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1. Introduction

The theory of impulsive differential equations has attracted the interest
of many authors because of its vast applications in various fields. The
impulsive conditions describe some systems much better than just initial
conditions especially when the evolutions of such systems are prone to rapid
change at certain moments. The study of impulsive differential equations
has been done in [1], [2], [4], [11] and the references cited in them for clas-
sical differential equations and inclusions. In a like manner, the existence
and uniqueness of solution for impulsive quantum stochastic differential
equations was established in [13] as an extension of Hudson-Pathasarathy
quantum stochastic differential equation [12]. Existence of solutions of
non commutative stochastic differential equations in different locally con-
vex spaces were established in [8]. The controllability of quantum stochastic
differential inclusions was established in [14]. In [5], the techniques of fixed
point theory to quantum stochastic differential equations were done for the
first time. Moreover, the existence of solutions for quantum stochastic dif-
ferential equations with unbounded coefficients was established in [9].

Nonlocal Cauchy problem has more applications than classical initial
value problem. A study of semilinear initial value problems with nonlocal
conditions was done in [6]. Many authors have since been attracted to prob-
lems with such nonlocal conditions [16] but of interest to us is the case in
which the infinitesimal generator of the semigroups involved in the system
is not necessarily compact. To circumvent such situation, the technique of
measure of non compactness was used [3], [7].

The motivation for works on quantum stochastic differential equations
stems from their applications in quantum optics, quantum measurements,
quantum information to mention a few. Also, the dynamics of such systems
described by quantum stochastic differential equations are well studied by
various properties of solutions of the equation.

The aim of this work is to adapt the measure of noncompactness tech-
nique establish the existence of solution to noncommutative stochastic dif-
ferential equations. This will not only extend results in literatures on quan-
tum stochastic differential equations with unbounded coefficients but will
enhance further applications to quantum stochastic flows generated by such
solutions. Moreover, the work gives a generalization of such results with
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non local condition on classical ordinary differential equations to the present
non commutative settings.

2. Preliminaries

In this subsection we shall introduce the notations and definitions on Quan-
tum stochastic differential equations as it is done in [8] and it is consistent
with [13].

2.1. Notations and Definitions

Let D be some pre-Hilbert space whose completion is R; γ is a fixed
Hilbert; L2γ(R+) is the space of square integrable γ-valued maps on R+
and Γ(L2γ(R+)) is the Boson Fock space. In the sequel, ⊗ denotes the al-
gebraic tensor products while ⊗ denotes (topological) tensor products.
The inner product of the Hilbert space R ⊗ Γ(L2γ(R+)) will be denoted
by h., .i and k . k the norm induced by h., .i. Let E,Et and Et, t >
0 be linear spaces generated by the exponential vectors in Fock spaces
Γ(L2γ(R+)),Γ(L

2
γ([0, t))) and Γ(L

2
γ([t,∞))) respectively ;

A ≡ L+w(D⊗E,R⊗ Γ(L2γ(R+)))

At ≡ L+w(D⊗Et,R⊗ Γ(L2γ([0, t))))⊗ It

At ≡ It ⊗ L+w(E
t,Γ(L2γ([t,∞)))), t > 0

where ⊗ denotes algebraic tensor product and It(resp.It) denotes the iden-
tity map on R⊗ Γ(L2γ([0, t))))(resp.Γ(L2γ([t,∞)))), t > 0.

We define the locally convex space A of noncommutative stochastic
processes whose topology τw, is generated by the family of seminorms
{k x kηξ=| hη, xξi |, x ∈ A, η, ξ ∈ D⊗E}. The completion of (A, τw) (resp.
(At, τw)) is denoted by eA (resp. fAt) The underlying elements of eA consist
of linear maps from D⊗E into R ⊗ Γ(L2γ(R+)) having domains of their
adjoints containing D⊗E. For a fixed Hilbert space γ, the spaces Lp

loc(
eA),

L∞γ,loc(R+) and Lp
loc(I × eA) are adopted as in [8].

