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Abstract

In this article, we study the existence and multiplicity of solutions
for a class of anisotropic elliptic equations

(P )

½
−
PN

i=1 ∂xiai(x, ∂xiu) + b(x)|u|P
+
+
−2u = λ(x)f(x, u) + µ(x)g(x, u) in Ω,

u = 0 on ∂Ω.

First we establisch that anisotropic space is separable and by using
the Fountain theorem, and dual Fountain theorem we prove, under
suitable conditions, that the problem (P ) admits two sequences of weak
solutions.
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1. Introduction

Let Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary. In this
paper we will study the multiplicity of weak solutions of the anisotropic
problem:

(P )

(
−PN

i=1 ∂xiai(x, ∂xiu) + b(x)|u|P
+
+−2u = λ(x)f(x, u) + µ(x)g(x, u) in Ω,

u = 0 on ∂Ω,

where λ 6≡ 0 and µ 6≡ 0, b ∈ L∞(Ω), f, g : Ω × R → R, and ai :
Ω×R→ R are Carathéodory functions fulfilling some natural hypotheses.
The anisotropic differential operator

PN
i=1 ∂xiai(x, ∂xiu) is a

−→p (.)-Laplace
type operator, where −→p (x) = (p1(x), p2(x), ..., pN(x)) and
P++ = max

i∈{1,2,...,N}
sup
x∈Ω

pi(x) for i = 1, ...,N , we assume that pi is a continuous

function on Ω for all i ∈ {1, 2, ..., N}. We denote by ai(x, η) the continuous
derivative with respect to η of the mapping Ai : Ω×R→ R , Ai = Ai(x, η),
that means ai(x, η) =

∂
∂ηAi(x, η). We make the following assumptions on

the mapping Ai:
(A0) Ai(x, 0) = 0 for a.e. x ∈ Ω.
(A1) There exists a positive constant ci such that ai satisfies the growth
condition

|ai(x, η)| ≤ ci(1 + |η|pi(x)−1),

for all x ∈ Ω and η ∈ R.
(A2) The inequalities

|η|pi(x) ≤ ai(x, η)η ≤ pi(x)Ai(x, η),

are verified for all x ∈ Ω and η ∈ R.
(A3) assume that ai is strictly monotone, that is,

(ai(x, η)− ai(x, ξ))(η − ξ) > 0,

for all x ∈ Ω and η, ξ ∈ R, with η 6= ξ.
(A4) Ai(x,−η) = Ai(x, η) for all x ∈ Ω, η ∈ R.
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Examples

1) If we take ai(x, η) = |η|pi(x)−2η for all i ∈ {1, ...,N}, we have Ai(x, η) =
1

pi(x)
|η|pi(x) for all i ∈ {1, ..., N}. Obviously, (A0) - (A4) are verified, and

we obtain the −→p (x) -Laplace operator

4−→p (x)(u) =
NX
i=1

∂xi(|∂xiu|pi(x)−2∂xiu).

2) If we take ai(x, η) = (1 + η2)
pi(x)−2

2 η for all i ∈ {1, ..., N}, we have
Ai(x, η) =

1
pi(x)

[(1 + |η|2)
pi(x)

2 − 1] for all i ∈ {1, ..., N}, then (A0) - (A4)
are verified, and we find the anisotropic variable exponent mean curvature
operator

NX
i=1

∂xi(1 + |∂xiu|2)
pi(x)−2

2 ∂xiu).

Anisotropic elliptic equations has been received a rising interest, in the
recent years. This is due to the some nonhomogeneous materials which
could not be treated on the classical Sobolev space. For example we can
point out to the electro-rheological fluids or to the thermo-rheological flu-
ids (see for example [17], [19], [23]), image restoration [22], and contact
mechanics [18]. We give in this work an extension of the article [1] where
the authors considered the following problem

(S)

(
−PN

i=1 ∂xiai(x, ∂xiu) + b(x)|u|P
+
+−2u = f(x, u) in Ω,

u = 0 on ∂Ω,

and they considered f(x, u) = λ|u|q(x)−2u+µ|u|γ(x)−2u, where λ and µ are
constant, and they established the existence of two unbounded sequences
of weak solutions, their proof is based on Fountain theorem [20].
This kind of equation are treated in several works by many authors , we
refer here to the articles ( [3], [6], [15], [16]). In [16], the authors considered

the problem (S), without b(x)|u|P
+
+−2u, where f(x, u) = λ|u|q(x)−2u, and

established the existence of a continuous spectrum in several distinct situ-
ations. But in [15], the authors took the same problem with λ depends on
the variable x, using the mountain-pass theorem of Ambrosetti and Rabi-
nowitz [3] and the Ekelandes variational principle, they proved that under
suitable conditions, problem (S) has two nontrivial weak solutions. In [6],
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M. M. Boureanu, P. Pucci, and V. Rǎdulescu proved that problem (S) has
a sequence of weak solutions by means of the symmetric mountain-pass
theorem .
Given Ω ⊂ RN , we set

C+(Ω) = {h ∈ C(Ω)|min
x∈Ω

h(x) > 1}.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Let p ∈ C+(Ω), then Lp(x)(Ω) is called variable exponent Lebesgue space
which is defined as follow

Lp(x)(Ω) = {u : u is a measurable real-valued function such thatZ
Ω
|u(x)|p(x) dx <∞},

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{µ > 0 :

Z
Ω

¯̄̄̄
u(x)

µ

¯̄̄̄p(x)
dx ≤ 1}

is a separable and reflexive Banach space (see [21]).

In order to study the problem (P ) we have to introduce the vectors
−→
P +,

−→
P − ∈ RN , p+(x) and p−(x) which are defined in the following way

−→
P + = (p

+
1 , p

+
2 , ..., p

+
N),
−→
P − = (p

−
1 , p

−
2 , ..., p

−
N),

p+(x) = max{p1(x), ..., p2(x)}, p−(x) = min{p1(x), ..., p2(x)},

and the positive real numbers P++ , P
+
− , P

−
− as the following

P++ = max{p+1 , ..., p+N}, P+− = max{p−1 , ..., p−N}, P−− = min{p−1 , ..., p−N}.

