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1. Introduction

Investigations of topological aspects of the collections of continuous map-
pings from a topological space Y to another topological space Z has been
an area of active research in topology. Intrinsic properties of function space
topologies have also been investigated in depth by several researchers. The
relationship between convergence and topologies of C(X,R) and that of the
hyperspaces C(X, $) of open subsets of X has been studied in [4], where $
represents Sierpiński topology on the two-point set. Dual topologies for
function space topologies and existence of a greatest splitting topology
have been investigated in [5] and [6] respectively. Conditions under which
compact-open, Isbell or natural topologies etc. on C(X,R) may coincide
have been explored in [9]. In the recent years, several research papers have
come up dealing with certain particular as well as some more general cases
of this study. For example, for the particular case Z = R, bounded-open
topology and pseudo-compact-open topologies are discussed in [13] and
[14]. In [2] and [3], function space topologies arising from strong uniform
continuity have been studied. On the other hand in [10] and [11], topolo-
gies on Y and Z are replaced by fuzzy topologies, which provide a more
general set up for topological properties. Similarly, function space topolo-
gies for generalized topological spaces have been discussed in [7]. In this
present paper, we investigate the same for equi-continuous mappings from
Y to Z, where Y has a topology while Z is equipped with a uniformity.
With the help of examples, we have shown that several such topologies do
exist really on EC(Y,Z), the collection of equi-continuous mappings from
Y to Z. As the uniform spaces are positioned between the metric spaces
and the topological spaces, there is a tendency to discount their investiga-
tions as particular cases of topology. However, through our study, we have
shown here that uniform structures and in particular, the equi-continuous
mappings need not to be studied from that point of view. Rather the
inherent aesthetics and intricacies, arising out of uniformities are best re-
vealed, when the related notions are studied directly, not as by product
of topology. In fact, we have also introduced function space topology for
the family of pEC(Y,Z) of pseudo-dislocated equi-continuous mappings.
In this case, Z has pseudo-dislocated uniformity, which unlike uniformity,
does not generate any topology.

We have introduced admissibility and splittingness for EC(Y,Z)− two
important features for any function space topology. Using net-theory, we
have developed the concept of equi-continuous convergence of nets of equi-
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continuous functions. Splittingness and admissibility are characterized us-
ing the notion of equi-continuous convergence. These characterizations
are used to prove that open-entourage topology on EC(Y,Z) is admissi-
ble whereas point-transitive-entourage topology is splitting. In the last
section, we have introduced the concept of dual topology on OZ(Y ), the
collection of open sets of Y obtained in relation to the equi-continuous
mappings. Interesting relationships are observed between the topologies
on OZ(Y ) and that of EC(Y,Z). For example, a topology on EC(Y,Z)
is admissible (resp. splitting) if and only if its dual on OZ(Y ) is admissi-
ble (resp. splitting). Similarly, a topology on OZ(Y ) is admissible (resp.
splitting) if and only if its dual on EC(Y,Z) is so.

2. Equi-Continuity, Pseudo-dislocated equi-continuity and Con-
vergence

In this section, we develop the net convergence criterion for equi-continuous
as well as pseudo-dislocated-equi-continuity mappings.

Definition 2.1. A uniform structure or uniformity on a non-empty set X
is a family U of subsets of X ×X satisfying following properties:

1. if U ∈ U , then ∆X ∈ U ;
here ∆X = {(x, x) ∈ X ×X for all x ∈ X};

2. if U ∈ U , then U−1 ∈ U ;
here, U−1 is called inverse relation of U and defined as

U−1 = {(x, y) ∈ X ×X | (y, x) ∈ U}

3. if U ∈ U , then there exists some V ∈ U such that V ◦ V ⊆ U ;
here the composition U ◦ V = {(x, z) ∈ X × X | for some y ∈ X,
(x, y) ∈ V and (y, z) ∈ U}.

4. if U, V ∈ U , then U ∩ V ∈ U ;

5. if U ∈ U and U ⊆ V ⊆ X ×X, then V ∈ U .

The pair (X,U) is a uniform space and the members of U are called en-
tourages.
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Definition 2.2. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. A function f : (Y, τ) → (Z,U) is said to be equi-
continuous at y ∈ Y , if for each entourage U ∈ U , there exists an open
neighbourhood V of y such that f(V ) ⊆ U [f(y)], where U [f(y)] = {z ∈
Z | ((f(y), z)) ∈ U}.

If f is equi-continuous for all y ∈ Y , then f is called equi-continuous.
The collection of all equi-continuous functions from Y to Z is denoted by
EC(Y,Z) respectively.

Definition 2.3. Let {yn}n∈D be a net in a uniform space (Y,U) . Then
{yn}n∈D is said to be convergent to y ∈ Y , if for each entourage U ∈ U ,
there exists an m ∈ D, such that (y, yn) ∈ U for all n ≥ m.

In our next theorem, we provide the net convergence criteria for equi-
continuous functions.

Theorem 2.4. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Then a function f : (Y, τ) → (Z,U) is equi-continuous
at y ∈ Y if and only if whenever a net {yn}n∈D converges to y in Y , its
image net {f(yn)}n∈D converges to f(y) in Z.