By a stochastic process indexed by I = [0, T ] ⊆ R+, we mean a function
on I with values in clos( eA).
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A stochastic process Φ will be called
(i) adapted if Φ(t) ⊆ eAt for each t ∈ R+; (ii) measurable if t 7→ dηξ(x,Φ(t))

is measurable for arbitrary x ∈ eA, η, ξ ∈ D⊗E ; (iii) locally absolutely p-
integrable if t 7→k Φ(t) kηξ, t ∈ R+, lies in Lp

loc(
eA) for arbitrary η, ξ ∈ D⊗E

The set of all absolutely p-integrable stochastic processes will be de-
noted by Lp

loc(
eA) and for p ∈ (0,∞), Lp

loc(I × eA) is the set of maps
Φ : I × eA → clos( eA) such that t 7→ Φ(t,X(t)), t ∈ I lies in Lp

loc(
eA)mvs

for every X ∈ Lp
loc(

eA).
The Boson stochastic integrators; annihilation, creation and conserva-

tion processes arising from quantum field operators as introduced in [12]
gave rise to quantum stochastic differential equation. We shall employ this
formulation in the sequel.

Consider stochastic processes E,F,G,H ∈ L2loc(I × eA) and (0, x0) be a
fixed point in [0, T ]× eA. Then, a relation of the form

X(t) = x0 +

Z t

0
(E(s,X(s))dΛπ(s) + F (s,X(s))dAf (s)

+G(s,X(s))dA+g (s) +H(s,X(s))ds t ∈ [0, T ])

will be called a stochastic integral equation with coefficients E,F,G and H.

The stochastic differential equation corresponding to the integral equa-
tion above is;

dX(t) = E(t,X(t))dΛπ(t) + F (t,X(t))dAf (t)
+G(t,X(t))dA+g (t) +H(t,X(t))dt

X(0) = x0 almost all t ∈ [0, T ]
(2.1)

The notion of solution of (2.1) is defined as follows:

Definition 2.1. Let Ad( eA)wac denotes the set of all adapted weakly abso-
lutely continuous stochastic processes on eA. By a solution of (2.1)we mean
a stochastic process ϕ ∈ Ad( eA)wac ∩ L2loc( eA) such that

dϕ(t) = E(t, ϕ(t))dΛπ(t) + F (t, ϕ(t))dAf (t)
+G(t, ϕ(t))dA+g (t) +H(t, ϕ(t))dt almost all t ∈ I

ϕ(t0) = ϕ0
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This work shall be concerned with the existence of solution of

dx(t) = Ax(t)dt+E(t, x(t))dΛπ(t) + F (t, x(t))dAf (t)
+G(t, x(t))dA+g (t) +H(t, x(t))dt $almostall t∈ [0, T ]

x(0) = g(x)
∆x(ti) = Ii(x(ti)) i = 1, 2, ..., p; 0 < t1 < t2 < ... < tp < T

(2.2)

where A : D(A) ⊂ eA → eA is a non-densely defined operator, x(t+i ), x(t
−
i )

denotes the right and the left limits of x at ti respectively and ∆x(ti) =
x(t+i )− x(t−i ). Ii denotes the impulsive effects at ti.

PC([0, T ], eA) = {x : [0, T ]→ eA : x(t) is a continuous adapted stochastic process at t 6= ti
left continuous at t = ti and the right limit x(ti) exists for i = 1, 2, ..., p}

equip with the norm

k x kPC= sup{| hη, x(t)ξi |:, x ∈ eA, η, ξ ∈ D⊗E, t ∈ [0, T ]}
(where the supremum is taken over some bounded subsets of D⊗E) is a
Banach space which shall be denoted by PC.
Let r be finite positive constant. We consider the sets Br = {x ∈ eA :k
x kηξ≤ r}, Wr = {x ∈ PC : x(t) ∈ Br,∀t ∈ [0, T ]}.
An operator-valued stochastic process x : [0, T ] → eA is said to be an
integral solution of (2.2) on [0, T ] if the following conditions hold;

(i)X ∈ PC; (ii)
R s
0 X(s)ds ∈ D(A) for t ∈ [0, T ] and

(iii)X(t) = g(X) +A
R t
0 X(s)ds+

R t
0(E(s,X(s))dΛπ(s) + F (s,X(s))dAf (s)

+G(s,X(s))dA+g (s) +H(s,X(s))ds+
P
0<ti<t Ii(X(ti)) for t ∈ [0, T ]

Hausdorff measure of non-compactness α(.) is defined on each bounded
subset Ω of a Banach space Y by

α(Ω) = inf{� > 0 : Ω has a finite �− net in Y }

some basic properties of α(.) are given in the following Lemma.