We say that p is logarithmic Hölder continuous if

|p(x)− p(y)| ≤ − M

log(|x− y|) ∀x, y ∈ Ω such that |x− y| ≤ 1/2.(1.1)
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The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u ∈ [Lp(x)(Ω)]N}.

For all u ∈ W 1,p(x)(Ω), we have kuk1,p(x) = |u|p(x) + |∇u|p(x). If p satisfies
(1.1), the space W

1,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W 1,p(x)(Ω) under

the norm kuk1,p(x). For u ∈ W
1,p(x)
0 (Ω), we can define an equivalent norm

kukp(x) = |∇u|p(x).
Now, we introduce a natural generalization of the function spaceW 1,p(x)(Ω),

which is called anisotropic variable exponent Sobolev spaceW 1,−→p (x)(Ω) and
we have

W 1,−→p (x)(Ω) = {u ∈ Lp+(x)(Ω) : ∂xiu ∈ Lpi(x)(Ω), ∀i ∈ {1, ..., N}}.

If −→p : Ω → RN ; −→p (x) = (p1(x), p2(x), ..., pN (x)), and for each i ∈
{1, 2, ..., N}, we have pi ∈ C+(Ω), and satisfy (1.1), the anisotropic variable

exponent Sobolev space W
1,−→p (x)
0 (Ω) is defined as the closure of C∞0 (Ω)

under the norm

kuk = kuk−→p (.) =
NX
i=1

|∂xiu|pi(.),

and ites a reflexive Banach space (see[9, 16]).
Throughout this paper, we assume that

NX
i=1

1

p−i
> 1.(1.2)

Define P ∗−, P−,∞ ∈ R+ by

P ∗− =
NPN

i=1
1
p−i
− 1

, P−,∞ = max{P+− , P ∗−}.

In this paper, we have P++ < P−,∞ = max{P+− , P ∗−} = P ∗−.

From now on, we put X =W
1,−→p (x)
0 (Ω).

Let us define F (x, t) =
R t
0 f(x, s) ds and G(x, t) =

R t
0 g(x, s) ds, and we

assume that the following hypotheses are fulfilled:

(f0) |f(x, t)| ≤ c|t|α(x)−1, for all (x, t) ∈ Ω × R where c > 0 is a con-
stant, α ∈ C+(Ω) such that α

+ = sup
x∈Ω

α(x) < P−− < P++ ≤ s(x) <
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P−,∞, ∀x ∈ Ω and λ ∈ L
s(x)

s(x)−α(x) (Ω), with s ∈ C+(Ω) and α(x)+1 ≤
s(x) < P−,∞, ∀x ∈ Ω.

(f1) F (x, t) ≥ h0(x)t
α0(x) when t → 0+, and α0 ∈ C+(Ω) with α+0 <

1, h0(x) ≥ 0 ∀x ∈ Ω, 6≡ 0, and also h0 ∈ C(Ω,R).

(f2) f(x,−t) = −f(x, t) ∀x ∈ Ω, t ∈ R.

(g0) |g(x, t)| < d|t|γ(x)−1, for all (x, t) ∈ Ω × R where d > 0 is a con-
stant, and γ ∈ C+(Ω) satisfying P++ < γ− < γ+ < P−,∞, and µ ∈
L

r(x)
r(x)−γ(x) (Ω), with r ∈ C+(Ω), and γ(x)+1 ≤ r(x) < P−,∞ ∀x ∈ Ω.

(g1) There exists a constant θ > P++ such that 0 < θG(x, t) ≤ tg(x, t),
for a.e. x ∈ Ω, t ∈ R.

(g
0
1) There exist constants β > γ(x) > θ > P++ such that 0 < θG(x, t) ≤

tg(x, t) ≤ βG(x, t), for a.e. x ∈ Ω, t ∈ R.

(g2) g(x,−t) = −g(x, t) for all x ∈ Ω, t ∈ R.

(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.

The main result of this paper is as follows.

Theorem 1.1. Assume (A0)− (A4) , (f0)− (f2) and (g0)− (g2) and (B),
then

1. If µ(x) > 0 a.e. x ∈ Ω and λ(x) ∈ R, problem (P ) has a sequence of
weak solutions (±uk) such that Φ(±uk)→ +∞ as k → +∞.

2. If λ(x) > 0, µ(x) > 0 a.e. x ∈ Ω, problem (P ) has a sequence of weak
solutions (±vk) such that Φ(±vk)→ 0 as k → +∞.

3. If λ(x) > 0 a.e. x ∈ Ω and µ(x) keeps a constant sign in R, and
g satisfies (g

0
1) instead of (g1), problem (P ) has a sequence of weak

solutions (±vk) such that Φ(±vk)→ 0 as k → +∞.
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Remark 1.1. 1. Among the difficulties we have raised in this pape is to
prove that anisotropic space is separable. To my knowledge, I believe
that the demonstration of this result is not found in the literature.

2. For f(x, u) = |u|α(x)−2u, g(x, u) = |u|γ(x)−2u, λ(x) = λ ∈ R and
µ(x) = µ for all x ∈ Ω with α(x) < P−− < P++ < P−,∞, ∀x ∈ Ω, and
P++ < γ− < γ+ < P−,∞, we obtain the result in the article [1].

This paper is divided into two sections. In the first section we will give
some known results, in the second we will give the proof of our main results.

2. Preliminaries

We recall some important definitions and properties of the Lebesgue and

Sobolev spaces with variable exponent Lp(x)(Ω) and W
1,−→p (x)
0 (Ω), where Ω

is a bounded domain in RN .