Proof. Let {yn}n∈D be any convergent net in Y , which converges to
y ∈ Y and let f : Y → Z be equi-continuous at y ∈ Y . We have to
show that the net {f(yn)}n∈D converges to f(y) in Z. Let U ∈ U be
any entourage. Since f is equi-continuous at y ∈ Y , therefore there exists
an open neighbourhood V of y such that f(V ) ⊆ U [f(y)]. Since the net
{yn}n∈D converges to y, yn ∈ V eventually. Hence f(yn) ∈ f(V ) ⊆ U [f(y)]
eventually which implies that (f(y), f(yn)) ∈ U eventually. Therefore the
image net {f(yn)}n∈D converges to f(y) in Z.
Conversely, let the hypothesis hold. Let if possible f be not equi-continuous
at y ∈ Y . Then there exists an entourage U ∈ U such that there is no
open neighbourhood V of y ∈ Y such that f(V ) ⊆ U [f(y)]. That is, for
each open neighbourhood V of y, there exists some yV ∈ V such that
f(yV ) /∈ U [f(y)]. Let D be a collection of all open neighbourhoods of y.
Then (D,≥) is a directed set under the inverse set inclusion ≥, that is,
V ≥ U if V ⊆ U . Then {yV }V ∈D is a net in Y which converges to y. But
the image net {f(yV )}V ∈D does not converge to f(y), because for U ∈ U ,
we have f(yV ) /∈ U [f(y)] for all V ∈ D. Thus we get a contradiction.
Therefore f is equi-continuous at y ∈ Y . 2
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Next we provide few results regarding the pseudo-dislocated uniform
space and pseudo-dislocated equi-continuous mappings. The importance of
these spaces lies in the fact that they do not generate any topology like the
uniform spaces do.

Definition 2.5. [12] A pseudo-dislocated uniformity on a non-empty set Y
associated with a subset A of Y is a family UA of subsets of Y × Y which
satisfies (U2), (U3), (U4), (U5) of Definition 2.1 together with the following
property: (U 01) Every member of UA contains ∆A = {(y, y) | y ∈ A}.

The pair (Y,UA) is called pseudo-dislocated uniform space.

Definition 2.6. Let (Y, τ) and (Z,UA) be a topological space and a pseudo-
dislocated uniform space respectively. A function f : (Y, τ) → (Z,UA)
is said to be pseudo-dislocated equi-continuous at y ∈ Y , if for each en-
tourage U ∈ UA, there exists an open neighbourhood V of y such that
f(V ) ⊆ U [f(y)], where U [f(y)] = {z ∈ Z | ((f(y), z)) ∈ U}.

If f is pseudo-dislocated equi-continuous for all y ∈ Y , then f is called
pseudo-dislocated equi-continuous and the collection of all pseudo-dislocated
equi-continuous functions from Y to Z is denoted by pEC(Y,Z) respec-
tively.

Definition 2.7. Let {yn}n∈D be a net in a pseudo-dislocated uniform
space (Y,UA) . Then {yn}n∈D is said to be convergent to y ∈ Y , if for
each entourage U ∈ UA, there exists an m ∈ D, such that (y, yn) ∈ U for
all n ≥ m.

We can show that the following net convergence criteria result holds
good for pseudo-dislocated equi-continuous mappings

Theorem 2.8. Let (Y, τ) and (Z,UA) be a topological space and a pseudo-
dislocated uniform space respectively. Then a function f : (Y, τ)→ (Z,UA)
is pseudo-dislocated equi-continuous at y ∈ Y if and only if whenever a net
{yn}n∈D converges to y in Y , its image net {f(yn)}n∈D converges to f(y)
in Z.

3. Topologies on EC(Y,Z)

In this section, we introduce few topologies on EC(Y,Z) and pEC(Y,Z).
Let (Y, τ) and (Z,U) be a topological space and a uniform space respec-
tively. Then for z ∈ Z, V ∈ τ and U ∈ U , we define:
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(V,U)z = {f ∈ EC(Y,Z) | f(V ) ⊆ U [z] }

Let Sτ,U = {(V,U)z | z ∈ Z, V ∈ τ and U ∈ U}.

Lemma 3.1. Sτ,U is a subbasis for a topology on EC(Y,Z).

Proof. Let f ∈ EC(Y,Z). Then for y ∈ Y and U ∈ U , there exists
some open neighbourhood V0 of y ∈ Y such that f(V0) ⊆ U [f(y)]. Consider
f(y) = z ∈ Z. Then we have f ∈ (V0, U)z. Therefore EC(Y,Z) ⊆

SSτ,U .
2

The topology generated by this subbasis will be called the open-entourage
topology for EC(Y,Z).

Similarly, for y ∈ Y , V ∈ τ and U ∈ U , let us consider (V,U)y = {f ∈
EC(Y,Z) | f(V ) ⊆ U [f(y)] }. Then it can be shown that the collection
{(V,U)y | y ∈ Y, V ∈ τ and U ∈ U} also forms a subbasis

for a topology on EC(Y,Z).
The topology generated by this subbasis is called the open-entourage topol-
ogy of Type-I for EC(Y,Z).

Remark 1. The open-entourage topology is finer than the open-entourage
topology of Type-I.

Similarly, let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively and y ∈ Y , z ∈ Z and U ∈ U .
We define:

(y, U)z = {f ∈ EC(Y,Z) | f(y) ∈ U [z] }.

Let Spτ,U = {(y, U)z | z ∈ Z, y ∈ Y and U ∈ U}.

Lemma 3.2. Spτ,U is a subbasis for a topology on EC(Y,Z).

Proof. Let f ∈ EC(Y,Z), then for y ∈ Y and for U ∈ U we have
(f(y), f(y)) ∈ U . Consider f(y) = z ∈ Z, then we have f(y) ∈ U [z]. Hence
f ∈ (y, U)z and therefore EC(Y,Z) ⊆

SSpτ,U . 2
The topology generated by this subbasis will be called the point-entourage

topology for EC(Y,Z).