Lemma 2.1. ([3]). Let Y be a real Banach space and B,C ⊆ Y be
bounded, the following properties are satisfied:
(1) B is pre-compact if and only if α(B) = 0;
(2) α(B) = α(B) = α(convB), where B and convB mean the closure and
convex hull of B, respectively
(3) α(B) ≤ α(C) when B ⊆ C
(4) α(B + C) ≤ α(B) + α(C), where B + C = {x+ y;x ∈ B, y ∈ C};
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(5) α(B ∪ C) = max{α(B), α(C)}
(6) α(λB) =| λ | α(B) for any λ ∈ R
(7) If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant
k, then α(QB) ≤ kα(B) for any bounded subset B ⊆ D(Q), where Z is a
Banach spice.

The map Q :W ⊆ Y → Y is said to be an α-contraction if there exists a
positive constant k < 1 such that α(QC) ≤ kα(C) for any bounded closed
subset C ⊆W , where Y is a Banach space.

Lemma 2.2. ([3], Darbo-Sadovskii). If W ⊆ Y is bounded closed and
convex, the continuous map Q :W →W is an α-contraction, then the map
Q has at least one fixed point in W.

The linear operator A : D(A) ⊂ eA → eA is said to satisfy the Hille-
Yosida condition if there existsK ≥ 0 and ω ∈ R such that (ω,+∞) ⊂ ρ(A)
and

sup{(λ− ω)n k R(λ,A)n kηξ;n ∈N, λ > ω} ≤ K

where R(λ,A) = (λI −A)−1, ρ(A) is the resolvent set of A.

Let A0 be the part of A in D(A) defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)},
A0x = Ax.

Then A0 generates a C0-semigroup {S(t)}t≥0 onD(A) and if the integral
solution exists as above then it is given by

X(t) = S(t)g(X) + limλ→∞
R t
0 S(t− s)B(λ)(E(s,X(s))dΛπ(s) + F (s,X(s))dAf (s)

+G(s,X(s))dA+g (s) +H(s,X(s))ds) +
P
0<ti<t S(t− ti)Ii(X(ti))0 ≤ t ≤ T.

where B(λ) = λR(λ;A)
The following hypotheses are employed in the sequel:
H1 : The linear operator A : D(A)→ eA satisfies the Hille-Yosida condition.
H2 : The operator S(t) generated by A0 is compact in D(A) when t > 0
and
M = supt∈[0,T ] k S(t) kηξ, η, ξ ∈ D⊗E.
H3 : The operator S(t), 0 ≤ t ≤ T generated by A0 is equicontinuous.
H4 : (i) E,F,G,H : [0, T ] × eA → eA are Carathéodory i.e. for M =
{E,F,G,H};
M(t, .) : [0, T ]× eA→ eA is continuous ∀X ∈ eA andM(.,X) : [0, T ]× eA→ eA
is measurable.
(ii) For any l > 0, ∃ a function ρl ∈ L1([0, T ],R) such that

kM(t,X) kηξ≤ ρl(t) for a.e.t ∈ [0, T ] andall X ∈ Bl
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(iii) There exists a function m ∈ L1([0, s],R) and a non-decreasing contin-
uous function ψ : [0,∞)→ (0,∞) such that

kM(t,X) kηξ≤ m(t)ψ(k X kηξ) ∀X ∈ eA, t ∈ [0, T ]
H5 : There exists a function h ∈ L1(0, s;R) such that for every bounded
D ⊆Wr,

α(M(t,D)) ≤ h(t)α(D)fora.e.t ∈ [0, T ],
where α is the Hausdorff measure of noncompactness.
H6 : g : PC → D(A) is Lipschitz continuous with constant k;
H7: Ii : eA→ D(A) is Lipschitz continuous ki, i = 1, 2, ..., p.