Proposition 2.1. (see [8, 13, 12])

1. The space (Lp(x)(Ω), |u|p(x)) is a separable, uniformly convex Banach
space and its dual space is Lq(x)(Ω), where 1

p(x) +
1

q(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have¯̄̄̄Z
Ω
uv dx

¯̄̄̄
≤
µ
1

p−
+
1

q−

¶
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

2. If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) →
Lp1(x)(Ω) and the embedding is continuous.

Remark: If 1
p(x) +

1
q(x) +

1
r(x) = 1, then for any u ∈ Lp(x)(Ω), v ∈

Lq(x)(Ω), w ∈ Lr(x)(Ω), we have

¯̄̄̄Z
Ω
uvw dx

¯̄̄̄
≤
µ
1

p−
+
1

q−
+
1

r−

¶
|u|p(x)|v|q(x)|w|r(x) ≤ 3|u|p(x)|v|q(x)|w|r(x).

(2.1)
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Lemma 2.1. (see[2]) Let q, s ∈ C+(Ω) with q(x) ≤ s(x) for all x ∈ Ω, and
u ∈ Ls(x)(Ω), then |u|q(x) ∈ L

s(x)
q(x) (Ω) and¯̄̄

|u|q(x)
¯̄̄
s(x)
q(x)

≤ |u|q
+

s(x) + |u|
q−

s(x),

or there exists a number q̃ ∈ [q−, q+] such that¯̄̄
|u|q(x)

¯̄̄
s(x)
q(x)

= |u|q̃s(x).

Proposition 2.2. (see[11]) Denote ρp(x)(u) =
R
Ω |u(x)|p(x) dx. Then for

u ∈ Lp(x)(Ω), (un) ⊂ Lp(x)(Ω) we have

1. |u|p(x) < 1(= 1;> 1)⇔ ρp(x)(u) < 1(= 1;> 1),

2. |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x),

3. |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x),

4. |u|p(x) → 0(→∞)⇔ ρp(x)(u)→ 0(→∞),

5. limn→∞ |un − u|p(x) = 0⇔ limn→∞ ρp(x)(un − u) = 0.

We recall now some results which concerning the embedding theorem.

Proposition 2.3. (see[16]) Suppose that Ω ⊂ RN(N > 3) is a bounded
domain with smooth boundary and relation ( 1.2) is fulfilled.

1. For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞ ∀x ∈ Ω,

the embedding

W
1,−→p (x)
0 (Ω) → Lq(x)(Ω)

is continuous and compact.

2. Assume that P−− > N , then the embedding

W
1,−→p (x)
0 (Ω) → C(Ω)

is continuous and compact.
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Under the conditions (Ai), i = 0, 1, 2, 3, we have the proposition below
which is useful.

Proposition 2.4. (cf.[14, 5]) Let

Ai(u) =

Z
Ω
Ai(x, ∂xiu) dx

For i ∈ {1, 2, ..., N}, we have:

• Ai is well defined on X,

• the functional Ai ∈ C1(X,R) and

hA0
i(u), ϕi =

Z
Ω
ai(x, ∂xiu)∂xiϕdx,

for all u, ϕ ∈ X.

• Ai is weakly lower semi-continuous.

• Let

A(u) =
Z
Ω

NX
i=1

Ai(x, ∂xiu) dx,

then A0
is an operator of type (S+) (cf.[5]).

The following lemma plays an important role to define the weak solu-
tion.

Lemma 2.2. Let B(u) =
R
Ω [λ(x)F (x, u) + µ(x)G(x, u)] dx. Suppose that

(f0) and (g0) are verified, then we have

1. B is well defined and B ∈ C1(X,R).

2. B, B
0
are weakly-strongly continuous.

Proof. 1.) As f and g satisfy (f0) and (g0), using lemma 2.1 and proposi-
tion 2.3, we have
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Z
Ω
|λ(x)F (x, u) + µ(x)G(x, u)| dx ≤

Z
Ω
|λ(x)||F (x, u)| dx+

Z
Ω
|µ(x)||G(x, u)| dx

≤ 2
c

α−
|λ| s(x)

s(x)−α(x)
|uα(x)| s(x)

α(x)

+2
d

γ−
|µ| r(x)

r(x)−γ(x)
|uγ(x)| s(x)

γ(x)

≤ 2c1
c

α−
|λ| s(x)

s(x)−α(x)
kukα̃ + 2d1

d

γ−
|µ| r(x)

r(x)−γ(x)
kukγ̃ .

The last expression is obtained by the compact embeddings X →
Ls(x)(Ω) and X → Lr(x)(Ω), which means that there exist constants c1 > 0
and d1 > 0 such that |u|s(x) ≤ c1kuk, and |u|r(x) ≤ d1kuk, so B is well
defined. Let us prove that B ∈ C1(X,R).We show first that B is Gâteaux
differentiable. Using the Mean-value theorem, we have

DB(u, ϕ) = lim
t→0

B(u+ tϕ)−B(u)

t

= lim
t→0

Z
Ω

λ(x)F (x, u+ tϕ)− λ(x)F (x, u) + µ(x)G(x, u+ tϕ)− µ(x)G(x, u)

t
dx

= lim
t→0

Z
Ω
[λ(x)f(x, u+ tθϕ) + µ(x)g(x, u+ tθϕ)]ϕ(x) dx,

where 0 ≤ θ ≤ 1. From (f0), (g0), Young’s inequality, and the convexity of
the function h(a) = |a|p with p ≥ 1, for |t| ≤ 1, we have
[λ(x)f(x, u+ tθϕ) + µ(x)g(x, u+ tθϕ)]ϕ(x)
≤ c|λ(x)||u+ tθϕ|α(x)−1|ϕ(x)|+ d|µ(x)||u+ tθϕ|γ(x)−1|ϕ(x)|,
≤ c(s(x)−α(x))

s(x) |λ(x)|
s(x)

s(x)−α(x) + c(α(x)−1)
s(x) [|u+ tθϕ|α(x)−1]

s(x)
α(x)−1

+ c|ϕ(x)|s(x) + d(r(x)−γ(x))
r(x) |µ(x)|

r(x)
r(x)−γ(x)