Lemma 3.3. Point-entourage topology is finer than open-entourage topol-
ogy on EC(Y,Z).
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Proof. Let (Y, τ) and (Z,U) be a topological space and a uniform space
respectively. Let (V,U)z be an open set in open-entourage topology on
EC(Y,Z), where V ∈ τ and U ∈ U . Let f ∈ (V,U)z, so that f(V ) ⊆ U [z].
Since V 6= ∅, there exists some y ∈ V . We have f(y) ∈ U [Z]. Thus, we have
f ∈ (y, U)z, therefore (V,U)z ⊆ (y, U)z. Hence point-entourage topology
is finer than open-entourage topology on EC(Y,Z). 2

Now, let y ∈ Y , z ∈ Z. Let Ut ∈ U be a transitive entourage of U , that
is Ut ◦ Ut ⊂ Ut.
We define:

(y, Ut)z = {f ∈ EC(Y,Z) | f(y) ∈ Ut[z] }.

For each uniform space (Z,U), we have Z × Z ∈ U . Then Ut = Z × Z
satisfies the property Ut◦Ut ⊆ Ut. Therefore there always exists entourages
of the type Ut ∈ U .
Let St,pτ,U = {(y,Ut)z | z ∈ Z, y ∈ Y,Ut ∈ U such that Ut ◦ Ut ⊆ Ut}.
It may be verified that St,pτ,U is a subbasis for a topology on EC(Y,Z).
The topology generated by this subbasis will be called the point-transitive-
entourage topology for EC(Y,Z).

Remark 2. Since every transitive entourage is again an entourage, there-
fore we have point-entourage topology is finer than point-transitive-entourage
topology on EC(Y,Z).

Now, we introduce a topological structure on the class of pseudo-dislocated
equi-continuous function pEC(Y,Z).

Let (Y, τ) and (Z,UA) be a topological space and a pseudo-dislocated
uniform space respectively. Then for z ∈ Z, V ∈ τ and U ∈ UA, we define

(V,U)z = {f ∈p EC(Y,Z) | f(V ) ⊆ U [z]}

Let S(τ,UA) = {(V,U)z | z ∈ Z, V ∈ τ and U ∈ UA}.

Lemma 3.4. S(τ,UA) is a subbasis for a topology on pEC(Y,Z).

Proof. Similar to Lemma 3.1. 2
The topology generated by this subbasis will be called the open-dislocated-

entourage for pEC(Y,Z).

In the following section, we provide investigations of the function spaces
on EC(Y,Z). The development for pEC(Y,Z), being similar, is not shown
in the paper to avoid repetition.
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4. Admissibility and Splittingness on EC(Y,Z)

In this section, we introduce few topologies on EC(Y,Z) and investigate
some of their properties. Admissibility and splittingness for such spaces
are defined and their characterizations are also provided in this section.

Definition 4.1. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be another topological space. Then for a map
g : X×Y → Z, we define a map g∗ : X → EC(Y,Z) by g∗(x)(y) = g(x, y).

These mappings g and g∗ are called associated maps.

Definition 4.2. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. A topology T on EC(Y,Z) is called

1. admissible if the evaluation map e : EC(Y,Z) × Y → Z defined by
e(f, y) = f(y) is equi-continuous.

2. splitting if for each topological space (X,µ), equi-continuity of the
map g : X × Y → Z implies continuity of the map g∗ : X →
EC(Y,Z), where g∗ is the associated map of g.

The following results show that equi-continuity at times behaves like
continuity only.

Proposition 4.3. Let (X, τ) and (Y, µ) be two topological spaces and
(Z,U) be a uniform space. Let f : X → Y and g : Y → Z be contin-
uous and equi-continuous functions at x ∈ X and f(x) ∈ Y respectively.
Then the composition map g ◦ f : X → Z is equi-continuous at x ∈ X.

Proof. Let U ∈ U be any entourage in U . Since the map g is equi-
continuous at f(x), therefore there exists an open neighbourhood V of
f(x) in Y , such that g(V ) ⊆ U [g(f(x))]. We have f(x) ∈ V and f is
continuous at x, thus there exists an open neighbourhood W of x in X
with f(W ) ⊆ V . Hence, we have g(f(W )) ⊆ g(V ) ⊆ U [g(f(x))], that
is, (g ◦ f)(W ) ⊆ U [(g ◦ f)(x)]. Therefore the composition map g ◦ f is
equi-continuous at x. 2

In the light of the above result, now we provide a characterization of
admissibility.
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Theorem 4.4. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be any topological space. Then a topology
T on EC(Y,Z) is admissible if and only if continuity of the map g∗ : X →
EC(Y,Z) implies equi-continuity of the map g : X×Y → Z, where g∗ and
g are the associated maps.

Proof. Let the topology T on EC(Y,Z) be admissible, that is, the eval-
uation map e : EC(Y,Z) × Y → Z be equi-continuous. Let g∗ : X →
EC(Y,Z) be any continuous map. We have to show that its associated
map g is equi-continuous. Since the map g∗ is continuous, therefore the
map h : X × Y → EC(Y,Z) × Y , defined by h(x, y) = (g∗(x), y) is also
continuous. Hence, by the last proposition, the composition map e ◦ h is
equi-continuous. Now, for (x, y) ∈ X×Y , consider e◦h(x, y) = e(h(x, y)) =
e(g∗(x), y) = g∗(x)(y) = g(x, y). Hence e ◦ h ≡ g. Therefore the map g is
equi-continuous.
Conversely, let the condition hold. Consider X = EC(Y,Z) with the topol-
ogy T . We define g∗ : EC(Y,Z) → EC(Y,Z) as the identity map. Hence
g∗ is continuous. Thus by the given hypothesis, its associated map g :
EC(Y,Z)×Y → Z is also equi-continuous. For any (f, y) ∈ EC(Y,Z)×Y ,
consider g(f, y) = g∗(f)(y) = f(y) = e(f, y), where e is the evaluation
map. Therefore g ≡ e and hence equi-continuous. Thus the topology T on
EC(Y,Z) is admissible. 2

In the next set of theorems, we provide characterizations of admissibility
and splittingness of the topologies onEC(Y,Z) using net theory. We extend
the concept of continuous convergence of continuous mappings [1] for this
purpose. But before that we quote a result about directed sets, which we
shall use in our proof.
Let ∆ be a directed set. We add a point ∞ to ∆ satisfying ∞ ≥ n for all
n ∈ ∆ and write ∆0 = ∆ ∪ {∞}. A topology T0 may be generated on ∆0
by declaring every singleton of ∆ as open and neighbourhoods of ∞ being
of the form Un0 = {n : n ≥ n0}, n0 ∈ ∆.