3. Main Results

We consider the cases when the nonlocal function g are Lipschitz continuous
and when they are not continuous.

3.1. The case g is Lipschitz

Theorem 3.1. Assume that the conditions (H1)−(H7) are satisfied. Then
the nonlocal Cauchy problem (2.2) has at least one integral solution on [0,T]
provided that

M

"
(k +

pX
i=1

ki)r+ k g(0) k +
pX

i=1

k Ii(0) k +K k ρr kL1
#
≤ r(3.1)

Proof
We consider the operator Q : PC → PC defined by
(Qx)(t) = (Q1x)(t) + (Q2x)(t) + (Q3x)(t) where

(Q1x)(t) = S(t)g(x),

(Q2x)(t) = limλ→∞
R t
0 S(t− s)B(λ)(E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s)

+G(s, x(s))dA+g (s) +H(s, x(s))ds)

(Q3x)(t) =
P
0<ti<t S(t− ti)Ii(x(ti))

for all t ∈ [0, T ] The fixed point of Q is the integral solution of the nonlocal
impulsive problem (2.2). We will prove that Q has a fixed point by using
Lemma 2.2.

Firstly, we will prove that the mapping Q is continuous on PC. Let
{xn}∞n=1 be a sequence in PC with limn→∞ xn = x in PC. By the continuity
of E,F,G,H with respect to the second argument, we deduce that for each
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s ∈ [0, T ],M(s, xn(s)) converges toM(s, x(s)) in eA,M ∈ {E,F,G,H} and
we have

k Qxn −Qx kPC ≤M

"
k g(xn)− g(x) k +Pp

i=1 k Ii(xn(ti))− Ii(x(ti)) k
#

+MK
R T
0

Ã
k E(s, xn(s))−E(s, x(s)) k dΛπ(s)

+ k F (s, xn(s))− F (s, x(s)) k dAf (s)
+ k G(s, xn(s))−G(s, x(s)) k dA+g (s)

+ k H(s, xn(s))−H(s, x(s)) k ds)
!

Then by continuity of g, Ii and using dominated convergence theorem,
we get limn→∞Qun = Qu in PC, which implies that the mapping Q is
continuous on PC.
Secondly, we claim that QWr ⊆ Wr. In fact, for any x ∈ Wr ⊆ PC, by
(H4)(ii), and

k B(λ) k≤ λK

λ− ω
→ K, asλ→ +∞

We have

k (Qx)(t) k ≤k S(t)g(x) k + k limλ→+∞
R t
0 S(t− s)B(λ)

Ã
E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s)

+G(s, x(s))dA+g (s) +H(s, x(s))ds)

!
k + kP0<ti<t S(t− ti)Ii(x(ti)) k

≤M [k g(x)− g(0) k + k g(0) k] +MK
R T
0 k

Ã
E(s, x(s))dΛπ(s) + F (s, x(s))dAf (s)

+G(s, x(s))dA+g (s) +H(s, x(s))ds)

!
k

+M

"Pp
i=1 k Ii(x(ti))− Ii(0) k + k Ii(0) k

#

≤M

"
(k +

Pp
i=1 ki)r+ k g(0) k +

Pp
i=1 k Ii(0) k +K k ρr kL1

#
≤ r

It implies that QWr ⊆Wr.

Now according to Lemma 2.2, it remains to prove that Q is an α-
contraction inWr. By using conditions (H6) and (H7), we get that Q1+Q2 :
Wr → PC is Lipschitz continuous with constant M(k +

Pp
i=1 ki). In fact,

for any x, y ∈Wr, we have
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k (Q1 +Q2)x− (Q1 +Q2)y kPC ≤ supt∈[0,T ]

"
k S(t)[g(x)− g(y)] +

Pp
i=1 S(t− ti)[Ii(x(ti))]− Iiy(ti)

≤M

"
k k x− y kPC +

Pp
i=1 ki k x− y kPC

#
=M [k +

Pp
i=1 ki] k x− y kPC

Thus, by Lemma 2.1 [3], we obtain that

α((Q1 +Q2)Wr) ≤M [k +
pX

i=1

ki]α(Wr).