+ d(γ(x)−1)
r(x) [|u+ tθϕ|γ(x)−1]

r(x)
γ(x)−1 + d|ϕ(x)|r(x),

≤ c(s(x)−α(x))
s(x) |λ(x)|

s(x)
s(x)−α(x) + c(α(x)−1)

s(x) 2s(x)−1[|u|s(x) + |ϕ|s(x)]

+ c|ϕ(x)|s(x) + d(r(x)−γ(x))
r(x) |µ(x)|

r(x)
r(x)−γ(x)

+ d(γ(x)−1)
r(x) 2r(x)−1[|u|r(x) + |ϕ|r(x)] + d|ϕ(x)|r(x).
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The last right expression is independent on t and it is in L1(Ω), then
by the Lebesgue dominated convergence theorem, we have

DB(u, ϕ) =

Z
Ω
[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx.(2.2)

So using the fact thatNf : L
s(x)(Ω)→ L

s(x)
α(x)−1 (Ω); u 7→ f(x, u) andNg :

Lr(x)(Ω) → L
r(x)

γ(x)−1 (Ω); u 7→ g(x, u) are continuous bounded operators.
Then, by (f0), (g0), and Proposition 2.1, we obtain

DB(u,ϕ) =

Z
Ω
[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx

≤
Z
Ω
c|λ(x)||f(x, u)||ϕ(x)| dx+

Z
Ω
d|µ(x)||g(x, u)||ϕ(x)| dx

≤ 3c|λ| s(x)
s(x)−α(x)

|f(x, u)| s(x)
α(x)−1

|ϕ(x)|s(x)
+ 3d|µ| r(x)

r(x)−γ(x)
|g(x, u)| r(x)

γ(x)−1
|ϕ(x)|r(x).

So DB(u,ϕ), as a function of ϕ, is a continuous linear functional on X,
then it is the Gâteaux differential of B. Let’s prove that it’s continuous,
then for u, v, ϕ ∈ X, from (2.2), we get

|hDB(u)−DB(v), ϕi| ≤ 3|λ| s(x)
s(x)−α(x)

|f(x, u)− f(x, v)| s(x)
α(x)−1

|ϕ|s(x)
+ 3|µ| r(x)

r(x)−γ(x)
|g(x, u)− g(x, v)| r(x)

γ(x)−1
|ϕ|r(x)

≤ K1|f(x, u)− f(x, v)| s(x)
α(x)−1

kϕk+K2|g(x, u)

− g(x, v)| r(x)
γ(x)−1

kϕk,

where K1 > 0 and K2 > 0 are constants. Then,

kDB(u)−DB(v)kX∗ ≤ K1|f(x, u)−f(x, v)| s(x)
α(x)−1

+K2|g(x, u)−g(x, v)| r(x)
γ(x)−1

.

Thus,DB(u) is continuous, soB is Frèchet differentiable andB ∈ C1(X,R)
with

hB0
(u), ϕi =

Z
Ω
[λ(x)f(x, u) + µ(x)g(x, u)]ϕ(x) dx.
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2.) Suppose by contradiction that there exists a sequence (un) ⊂ X such
that un u and B(un)B(u), then there exists ε0 and subsequence still
denoted (un) such that:

0 < ε0 ≤ |B(un)−B(u)|.

For 0 < θn < 1, and by finite increment theorem we have

0 < ε0 ≤ |hB
0
(un + θn(un − u)), un − ui|.

Put wn = un+θn(un−u). AsB
0
(u)(w) =

R
Ω[λ(x)f(x, u)w+µ(x)g(x, u)w] dx,

using (2.1), proposition 2.3, (f0) and (g0) we obtain

|hB0
(wn), (un − u)i| =

Z
Ω
|λ(x)f(x,wn)(un − u) + µ(x)g(x,wn)(un − u)| dx

≤
Z
Ω
{|λ(x)||un − u||f(x,wn)|+ |µ(x)||un − u||g(x,wn)|} dx

≤
Z
Ω
c|λ(x)||wn|α(x)−1|un − u| dx||

+

Z
Ω
d|µ(x)||wn|γ(x)−1|un − u| dx

≤ 3c|λ(x)| s(x)
s(x)−α(x)

||wn|α(x)−1| s(x)
α(x)−1

|un − u|s(x)

+ 3d|µ(x)| r(x)
r(x)−γ(x)

||wn|γ(x)−1| r(x)
γ(x)−1

|un − u|r(x).

Since lim
n→+∞

|wn|s(x) 6= ∞ and lim
n→+∞

|wn|r(x) 6= ∞, then by the propo-
sition 2.2, we deduce that

lim
n→+∞

||wn|α(x)−1| s(x)
α(x)−1

6=∞ and lim
n→+∞

||wn|γ(x)−1| r(x)
γ(x)−1

6=∞.

So, as the embeddings X → Ls(x)(Ω) and X → Lr(x(Ω) are compact,
then the last expression on the right goes to 0 as n → +∞. Finally, B is
weakly-strongly continuous.
Let’s prove that B

0
is also weakly-strongly continuous. We know that

hB0
(u), vi =

Z
Ω
λ(x)f(x, u)v dx+

Z
Ω
µ(x)g(x, u)v dx,

where v ∈ X. For un u, then (un) is bounded, using relation (2.1), we
have
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|hB0
(un)−B

0
(u), vi| ≤

Z
Ω
|λ(x)||(f(x, un)− f(x, u))v| dx,

+

Z
Ω
|µ(x)||(g(x, un)− g(x, u))v| dx,

≤ 3|λ| s(x)
s(x)−α(x)

|f(x, un)− f(x, u)| s(x)
α(x)−1

|v|s(x)
+ 3|µ| r(x)

r(x)−γ(x)
|g(x, un)− g(x, u)| r(x)

γ(x)−1
|v|r(x).

The compact embedding X → Ls(x)(Ω) (respectively X → Lr(x)(Ω))
guarantees the existence of subsequence (un) which converges to u in L

s(x)(Ω)
(respectively Lr(x)(Ω)). So, using the continuity of Nf and Ng, we deduce
easily that B

0
is weakly-strongly continuous.