Lemma 4.5. [8] Let (Y, τ) be a topological space and {yn}n∈D be a net in
Y . Then the net {yn}n∈∆ converges to y in Y if and only if the function
f : ∆0 → Y defined by f(n) = yn for n ∈ ∆ and f(∞) = y is continuous
at ∞.

From this lemma we have the following remark:

Remark 3. Let (Y, τ) be a topological space and {yn}n∈D be net in Y .
Then the net {yn}n∈∆ converges to y in Y if and only if the function
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f : ∆0 → Y defined by f(n) = yn for n ∈ ∆ and f(∞) = y is continuous.

Now we come to our main results of this section.

Definition 4.6. Let {fn}n∈∆ be a net in EC(Y,Z). Then {fn}n∈∆ is said
to equi-continuously converge to f ∈ EC(Y,Z) if for each net {ym}m∈σ in
Y converging to y, {fn(ym)}(n,m)∈∆×σ converges to f(y) in Z.

Theorem 4.7. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be any topological space. Then a topology
T on EC(Y,Z) is splitting if and only if for each net {fn}n∈∆ in EC(Y,Z),
equi-continuous convergence of {fn}n∈∆ to f implies that {fn}n∈∆ con-
verges to f under T .

Proof. Let T be splitting and {fn}n∈∆ equi-continuously converge to
f . Let ∆0 = ∆ ∪ {∞} be equipped with the topology as described after
Theorem 4.4. Define g : ∆0 × Y → Z by g(n, y) = fn(y) for all n ∈ ∆
and g(∞, y) = f(y). We show that the map g is equi-continuous. Now,
the only non-constant convergent net in ∆0 is {n}n∈∆ which converges to
∞. Hence if S is a convergent net in ∆0 × Y , then S = S1 × S2, where
S1 = {n} and S2 = {ym}m∈σ, where {ym}m∈σ is any convergent net in Y ,
which converges to some y in Y . Then S converges to {∞}× {y} for some
y ∈ Y and g(S) = {fn(ym)}(n,m)∈∆×σ. By equi-continuous convergence of
{fn}n∈∆, g(S) converges to f(y) = g(∞, y). Hence, by the net theoretic
characterization of equi-continuity, g is equi-continuous at (∞, y). Now,
consider any (n, y) ∈ ∆ × Y , and let U be any entourage in U . We have,
g(n, y) = fn(y). Since U ∈ U and fn is equi-continuous, there exists an
open neighbourhood V of y such that fn(V ) ⊆ U [fn(y)]. Thus, we get an
open neighbourhood {n} × V of (n, y) such that g({n} × V ) = fn(V ) ⊆
U [fn(y)]. That is, g({n} × V ) ⊆ U [g(n, y)]. Therefore the map g is equi-
continuous at (n, y), for all (n, y) ∈ ∆× Y . As T is splitting, this implies
that the associated map g∗ : ∆0 → EC(Y,Z) is continuous. Since {n}n∈∆
converges to ∞ in ∆0, we have, {g∗(n)}n∈∆ converges to g∗(∞). Now
g∗(n)(y) = g(n, y) = fn(y) and g∗(∞)(y) = g(∞, y) = f(y). That is,
g∗(n) = fn, g

∗(∞) = f . Hence {fn}n∈∆ converges to f in EC(Y,Z).
Conversely, suppose equi-continuous convergence implies convergence. Let
g :X×Y → Z be equi-continuous. We need to show that its associated map
g∗ is continuous. Let {xn}n∈∆ be any convergent net in X which converges
to x ∈ X. We have to show that the image net {g∗(xn)}n∈∆ converges to
g∗(x) in EC(Y,Z). We define, g∗(xn) = fn and g∗(x) = f . Now, we show
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that {fn}n∈∆ converges to f in EC(Y,Z). This follows if the net {fn}n∈∆
equi-continuously converges to f . Let us consider, a net {ym}m∈σ in Y
which converges to some y in Y . Then {(xn, ym)}(n,m)∈∆×σ converges to
(x, y) inX×Y . As g is equi-continuous, the image net {g(xn, ym)}(n,m)∈∆×σ
converges to g(x, y) in Z. But g(xn, ym) = g∗(xn)(ym) = fn(ym) and
g(x, y) = g∗(x)(y) = f(y). That is, {fn(ym)}(n,m)∈∆×σ converges to f(y)
in Z. Hence {fn}n∈∆ equi-continuously converges to f in EC(Y,Z). Thus
by the hypothesis, we have {fn}n∈∆ converges to f in EC(Y,Z). That
is, {g∗(xn)}n∈∆ converges to g∗(x) in EC(Y,Z). Hence g∗ is continuous.
Therefore, T is splitting. 2

On a similar line, characterization of admissibility is also provided be-
low.

Theorem 4.8. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be any topological space. Then a topology T
on EC(Y,Z) is admissible if and only if for each net {fn}n∈∆ in EC(Y,Z),
convergence of {fn}n∈∆ to f in EC(Y,Z) implies equi-continuous conver-
gence of {fn}n∈∆ to f .

