>37(x’ e PF
where C = 2CCl . Since P~ > at > @, there exists rg large enough such
that
& u
il < =L s r < g >
s@—al@ 2PfN"-

If [ul,(z) <1 then ]u|:z;) < |u|2(x) < 1. But, if |u|,(;) > 1 using Lemma 3.3,

we obtain ’u‘j(x) < |U’:(+x) < (/BkHu”)TJr

SO
() > { ull = 2PENTT = 2l — Fi [l <1,
Jul”~ ~ _ Ny
e w7@<ww> ﬁﬂwm>L
then
Jlull ™~ 2d

e Brllul) = Cua.

O(u) > —
2P NP-71 v @)

1

Let’s take r, = (4d M riz) NP--1 *ﬂ”+> P==" Then,

r(z)—~(x)
1 1 1) po

du) > —— | = — —

m)_2NP1<Pi 7*) o

consequently, kliT ®(u) = +oo, because Pj < r* and B, — 0 when
—+o0
k — +o0.
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Lemma 3.5. For every k € N, there exists py > 11 (ry given as above)
such that

max  ®(u) <0.
u€Yg, |[ull=pr

Proof. From (Ap) and (A1), (fo), (¢1) and for any u € Y; — {0} with
lul| =1 and 1 < pg, p(z) >0a.e. x €, and \(z) € R, we have

al b(z) P
(ppu) = /Q{Z Az, O, (pru)) + P—i\pkw * = A@)F(z, pru) — u(w)G(w,pku)} du,

i=1

al | wz(pku”pz kajrr p+
< CZ/Q |0, (pru)| + T dx—l—F/Qb(xﬂu] + dx
+
- /A VF(z, pru) dx—/u(x)G(x,pku) dz,
Q
n

b / Az Hu!“)dx M / <x>\u|9da:.

We have Y} is a finite dimensional space then all norms are equivalent.
Since 6 > Pi > ot and pp — +00 as k — +o0o. Hence, for p;, large enough
(pr > 1), max  P(u) <O0.

u€Yy,|lull=pk
Lemma 3.6. There is kg such that for each k > kg, there exists pp > 0

such that inf O (u) > 0.
u€Zk, |lull=pr

Proof. From (Asz), (B), (fo), (go) and Proposition 2.1, Lemma 2.1, and 1.
of Lemma 3.1, for any u € Z, with A(z) > 0 a.e. z € Q, and u(z) € R,
one has

N
O(u) = ZAi(x,azi (u)) + &‘QJUF)|1JJ|P++ —M2)F(z,u) — w(x)G(z,u) p dx
P

=1 +

> i;/\aﬁ \p””)dx—i——/] P | Ei;, 00) g
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B (@] v
@ Jo @

+
™ 2e
P -1 o |)\| e |U| C2|N| ull7,
PIN"+ @A

where C2 2dd1 . As P+ < v~ <4, then there exists pg small enough such

pt
that Chlu| @ - Hu||” <l * 450 < p=|ull < po. So using lemma
CoETe 2PN+
3.3, we have

(u) >
+ +_
{ Bl 2PE NPt = 22N i Jul

s(z)—a(x)

+
Jul ™+ 2
NPT W e (O llul)® i fulg(r) > 1.

(33)

1
S
Let’s take py = (é—EPiNP TN @ 9°‘+)P+7“+. As P} > P~ >
s(x)—a(z)

a™, then 6, — 0 means py — 0 as k goes to +oo. It follows from the
inequality above that

pf pP+
Pi k
O(u) > - =0
= P+—1 P+—1
2PjN QPiN

Finally, we deduce that for u € Z; with ||u|| = pg, ®(u) > 0.

Lemma 3.7. for each k > kg, there exists ri, < px (pr given by Lemma
3.6) such that max  ®(u) <0, as k — +oo.

u€Yy, [lull=rs

Proof. From (Ay), (A1), (fo), (f1), (g0), and Proposition 2.1, for any v €
Y, with ||v|| =1 and 0 < ¢t < pr < 1, with A(z) > 0 a.e. = € Q, and
u(x) € R, we have

ol b(z)  p+
O(tv) = /Q{ZAZ'(*'B:OM(W)) + F!tv[ + — Nz)F(z,tv) —,u(:v)G(:r,tv)} dx

=1 +
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+
s, (t0) 1) 75P+/ Pt
< m -
< cz/ <|ax (ol =2 T ) dot S [ b
— /)\ F(z,tv) dx—/ w(z)G(x,tv) de,
Q
<

pi(x)
C’tZ/ (\&sz[—i— zl’ )d +—/b \v[+dw

= el [ A@ho@)of do+ L [ lu@ller do
Q Y Q

Since v~ > 1> oz(')F and dimYy = k, then there exists 0 < rp < pg such
that ®(u) < 0 if ||u|| = rg. Hence by = max  ®(u) < 0.