Let us define now the functional Φ associated with the problem (P ): Φ :
X −→ R

Φ(u) =

Z
Ω

"
NX
i=1

Ai(x, ∂xiu) +
b(x)

P++
|u|P

+
+ − λ(x)F (x, u)− µ(x)G(x, u)

#
dx.

Under assumptions (A0), (A1), (f0), (B) and (g0), we have Φ is well defined
onX and Φ ∈ C1(X,R), moreover the conditions (A4), (f2) and (g2) imply
that Φ is even. So we can define a weak solution as below.

Definition 2.1. A function u is a weak solution of the problem (P ) if and
only if

Z
Ω

"
NX
i=1

ai(x, ∂xiu)∂xiϕ+ b(x)|u|P
+
+−2uϕ− λ(x)f(x, u)ϕ− µ(x)g(x, u)ϕ

#
dx = 0,

for all ϕ ∈ X.

3. Existence of sequences of weak solutions

We start with proving some results and lemmas before to deduce the proof
of our main results.

Proposition 3.1. X is a separable Banach space.
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Proof Let us define Y = Lp+(x)(Ω)×Lp1(x)(Ω)×Lp2(x)(Ω)×...×LpN (x)(Ω),
endowed with the product norm is a separable Banach space, and consider

the operator T : W 1,−→p (x)(Ω) → Y, defined by T (u) = (u,∇u). We have
kT (u)kY = |u|p+(x) +

PN
i=1 |∂xiu|pi(x) = kuk

W 1,−→p (x)(Ω)
. Thus T is an iso-

metric isomorphism of W 1,−→p (x)(Ω) onto a subspace W = T (W 1,−→p (x)(Ω))

of Y . As W 1,−→p (x)(Ω) is complete, then W is a closed subspace of Y . As
Y is a separable banach space, we will show that W is a separable space.
Let us consider a sequence (yn)n>0 which is dense in Y . For all n ∈ N∗,
let us fix a point wn ∈ W which verifies kyn − wnk < inf

w∈W
kyn − wk + 1

n .

For w ∈W , for all ε > 0 and there exists n > 3
ε such that kyn−wk < ε

3 , so
by the definition of the sequence (wn), we have kyn − wnk < ε

3 +
1
n < 2

3ε,
therefore

kwn − wk < kyn − wk+ kyn − wnk < ε.

Thus, (wn) is a countable dense sequence inW . Consequently,W is a sepa-

rable Banach space. ThusW andW 1,−→p (x)(Ω) = T−1(W ) are separable. By
the definition of X, and the equivalence of the norms k.k and k.k

W 1,−→p (x)(Ω)
,

we can prove easily that X is a closed subspace of W 1,−→p (x)(Ω) and then X
is a separable Banach space.

Lemma 3.1. (see[6]) Let u ∈ X.

1. When kuk < 1, we have PN
i=1

R
Ω |∂xi(u)|pi(x) dx ≥

kukP
+
+

N
P+
+
−1
.

2. When kuk > 1, we have PN
i=1

R
Ω |∂xi(u)|pi(x) dx ≥

kukP
−
−

N
P−−−1

−N.

Lemma 3.2. The functional Φ satisfies the Palais-Smale condition.

Proof. Let {un} be a (PS) sequence, namely, |Φ(un)| ≤ R, where R > 0,
and Φ

0
(un) → 0, as n → ∞, then when kunk ≥ 1, and λ(x) ∈ R, for all

x ∈ Ω, using (f0), (g1), (B) and θ > P++ , we have

1 +R+ kunk ≥ Φ(un)−
1

θ
hΦ0(un), uni

≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiun) +
b(x)

P++
|un|P

+
+ − λ(x)F (x, un)
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− µ(x)G(x, un)} dx

− 1

θ

Z
Ω

(
NX
i=1

ai(x, ∂xiun)∂xiun + b(x)|un|P
+
+ − λ(x)f(x, un)un

− µ(x)g(x, un)un} dx

≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiun)−
1

θ
ai(x, ∂xiun)∂xiun

)
dx

+

Ã
1

P++
− 1

θ

!Z
Ω
b(x)|un|P

+
+ dx+

Z
Ω
µ(x)

µ
1

θ
g(x, un)un −G(x, un)

¶
dx

+

Z
Ω
λ(x)

µ
1

θ
f(x, un)un − F (x, un)

¶
dx

≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiun)−
1

θ
ai(x, ∂xiun)∂xiun

)
dx

− c

µ
1

θ
+
1

α−

¶Z
Ω
|λ(x)||un|α(x) dx.

From (A2), for all x ∈ Ω and i ∈ {1, ..., N} we have

− 1
θ
ai(x, ∂xiun)∂xiun ≥ −

P++
θ
Ai(x, ∂xiun).(3.1)

On the other hand, we have by the Lemma 2.1 and Proposition 2.1

Z
Ω
λ(x)|un|α(x) ≤ 2|λ| s(x)

s(x)−α(x)

¯̄̄
|un|α(x)

¯̄̄
s(x)
α(x)

≤ 2|λ| s(x)
s(x)−α(x)

|un|α̃s(x),

where α̃ ∈ [α−, α+].
Since the embeddingX → Ls(x)(Ω) is compact, then there exists a constant
c1 > 0 such that

|un|s(x) ≤ c1kunk.
Then, Z

Ω
λ(x)|un|α(x) ≤ C|λ| s(x)

s(x)−α(x)
kunkα̃,(3.2)

where C > 0. From (3.1) and (3.2), we get

1 +R+ kunk ≥
Ã
1− p++

θ

!
NX
i=1

Z
Ω
Ai(x, ∂xiun) dx− C1|λ| s(x)

s(x)−α(x)
kunkα̃,
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where C1 > 0. Again from (A2) we have

Ai(x, ∂xiun) ≥
1

pi(x)
|∂xiun|pi(x) ≥

1

P++
|∂xiun|pi(x),

for all x ∈ Ω and i ∈ {1, ..., N}, so

1 +R+ kunk ≥
Ã
1

P++
− 1

θ

!
NX
i=1

Z
Ω
|∂xiun|pi(x) dx− C1|λ| s(x)

s(x)−α(x)
kunkα̃.