Proof. Let T be admissible and {fn}n∈∆ be any net in EC(Y,Z)
such that {fn}n∈∆ converges to f . Let us define g∗ : ∆0 → EC(Y,Z)
as g∗(n) = fn and g∗(∞) = f , where ∆0 is generated by ∆. Now the
only non constant convergent net in ∆0 is {n} which converges to ∞
and {g∗(n)}n∈∆ = fn converges to f = g∗(∞), by the given hypothesis.
Hence g∗ is continuous. Therefore the associated map g : ∆0 × Y → Z
is equi-continuous. Let {ym}m∈σ be any net in Y such that {ym}m∈σ
converges to y in Y . Then {(n, ym)}(n,m)∈∆×σ is a convergent net in
∆0 × Y which converges to (∞, y). Therefore {g(n, ym)}(n,m)∈∆×σ con-
verges to g(∞, y). That is, {g∗(n)(ym)}(n,m)∈∆×σ converges to g∗(∞)(y),
which implies {fn(ym)}(n,m)∈∆×σ converges to f(y). Hence {fn}n∈∆ equi-
continuously converges to f .

Conversely, let g∗ be continuous. We have to show that its associated map
g is equi-continuous. Let {xn}n∈∆ and {ym}m∈σ be two convergent nets
in X and Y respectively such that {(xn, ym)}(n,m)∈∆×σ converges to (x, y).
Since {xn}n∈∆ converges to x and g∗ is continuous, therefore the image net
{g∗(xn)}n∈∆ converges to g∗(x). Let us define g∗(xn) = fxn and g∗(x) =
fx. Then, we have {fxn}n∈∆ converges to fx in EC(Y,Z). Thus by the
given hypothesis, {fxn}n∈∆ equi-continuously converges to fx. Then for the
convergent net {ym}m∈σ which converges to y, we have {fxn(ym)}(n,m)∈∆×σ
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converges to fx(y), that is {g(xn, ym)}(n,m)∈∆×σ converges to g(x, y). Hence
g is equi-continuous. Therefore T is admissible. 2

Below, we mention a lemma without proof which is valid for function
spaces of continuous functions as well as of continuous multifunctions [8].
Here µ ≥ τ , means τ ⊆ µ.

Lemma 4.9. Let τ and µ be two topologies on EC(Y,Z) and µ ≥ τ .
Then admissibility of τ implies admissibility of µ. On the other hand, if µ
is splitting, then τ is also splitting.

Proof. Let τ and µ be two topologies on EC(Y,Z) and µ ≥ τ , that is,
τ ⊆ µ. Let topology τ on EC(Y,Z) be admissible then the evaluation map
e : EC(Y,Z)×Y → Z is equi-continuous. Thus for each entourage U ∈ U ,
there exists an open neighbourhood V ×W of (f, y) such that e(V ×W ) ⊆
U [e(f, y)]. Since τ ⊆ µ, therefore, V ∈ τ ⊆ µ, thus the evaluation map is
equi-continuous with the topology µ on EC(Y,Z). Similarly, let topology
µ on EC(Y,Z) is splitting, therefore for each topological space (X,Λ),
equi-continuity of the map g : X × Y → Z implies the continuity of the
associated map g∗ : X → EC(Y,Z). Since τ ⊆ µ is given, therefore the
associated map g∗ : X → EC(Y,Z) is also continuous with topology τ on
EC(Y,Z) as well. Thus the proof. 2

Now we provide examples of admissible and splitting topologies using
the results obtained so far.
In our next pair of theorems, we show that open-entourage topology is
admissible whereas point-transitive-entourage topology is splitting.

Theorem 4.10. Let (Y, τ) and (Z,U) be a topological space and a uni-
form space respectively. Then the open-entourage topology on EC(Y,Z) is
admissible.

Proof. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. We have to show that the open-entourage topology
on EC(Y,Z) is admissible, that is, for each net {fn}n∈∆ in EC(Y,Z), con-
vergence of {fn}n∈∆ to f in EC(Y,Z) implies equi-continuous convergence
of {fn}n∈∆ to f .

Let {ym}m∈σ be any convergent net in Y which converges to y. We
have to show that the net {fn(ym)}(n,m)∈∆×σ converges to f(y) in (Z,U).
Let U be any entourage in U . Then there exists some U0 ∈ U such that U0◦
U0 ⊂ U . As f is equi-continuous at ym and U0 ∈ U , therefore there exists
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an open neighbourhood V0 ∈ τ of ym such that f(V0) ⊆ U0[f(ym)], which
implies f ∈ (V0, U0)f(ym). Since the net {fn}n∈∆ converges to f inEC(Y,Z)
and (V0, U0)f(ym) is a subbasic open neighbourhood of f , therefore fn ∈
(V0, U0)f(ym) eventually. We have fn(V0) ⊆ U0[f(ym)], whence fn(ym) ∈
U0[f(ym)] eventually. Hence we have (fn(ym), f(ym)) ∈ U0 eventually.
Now, consider the net {ym}m∈σ converging to y in Y . As f ∈ EC(Y,Z),
the image net {f(ym)}m∈σ converges to f(y), that is, for U−10 ∈ U , we have
(f(y), f(ym)) ∈ U−10 , which implies (f(ym), f(y)) ∈ U0 eventually. Hence
(fn(ym), f(ym)) ◦ (f(ym), f(y)) ∈ U0 ◦ U0 ⊂ U eventually. Thus we have
(fn(ym), f(y)) ∈ U eventually and therefore the net {fn(ym)}(n,m)∈∆×σ
converges to f(y) in Z. Therefore by Theorem 4.8, the open-entourage
topology on EC(Y,Z) is admissible. 2

In the next theorem, we show that the point-transitive-entourage topol-
ogy on EC(Y,Z) is splitting.