UEYy,|lull=rk

Lemma 3.8. For each k > kg, and p, > 0 given by Lemma 3.6, one has

inf  ®(u) — 0, ask — +oo.
€ Zp,||ul|<py

Proof. From a definition of Y; and Zj, we have Yy N Zy # and ry < pg,
then
dy, = inf  ®(u) <bp= max P(u)<0.

> Ug
UEZy,||ul|<pg u€Yy,|lull=r

From ( 3.3), for u € Zy, ||u|| < px small enough we have

(u) Jul™ 20 (O )™
u _— s(z u
2P+NP+*1 o s(x) Ezz)z(x k

ot +
> ——W e(m)( kel
We deduce that di — 0, because 0 — 0 and pp — 0 as k — +o0.

Definition 3.1. The functional ® satisfies the (PS)* condition (with re-
spect to (Yy)), if any sequence (u,;) C X such that n; — +00, u,, €
Y, ®(un;) — ¢ and (‘I>|ynj),(unj) — 0, has a subsequence converging to a
critical point of ®.

Lemma 3.9. The functional ® satisfies the (PC)?% for every ¢ € [d,,0[.
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Proof. Assume that (un;) C X such that n; — +o0, un; € Yy, ®(un;) —
¢ and ((I)|ynj )/(unj) — 0. Suppose that ||u,,|| > 1. If u(z) >0 ae. z € Q,
for n; large enough, we have

20 (), ),

11 (™
> 55 7) o = M 1

Since § > P and P~ > &, {un,} is bounded in X.

L+ Ry + [Jun;l| = @(up,;) —

For a subsequence {u,,} we have u,, — u € X. As X = U, Y. Yo, we
can take Un; € Ya, such that Up; —u. T hen

), =) = ), =)
+ njlinﬁoo<¢ (unj)’ Unj = u),
= njlinﬁoo«q)lynj) (unj)’ Un; — Unj>’
= 0.

We follow the similar procedure in the proof of (PS) condition in the
Lemma 3.2. We conclude that u,; — u, therefore we have P’ (tn,) — D' (u).

Let’s show that <I>/(u) = 0. Let us take ¢ € Y}, notice that if n; > k we
have

(@' (), 00) = (D' (u) = P (un,), ok) + (2 (un,), 1),
= (®'(u) = D (ny), 1) + ((Dlys,,) (tn;), 1)
Then, when n; — +00, we obtain
(®(u), r) =0V @1 € Y,

so @ (u) = 0. Finally, ® satisfies (PS)? condition for every ¢ € R.

Proof theorem 1.1.
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By using Fountain theorem ( see[20], [4]), Lemma 3.2, Lemma 3.4 and
Lemma 3.5, and as @ is even the proof of 1. Theorem 1.1 is finished.
Now, we apply the dual fountain theorem ( see[20], [4]) in order to prove 2.
and 3. of Theorem 1.1, first by using the Lemma 3.6, Lemma 3.7, Lemma
3.8 and Lemma 3.9, the conditions of dual fountain theorem are fulfilled.
As ® is even, this achieved the proof of 2. of Theorem 1.1.

Proof of 3. of theorem 1.1.

In order to prove 3. of theorem 1.1, we apply the dual fountain theorem,
and we use the condition (9,1)7 because the only problem here is to demon-
strate that every (PS)* sequence is bounded. In the fact, assume that
(un,) C X such that nj — 400, up; € Yy, ®(un;) — cand ((I)|ynj ),(un].) —
0. Suppose that |luy,|| > 1. For the case A(z) > 0and u(z) > 0 a.e. x €,
the proof is the same as above. Then we will treat only the case when
Az) > 0andp(z) <0 ae. x €.

For n; large enough, we have

1
14+ Ro + Hun]H > (I)(unj) - E<q> (unj)7unj>
a b(z) Pf
> / S° A, Bgytin,) + 2L [P = M) F (2, )
Q P!

=1

— ,u(x)G(a:,unj)} dx
1 a +
- 3 z( 78331' n])axz 5 +b( )| 7lj|PJr
B/Q{;a z, O, U u x)|u
— @) (@t Vi, — )92, i,

N
> / {ZAz(waal’zunJ) — %ai(a:, zeunj)axlunj} dx
Q

i=1
+ <P% - %) /Qb(x)IUnﬂPr dx
4 /Qm) (%g(fmunﬂ% - G(w’““j)) *
2@ (B, P, de
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1+

Vv

N

=1

1 1 oz
— o5+ om) [ A@llun ),
Then,

Ry + Hun]H > (I)(unj) -

> (L1
> {5773

Since § > P{ and P~ > &, {un,} is bounded in X. This achieve the

s(z)—a(x)

Hun'HP: a
(y__N — M| M| ste) [t [

proof.

1]
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