Using 2. of Lemma 3.1, we get

1 +R+ kunk ≥
Ã
1

P++
− 1

θ

!⎛⎝kunkP−−
NP−−−1

−N

⎞⎠− C1|λ| s(x)
s(x)−α(x)

kunkα̃,

and consequently {un} is bounded because θ > P++ and P−− > α̃. As X
is reflexive, then there exists a subsequence still denoted by {un} which
converges weakly to u0 in X.

Using the fact that Φ
0
(un)→ 0, as n→ +∞, we can deduce that:

lim
n→∞

hΦ0(un), un − u0i = 0,

more precisely,

lim
n→∞

Z
Ω
[
NX
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0)

+b(x)|un|P
+
+−2un(un−u0)−λ(x)f(x, un)(un−u0)−µ(x)g(x, un)(un−u0)] dx = 0.

Using Hölder inequality we haveZ
Ω
λ(x)f(x, un)(un − u0) ≤ 3c|λ| s(x)

s(x)−α(x)

¯̄̄
|u|α(x)−1

¯̄̄
s(x)

α(x)−1
|un − u0|s(x).

Z
Ω
µ(x)g(x, un)(un − u0) ≤ 3d|µ| r(x)

r(x)−γ(x)

¯̄̄
|u|γ(x)−1

¯̄̄
r(x)

γ(x)−1
|un − u0|r(x).

Z
Ω
b(x)|un|P

+
+−2un(un − u0) ≤ 2|b|∞

¯̄̄
|un|P

+
+−1

¯̄̄
P+
+

P+
+
−1

|un − u0|P++ .
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As s(x), r(x) and P++ fulfill Proposition 2.3, thus (un) converges strongly

to u0 in L
s(x)(Ω) , Lr(x)(Ω) and LP++ (Ω). By these facts the relation above

reduces to

lim
n→∞

Z
Ω

NX
i=1

ai(x, ∂xiun)(∂xiun − ∂xiu0) dx = 0.

Using Proposition 2.4, we deduce that (un) converges strongly to u0 in X,
that is to say that Φ satisfies Palais-Smale condition.

Since X is a reflexive and separable Banach space, then X∗ is too. Then
there exist (see[11]) {ej} ⊂ X and {e∗j} ⊂ X∗ such that

X = span{ej : j = 1, 2.....}, X∗ = span{e∗j : j = 1, 2.....},

and
hei, e∗j i = δij .

Now, we define

Xj = span{ej}, Yk =
kM

j=1

Xj , Zk =
∞M
j=k

Xj .

Lemma 3.3. (see[10]) Suppose that r(x), s(x) ∈ C+(Ω) and r(x), s(x) <
P−,∞, for all x ∈ Ω. Denote

βk = sup{|u|r(x) : kuk = 1, u ∈ Zk}, θk = sup{|u|s(x) : kuk = 1, u ∈ Zk}.

Then,
lim
k→∞

βk = 0, lim
k→∞

θk = 0.

Lemma 3.4. For every k ∈ N, there exists rk > 0 such that

inf
u∈Zk,kuk=rk

Φ(u)→∞, as k → +∞.

Proof. By (A2), (B), (f0), (g0), Proposition 2.1, Lemma 2.1 and 2. Lemma
3.1, for any u ∈ Zk, kuk = rk > 1, when µ(x) > 0, a.e.x ∈ Ω, and λ(x) ∈ R,
we have
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Φ(u) =

Z
Ω

(
NX
i=1

Ai(x, ∂xi(u)) +
b(x)

P++
|u|P

+
+ − λ(x)F (x, u)− µ(x)G(x, u)

)
dx

≥ 1

P++

NX
i=1

Z
Ω
|∂xi(u)|pi(x) dx+

b0

P++

Z
Ω
|u|P

+
+ dx− c

Z
Ω

|λ(x)|
α(x)

|u|α(x) dx

− d

Z
Ω

µ(x)

γ(x)
|u|γ(x) dx,

≥ kukP
−
−

P++N
P−−−1

− C
0
1|λ| s(x)

s(x)−α(x)
kukα̃ − 2d

γ−
|µ| r(x)

r(x)−γ(x)
|u|γ̃r(x) −

N

P++
,

where C
0
1 =

2cc1
α− . Since P−− > α+ > α̃, there exists r0 large enough such

that

C
0
1|λ| s(x)

s(x)−α(x)
kukα̃ ≤ kukP

−
−

2P++N
P−−−1

as r = kuk ≥ r0.

If |u|r(x) ≤ 1 then |u|r
+

r(x) ≤ |u|
γ̃
r(x) ≤ 1. But, if |u|r(x) > 1 using Lemma 3.3,

we obtain |u|γ̃r(x) ≤ |u|r
+

r(x) ≤ (βkkuk)r
+
.

so
Φ(u) ≥

n
kukP

−
− 2P++N

P−−−1 − 2d
γ− |µ| r(x)

r(x)−γ(x)
− N

P++
if |u|r(x) ≤ 1,

kukP
−
−

2P++N
P−−−1

− 2d
γ− |µ| r(x)

r(x)−γ(x)
(βkkuk)r

+ − N
P++
if |u|r(x) > 1,

then

Φ(u) ≥ kukP
−
−

2P++N
P−−−1

− 2d

γ−
|µ| r(x)

r(x)−γ(x)
(βkkuk)r

+ −C12.

Let’s take rk =

µ
4d
γ− |µ| r(x)

r(x)−γ(x)
NP−−−1r+βr

+

k

¶ 1

P−−−r
+

. Then,

Φ(u) ≥ 1

2NP−−−1

Ã
1

P++
− 1

r+

!
r
P−−
k − C12,

consequently, lim
k→+∞

Φ(u) = +∞, because P++ < r+ and βk → 0 when

k → +∞.
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Lemma 3.5. For every k ∈ N, there exists ρk > rk (rk given as above)
such that

max
u∈Yk,kuk=ρk

Φ(u) ≤ 0.