Theorem 4.11. Let (Y, τ) and (Z,U) be a topological space and a uni-
form space respectively. Then the point-transitive-entourage topology on
EC(Y,Z) is splitting.

Proof. Let (Y, τ) and (Z,U) be a topological space and a uniform space
respectively. We have to show that the point-transitive-entourage topology
on EC(Y,Z) is splitting, that is for each net {fn}n∈∆ in EC(Y,Z), equi-
continuous convergence to {fn}n∈∆ to f implies convergence of {fn}n∈∆ to
f in EC(Y,Z).
Let (y, Ut)z be any subbasic open neighbourhood of f in EC(Y,Z). Then,
f(y) ∈ Ut[z], that is, (f(y), z) ∈ Ut. Let {ym} = y for each m ∈ σ, be a
constant net. Then {ym}m∈σ converges to y in Y . Since the net {fn}n∈∆
equi-continuously converges to f , the net {fn(ym)}(n,m)∈∆×σ converges to
f(y) in Z, that is, net {fn(y)}n∈∆ converges to f(y). Then for Ut ∈ U ,
we have U−1t ∈ U , which implies (f(y), fn(y)) ∈ U−1t eventually. Thus we
have (fn(y), f(y)) ∈ Ut eventually. Accordingly, we have (fn(y), f(y)) ◦
(f(y), z) ∈ Ut ◦Ut ⊂ Ut. Therefore (fn(y), z) ∈ Ut eventually which implies
fn ∈ (y, Ut)z eventually. Hence net {fn}n∈∆ converges to f in EC(Y,Z).
Thus point-transitive-entourage topology on EC(Y,Z) is splitting. 2

5. Dual Topology For Equi-Continuous Functions

In this section, we introduce the notion of dual topology for the topologies
on EC(Y,Z). We provide here interesting relationships regarding the split-
tingness and admissibility of a topology on equi-continuous functions and
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its dual.
For a topological space (Y, τ) and a uniform space (Z,U), let f ∈ EC(Y,Z),
U ∈ U and y ∈ Y . Then by the definition of equi-continuity, there exists
V ∈ τ of y such that f(V ) ⊆ U [f(y)]. We denote the open set V obtained
this way by U(f, y). Now we define :

OZ(Y ) = {U(f, y) : U ∈ U , f ∈ EC(Y,Z), y ∈ Y }.

Definition 5.1. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let EC(Y,Z) be the set of all equi-continuous functions
from Y to Z. Then for subsets H ⊆ OZ(Y ), H ⊆ EC(Y,Z) and U ∈ U , we
define:
(H, U) = {f ∈ EC(Y,Z) | U(f, y) ∈ H for each y ∈ Y }
(H, U) = {U(f, y) | f ∈ H, y ∈ Y }.

Let (Y, τ) and (Z,U) be a topological space and a uniform space re-
spectively and f ∈ EC(Y,Z), U ∈ U . Then for each y ∈ Y , there exists
V ∈ τ such that f(V ) ⊆ U [f(y)]. Then H = {U(f, y) | y ∈ Y } is a subset
of OZ(Y ), such that f ∈ (H, U). Therefore one can always define the sets
of the form (H, U) and (H, U) which are non empty and well defined.

Definition 5.2. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let T be a topology on OZ(Y ). Then we define:

S(T) = {(H, U) | H ∈ T, U ∈ U}.

Theorem 5.3. S(T) is a subbasis for a topology on EC(Y,Z).

Proof. Let f ∈ EC(Y,Z). Then for y ∈ Y , U ∈ U , there exists Vy ∈ τ
such that f(Vy) ⊆ U [f(y)]. Consider Vy = U(f, y). As Vy ∈ OZ(Y ) and T
is a topology on OZ(Y ), therefore there exists an open set Hy, such that

Vy = U(f, y) ∈ Hy. Let H =
[
y∈Y

Hy. Then f ∈ (H, U). Hence EC(Y,Z) =SS(T). Therefore S(T) is a subbasis for a topology on EC(Y,Z). 2
Now, we provide a topology on OZ(Y ) using the topology on EC(Y,Z).

Theorem 5.4. Let T be a topology on EC(Y,Z). Then

S(T ) = {(H, U) | H ∈ T , U ∈ U}

is a subbasis for a topology on OZ(Y ).



A study of topological structures on equi-continuous mappings 349

Proof. Let U(f, y) ∈ OZ(Y ). Clearly f ∈ EC(Y,Z) and hence f ∈ H
for some H ∈ T . Then U(f, y) ∈ (H, U). Therefore OZ(Y ) =

S
(H, U).

Hence S(T ) is a subbasis for a topology on OZ(Y ). 2

The topologies defined above on EC(Y,Z) and OZ(Y ) are denoted by
T (T) and T(T ) respectively. We shall refer these topologies as dual to T
and T respectively.
Now we define the splittingness and admissibility on OZ(Y ) and investigate
the possible relationships between a topology on EC(Y,Z) and its dual and
vice-versa.

Definition 5.5. Let (X, τ) and (Y, µ) be two topological spaces. A multi-
function F : X → Y is called

1. upper semi continuous (or u.s.c., in brief) at x ∈ X if for each open
set V ⊆ Y with F (x) ⊆ V , there exists an open set U of X such that
x ∈ U and F (U) ⊆ V ;

2. lower semi continuous (or l.s.c, in brief) at x ∈ X if for each open
set V ⊆ Y with F (x) ∩ V 6= ∅, there exists an open set U of X such
that x ∈ U and F (u) ∩ V 6= ∅ for every u ∈ U ;

3. continuous at x ∈ X, if it is both u.s.c. and l.s.c. at x;

4. continuous (resp. u.s.c., l.s.c.) if it is continuous (resp. u.s.c., l.s.c.)
at each point of X.