Proof. From (A0) and (A1), (f0), (g1) and for any u ∈ Yk − {0} with
kuk = 1 and 1 < ρk, µ(x) > 0 a.e. x ∈ Ω, and λ(x) ∈ R, we have

Φ(ρku) =

Z
Ω

(
NX
i=1

Ai(x, ∂xi(ρku)) +
b(x)

P++
|ρku|P

+
+ − λ(x)F (x, ρku)− µ(x)G(x, ρku)

)
dx,

≤ C
NX
i=1

Z
Ω

Ã
|∂xi(ρku)|+

|∂xi(ρku)|pi(x)
pi(x)

!
dx+

ρ
P++
k

P++

Z
Ω
b(x)|u|P

+
+ dx

−
Z
Ω
λ(x)F (x, ρku) dx−

Z
Ω
µ(x)G(x, ρku) dx,

≤ Cρ
P++
k

NX
i=1

Z
Ω

Ã
|∂xiu|+

|∂xiu|pi(x)
P−−

!
dx+

ρ
P++
k

P++

Z
Ω
b(x)|u|P

+
+ dx

+
c

α−
ρα

+

k

Z
Ω
|λ(x)||u|α(x) dx,−Mρθk

Z
Ω
µ(x)|u|θ dx.

We have Yk is a finite dimensional space then all norms are equivalent.
Since θ > P++ > α+ and ρk → +∞ as k → +∞. Hence, for ρk large enough
(ρk > rk), max

u∈Yk,kuk=ρk
Φ(u) ≤ 0.

Lemma 3.6. There is k0 such that for each k > k0, there exists ρk > 0
such that inf

u∈Zk,kuk=ρk
Φ(u) ≥ 0.

Proof. From (A2), (B), (f0), (g0) and Proposition 2.1, Lemma 2.1, and 1.
of Lemma 3.1, for any u ∈ Zk, with λ(x) > 0 a.e. x ∈ Ω, and µ(x) ∈ R,
one has

Φ(u) =

Z
Ω

(
NX
i=1

Ai(x, ∂xi(u)) +
b(x)

P++
|u|P

+
+ − λ(x)F (x, u)− µ(x)G(x, u)

)
dx

≥ 1

P++

NX
i=1

Z
Ω
|∂xi(u)|pi(x) dx+

b0

P++

Z
Ω
|u|P

+
+ dx− c

Z
Ω

λ(x)

α(x)
|u|α(x) dx
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− d

Z
Ω

|µ(x)|
γ(x)

|u|γ(x) dx,

≥ kukP
+
+

P++N
P++−1

− 2c

α−
|λ| s(x)

s(x)−α(x)
|u|α̃s(x) − C

0
2|µ| r(x)

r(x)−γ(x)
kukγ̃ ,

where C
0
2 =

2dd1
γ− . As P++ < γ− ≤ γ̃, then there exists ρ0 small enough such

that C
0
2|µ| r(x)

r(x)−γ(x)
kukγ̃ ≤ kukP

+
+

2P++N
P+
+
−1
as 0 < ρ = kuk < ρ0. So using lemma

3.3, we have

Φ(u) ≥n
kukP

+
+ 2P++N

P++−1 − 2c
α− |λ| s(x)

s(x)−α(x)
if |u|s(x) ≤ 1,

kukP
+
+

2P++N
P+
+
−1
− 2c

α− |λ| s(x)
s(x)−α(x)

(θkkuk)α
+
if |u|s(x) > 1.

(3.3)

Let’s take ρk = ( 4cα−P
+
+N

P++−1|λ| s(x)
s(x)−α(x)

θα
+

k )

1

P+
+
−α+ . As P++ > P−− >

α+, then θk → 0 means ρk → 0 as k goes to +∞. It follows from the
inequality above that

Φ(u) ≥ ρ
P++
k

2P++N
P++−1

− ρ
P++
k

2P++N
P++−1

= 0.

Finally, we deduce that for u ∈ Zk with kuk = ρk, Φ(u) ≥ 0.

Lemma 3.7. for each k > k0, there exists rk < ρk (ρk given by Lemma
3.6) such that max

u∈Yk,kuk=rk
Φ(u) < 0, as k → +∞.

Proof. From (A0), (A1), (f0), (f1), (g0), and Proposition 2.1, for any v ∈
Yk with kvk = 1 and 0 < t < ρk < 1, with λ(x) > 0 a.e. x ∈ Ω, and
µ(x) ∈ R, we have

Φ(tv) =

Z
Ω

(
NX
i=1

Ai(x, ∂xi(tv)) +
b(x)

P++
|tv|P

+
+ − λ(x)F (x, tv)− µ(x)G(x, tv)

)
dx
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≤ C
NX
i=1

Z
Ω

Ã
|∂xi(tv|+

|∂xi(tv)|pi(x)
pi(x)

!
dx+

tP
+
+

P++

Z
Ω
b(x)|v|P

+
+ dx

−
Z
Ω
λ(x)F (x, tv) dx−

Z
Ω
µ(x)G(x, tv) dx,

≤ Ct
NX
i=1

Z
Ω

Ã
|∂xiv|+

|∂xiv|pi(x)
P−−

!
dx+

tP
+
+

P++

Z
Ω
b(x)|v|P

+
+ dx

− tα
+
0

Z
Ω
λ(x)h0(x)|v|α0(x) dx+

d

γ−
tγ
−
Z
Ω
|µ(x)||v|γ(x) dx.

Since γ− > 1 > α+0 and dimYk = k, then there exists 0 < rk < ρk such
that Φ(u) < 0 if kuk = rk. Hence bk = max

u∈Yk,kuk=rk
Φ(u) < 0.

Lemma 3.8. For each k > k0, and ρk > 0 given by Lemma 3.6, one has

inf
u∈Zk,kuk≤ρk

Φ(u)→ 0, as k → +∞.

Proof. From a definition of Yk and Zk, we have Yk ∩ Zk 6= and rk < ρk,
then

dk = inf
u∈Zk,kuk≤ρk

Φ(u) ≤ bk = max
u∈Yk,kuk=rk

Φ(u) < 0.

From ( 3.3), for u ∈ Zk, kuk ≤ ρk small enough we have

Φ(u) ≥ kukP
+
+

2P++N
P++−1

− 2c

α−
|λ| s(x)

s(x)−α(x)
(θkkuk)α

+
,

≥ − 2c
α−
|λ| s(x)

s(x)−α(x)
θα

+

k kukα+ .

We deduce that dk → 0, because θk → 0 and ρk → 0 as k → +∞.

Definition 3.1. The functional Φ satisfies the (PS)∗c condition (with re-
spect to (Yn)), if any sequence (unj ) ⊂ X such that nj → +∞, unj ∈
Ynj , Φ(unj )→ c and (Φ|Ynj )

0
(unj )→ 0, has a subsequence converging to a

critical point of Φ.

Lemma 3.9. The functional Φ satisfies the (PC)∗c for every c ∈ [dk0 , 0[.
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Proof. Assume that (unj ) ⊂ X such that nj → +∞, unj ∈ Ynj , Φ(unj )→
c and (Φ|Ynj )

0
(unj ) → 0. Suppose that kunjk > 1. If µ(x) > 0 a.e. x ∈ Ω,

for nj large enough, we have

1 +R1 + kunjk ≥ Φ(unj )−
1

θ
hΦ0(unj ), unj i,

≥
Ã
1

P++
− 1

θ

!⎛⎝kunjkP−−
NP−−−1

−N

⎞⎠−M1|λ| s(x)
s(x)−α(x)

kunjkα̃.

Since θ > P++ and P−− > α̃, {unj} is bounded in X.

For a subsequence {unj} we have unj u ∈ X. As X =
S
nj Ynj , we

can take vnj ∈ Ynj such that vnj → u. Then

lim
nj→+∞

hΦ0(unj ), unj − ui = lim
nj→+∞

hΦ0(unj ), unj − vnj i

+ lim
nj→+∞

hΦ0(unj ), vnj − ui,

= lim
nj→+∞

h(Φ|Ynj )
0
(unj ), unj − vnj i,

= 0.

We follow the similar procedure in the proof of (PS) condition in the
Lemma 3.2. We conclude that unj → u, therefore we have Φ

0
(unj )→ Φ

0
(u).

Let’s show that Φ
0
(u) = 0. Let us take ϕk ∈ Yk, notice that if nj ≥ k we

have

hΦ0(u), ϕki = hΦ0(u)− Φ0(unj ), ϕki+ hΦ
0
(unj ), ϕki,

= hΦ0(u)− Φ0(unj ), ϕki+ h(Φ|Ynj )
0
(unj ), ϕki.

Then, when nj → +∞, we obtain

hΦ0(u), ϕki = 0 ∀ ϕk ∈ Yk,

so Φ
0
(u) = 0. Finally, Φ satisfies (PS)∗c condition for every c ∈ R.

Proof theorem 1.1.



Infinitely many solutions for anisotropic elliptic equations ... 1093

By using Fountain theorem ( see[20], [4]), Lemma 3.2, Lemma 3.4 and
Lemma 3.5, and as Φ is even the proof of 1. Theorem 1.1 is finished.
Now, we apply the dual fountain theorem ( see[20], [4]) in order to prove 2.
and 3. of Theorem 1.1, first by using the Lemma 3.6, Lemma 3.7, Lemma
3.8 and Lemma 3.9, the conditions of dual fountain theorem are fulfilled.
As Φ is even, this achieved the proof of 2. of Theorem 1.1.

Proof of 3. of theorem 1.1.
In order to prove 3. of theorem 1.1, we apply the dual fountain theorem,
and we use the condition (g

0
1), because the only problem here is to demon-

strate that every (PS)∗ sequence is bounded. In the fact, assume that
(unj ) ⊂ X such that nj → +∞, unj ∈ Ynj , Φ(unj )→ c and (Φ|Ynj )

0
(unj )→

0. Suppose that kunjk > 1. For the case λ(x) > 0 andµ(x) > 0 a.e. x ∈ Ω,
the proof is the same as above. Then we will treat only the case when
λ(x) > 0 andµ(x) < 0 a.e. x ∈ Ω.
For nj large enough, we have

1 +R2 + kunjk ≥ Φ(unj )−
1

β
hΦ0(unj ), unj i

≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiunj ) +
b(x)

P++
|unj |P

+
+ − λ(x)F (x, unj )

− µ(x)G(x, unj )
o
dx

− 1

β

Z
Ω

(
NX
i=1

ai(x, ∂xiunj )∂xiunj + b(x)|unj |P
+
+

− λ(x)f(x, unj )unj − µ(x)g(x, unj )unj

o
dx

≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiunj )−
1

β
ai(x, ∂xiunj )∂xiunj

)
dx

+

Ã
1

P++
− 1

β

!Z
Ω
b(x)|unj |P

+
+ dx

+

Z
Ω
µ(x)

µ
1

β
g(x, unj )unj −G(x, unj )

¶
dx

+

Z
Ω
λ(x)

µ
1

β
f(x, unj )unj − F (x, unj )

¶
dx
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≥
Z
Ω

(
NX
i=1

Ai(x, ∂xiunj )−
1

β
ai(x, ∂xiunj )∂xiunj

)
dx

− c

µ
1

β
+
1

α−

¶Z
Ω
|λ(x)||unj |α(x).

Then,

1 +R2 + kunjk ≥ Φ(unj )−
1

β
hΦ0(unj ), unj i,

≥
Ã
1

P++
− 1

β

!⎛⎝kunjkP−−
NP−−−1

−N

⎞⎠−M2|λ| s(x)
s(x)−α(x)

kunjkα̃.

Since β > P++ and P−− > α̃, {unj} is bounded in X. This achieve the
proof.
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