Definition 5.6. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be another topological space. Let g : X ×
Y → Z and g∗ : X → EC(Y,Z) be two associated maps. . Then we define
a multifunction g : X × U → OZ(Y ) by g(x,U) = {U(g∗(x), y) | y ∈ Y } =
{U(gx, y) | y ∈ Y }, for every x ∈ X and U ∈ U .

Definition 5.7. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be another topological space. A multifunc-
tionM : X×U → OZ(Y ) is called upper semi continuous with respect to the
first variable if the map MU : X → OZ(Y ) defined by MU (x) = M(x,U)
is upper semi continuous for every x ∈ X and for a fixed U ∈ U .

Now, we are in position to define the admissibility and splittingness of
the topological space (OZ(Y ),T).
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Definition 5.8. Let (Y, τ) and (Z,U) be a topological space and a uniform
space respectively. Let (X,µ) be another topological space. Then topology
T on OZ(Y ) is called

1. splitting if equi-continuity of the map g : X × Y → Z implies upper
semi continuity with respect to the first variable of the map g : X ×
U → OZ(Y );

2. admissible if for every map g∗ : X → EC(Y,Z), upper semi continuity
with respect to the first variable of the map g : X × U → OZ(Y )
implies equi-continuity of the map g : X × Y → Z.

In the remaining part of this section, we investigate how duality links
the admissibility and splittingness of a topology on EC(Y,Z) and that
on OZ(Y ). Here it is worth mentioning that the statements of Theorem
5.9 and Theorem 5.11 may appear identical at a first glance. Similar is
the case for Theorem 5.10 and Theorem 5.12. However actually it is not
so. In Theorem 5.9, the topology T on OZ(Y ) defines a dual topology
T (T) on EC(Y,Z). On the other hand, in Theorem 5.11, the topology
T on EC(Y,Z) is used to define its dual T(T ) on OZ(Y ). We are yet to
investigate whether dual of a dual topology is the original topology. Hence
the statements of Theorem 5.9 and Theorem 5.11 makes sense. Same is the
case for Theorem 5.10 and Theorem 5.12.

Theorem 5.9. A topology T on OZ(Y ) is splitting if and only if its dual
topology T (T) on EC(Y,Z) is splitting.

Proof. Let (OZ(Y ),T) be splitting, that is, for every topological space
(X,µ), equi-continuity of the map g : X × Y → Z implies upper semi con-
tinuity with respect to the first variable of the map g : X × U → OZ(Y ).
We have to show that the topology T (T) on EC(Y,Z) is splitting, that is
for every topological space X, equi-continuity of the map f : X × Y → Z
implies continuity of the associated map f∗ : X → EC(Y,Z). Therefore,
it is sufficient to show that upper semi continuity with respect to the first
variable of the map g : X×U → OZ(Y ) implies continuity of the associated
map g∗ : X → EC(Y,Z).
Let x ∈ X and (H, U) ∈ T (T) be a subbasic open neighbourhood of g∗(x).
Then g∗(x) ∈ (H, U), which implies U(g∗(x), y) ∈ H for each y ∈ Y .
Therefore U(gx, y) ∈ H and hence g(x,U) ⊆ H. Now g : X × U → OZ(Y )
is upper semi continuous with respect the first variable and H is an open
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neighbourhood of gU (x). Hence there exists an open neighbourhood V of
x such that gU (V ) ⊆ H. Now, for an element x0 ∈ V , we have gU (x

0) ⊆ H.
Therefore g(x0, U) ⊆ H and hence U(gx0 , y) ∈ H for each y ∈ Y . That is,
U(g∗(x0), y) ∈ H for every x0 ∈ V , which implies g∗(x0) ∈ (H, U) for every
x0 ∈ V . Thus g∗(V ) ⊆ (H, U). Therefore the map g∗ is continuous.

Conversely, let T (T) be splitting, we have to show that the topology T
is splitting. For this, it is sufficient to show that g : X × U → OZ(Y ) is
upper semi continuous with respect to the first variable provided that the
map g∗ : X → EC(Y,Z) is continuous. Let, for a fixed U ∈ U and x ∈ X,
H ∈ OZ(Y ) be an open neighbourhood of g(x,U). That is g(x,U) ⊆ H
which implies U(gx, y) ∈ H for each y ∈ Y . Therefore U(g∗(x), y) ∈ H for
each y ∈ Y . Thus we have g∗(x) ∈ (H, U). Now the map g∗ is given to be
continuous and (H, U) is an open neighbourhood of g∗(x). Thus there exists
an open neighbourhood V of x such that g∗(V ) ⊆ (H, U). Now for, any
x0 ∈ V , we have g∗(x0) ∈ (H, U). Therefore, U(g∗(x0), y) = U(gx0 , y) ∈ H
for every x0 ∈ V . Hence, we have gU (x

0) ⊆ H, for all x0 ∈ V . Hence
gU (V ) ⊆H. Hence the map g is upper semi continuous with respect to the
first variable. Thus, the topology T is a splitting. 2

Theorem 5.10. A topology T on OZ(Y ) is admissible if and only if its
dual topology T (T) on EC(Y,Z) is admissible.

Proof. Let the topology T on OZ(Y ) be admissible, that is, for every
topological space (X,µ) and for every map g∗ : X → EC(Y,Z), upper semi
continuity of the map g : X × U → OZ(Y ) with respect the first variable
implies equi-continuity of the map g : X × Y → Z. We have to show that
the topology T (T) is admissible, that is continuity of g∗ : X → EC(Y,Z)
implies equi-continuity of its associated map g : X × Y → Z. Thus it
is sufficient to prove that g : X × U → OZ(Y ) is upper semi continuous
with respect to the first variable provided the map g∗ : X → EC(Y,Z) is
continuous.
Let us have, for fixed U ∈ U and x ∈ X, a subbasic open neighbour-
hood H of g(x,U). Therefore g(x,U) ⊆ H. That is, gU (x) ⊆ H which
implies U(gx, y) ∈ H for each y ∈ Y . Thus g∗(x) ∈ (H, U). Since the
map g∗ is given to be continuous and (H, U) is a subbsaic open neighbour-
hood of g∗(x), therefore there exists an open neighbourhood V of x such
that g∗(V ) ⊆ (H, U). Now, for x0 ∈ V , we have g∗(x0) ∈ (H, U), that is
U(g∗(x0), y) = U(gx0 , y) ∈ H for each y ∈ Y . Thus gU (x

0) ⊆ H for all
x0 ∈ V . Hence, gU (V ) ⊆ H. Therefore the map g is upper semi continuous
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with respect to the first variable. Hence the topology T (T) is admissible.
Conversely, let T (T) be admissible , we have to show that the topology T
on OZ(Y ) is admissible. For this, it is sufficient to show that upper semi
continuity with respect to the first variable of the map g : X×U → OZ(Y )
implies continuity of the map g∗ : X → EC(Y,Z).
Let x ∈ X and (H, U) be a subbasic open neighbourhood of g∗(x), that is
g∗(x) ∈ (H, U). Thus U(g∗(x), y) ∈ H for every y ∈ Y . Hence gU (x) ⊆ H.
Now the map g is given to be upper semi continuous with respect to the
first variable and H is a subbaisc open neighbourhood of gU (x). Thus
there exists an open neighbourhood V of x such that gU (V ) ⊆ H. Hence
for x0 ∈ V , we have gU (x

0) ⊆ H, which implies g(x0, U) ⊆ H. Hence
U(gx0 , y) = U(g∗(x0), y) ∈ H for each y ∈ Y . Therefore g∗(x0) ∈ (H, U) for
all x0 ∈ V . Therefore g∗(V ) ⊆ (H, U). Thus the topology T is admissible.
2

In our next set of theorems, we investigate the relationship between a
topology on EC(Y,Z) and its dual.

Theorem 5.11. A topology T on EC(Y,Z) is splitting if and only if its
dual topology T(T ) is splitting.

Proof. Let T be a splitting topology on EC(Y,Z). We have to show
that its dual topology T(T ) is also splitting. For this, it is sufficient to
prove that continuity of the map g∗ : X → EC(Y,Z) implies upper semi
continuity of the map g : X×U → OZ(Y ) with respect to the first variable.

Let x ∈ X andH ∈ T be an open neighbourhood of g∗(x). Then for any
fixed U ∈ U , (H, U) ∈ T(T ) is an open neighbourhood of g(x,U). That
is, g(x,U) ⊆ (H, U). Now g(x,U) = {U(gx, y) | y ∈ Y } ⊆ (H, U), hence
U(gx, y) ∈ (H, U) for each y ∈ Y by definition. This implies g∗(x) ∈ H.
Since the map g∗ is given to be continuous and H is an open neighbourhood
of g∗(x), therefore there exists an open neighbourhood V of x such that
g∗(V ) ⊆ H. Now, consider an element x0 ∈ V , we have g∗(x0) ∈ H, that is
U(gx0 , y) ∈ (H, U) for each y ∈ Y . Hence g(x0, U) ⊆ (H, U), for all x0 ∈ V .
Therefore gU (V ) ⊆ (H, U) and the map g is upper semi continuous with
respect to the first variable. Hence the result.

Conversely, let the topology T(T ) be a splitting topology. We have
to show that the topology T on EC(Y,Z) is splitting. It is equivalent to
show that the map g∗ : X → EC(Y,Z) is continuous provided the map
g : X × U → OZ(Y ) is upper semi continuous.
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Let x ∈ X and H be an open neighbourhood of g∗(x), that is, g∗(x) ∈
H. For any fixed U ∈ U , we have U(gx, y) ∈ (H, U) for each y ∈ Y .
Therefore g(x,U) ⊆ (H, U) for a fixed U ∈ U . Since the map g is given
to be continuous with respect to the first variable, there exists an open
neighbourgood V of x such that gU(V ) ⊆ (H, U). Now, for x0 ∈ V , we
have gU (x

0) ⊆ (H, U) which implies U(gx0 , y) ∈ (H, U) for each y ∈ Y .
Therefore g∗(x0) ∈ H for every x0 ∈ V . That is, g∗(V ) ⊆ H. Hence the
map g∗ is continuous. 2

Theorem 5.12. A topology T on EC(Y,Z) is admissible if and only if its
dual topology T(T ) is admissible.

Proof. Let T be an admissible topology on EC(Y,Z). We have to show
that its dual topology T(T ) is also admissible. For this, it is sufficient
to prove that upper semi continuity of the map g : X × U → OZ(Y )
with respect to the first variable implies continuity of the map g∗ : X →
EC(Y,Z) and vice-versa. The same can be proved on the line of Theorem
5.11. 2

In this paper, we have studied topological structures on the family of
equi-continuous mappings between a topological space and a uniform space.
Important properties such as splittingness, admissibility etc. are introduced
for such spaces and their characterizations are provided using net-theory.
We have shown that similar studies can be carried out for pseudo-dislocated
equi-continuous mappings also. It will be interesting to investigate the
existence of the greatest splitting topology for such spaces. At the same
time, the effect of duality on the existence of the greatest splitting topology
needs to be investigated.
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