Finally, we prove that Q3 : Wr → PC is a compact operator by using
Arzéla-Ascoli’s theorem. Since Q3 is compact, thus α(Q3Wr) = 0. Conse-
quently,

α(QWr) ≤ α((Q1 +Q2)Wr) + α(Q3Wr)
≤M [k +

Pp
i=1 ki]α(Wr)

From the condition (3.1),M [k+
Pp

i=1 ki]r < r which implies thatM [k+Pp
i=1 ki] < 1, hence the mapping Q is an α-contraction in Wr. By Darbo-

Sadovskii’s fixed point theorem, the operator Q has a fixed point in Wr

which is the integral solution of the nonlocal impulsive problem (2.2).2

3.2. The case g is not Lipschitz

In this section, we give the existence of integral solutions for the nonlocal
impulsive problem (2.2) when the nonlocal function g is not Lipschitz. We
will still consider the sets Br, Wr in section 3.1 and the solution mapping
Q = Q1 +Q2 +Q3 as defined above.

Let convB denotes the convex closed hull of set B ⊆ PC, we give the
following assumptions which shall be employed in the result:

(H8) : g : PC → eA is a continuous mapping;
(H9) : Ii : eA → eA is a continuous and compact mapping for every i =
1, 2, ..., p;
(H10): The set g(convQWr) is pre-compact.

Theorem 3.2. Assume that the conditions (H1) - (H5), (H8) - (H10) are
satisfied. Then the nonlocal impulsive problem (2.2) has at least one inte-
gral solution on [0, T ] provided that

M

"
sup
x∈Wr

k g(x) k + sup
x∈Wr

pX
i=1

k Ii(x(ti)) k + k ρr kL1
#
≤ r.(3.2)
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Proof
From the continuity of g, Ii and E,F,G,H; the mapping Q is continuous
on PC. We will use Schauder’s fixed point theorem to obtain a fixed point
of mapping Q.
Next, we claim that QWr ⊆ Wr. For any x ∈ Wr, by (H4) and (3.2), we
have

k (Qx)(t) k ≤k S(t)g(x) k +P0<ti<t k S(t)Ii(x(ti)) k + k
R t
0 S(t− s)

Ã
E(s, x(s))dΛπ(s)

+F (s, x(s))dAf (s) +G(s, x(s))dA+g (s) +H(s, x(s))ds

!
k

≤M

"
supx∈Wr

k g(x) k +supx∈Wr

Pp
i=1 k Ii(x(ti)) k + k ρr kL1

#
≤ r,

i.e. Q maps Wr into itself.

Lastly, by the hypotheses (H1) - (H3) and (H9), the mappings Q2
and Q3 are compact in PC. That is, for every t ∈ [0, T ] and bounded
set W ⊆ PC, Q2W (t) and Q3W (t) are relatively compact. Q2W (t) and
Q3W (t) equicontinuous on [0, T ]. Then, by the compactness S(t), t > 0,
we can deduce that Q1Wr(t) = S(t)g(Wr) is relatively compact for any
t ∈ (0, T ] and Q1Wr(t) are equicontinuous on (0, T ].

Thus, for each t ∈ (0, T ], QWr(t) is relatively compact and QWr is
equicontinuous on (0, T ].

Let W = convQWr, we get that W is a bounded closed and convex
subset of PC and QW ⊆W. Moreover, we know that g(W ) = g(convQWr)
is pre-compact by condition (H10).

Now, for any x ∈W and t ∈ (0, ti), we have

(Q2x)(t) =
X

0<t1<t

S(t− ti)Ii(x(ti)) = 0.

It implies that

k Qx(t)−Qx(0) k≤k (S(t)− I)g(x) k +M
Z t

0
ρr(s)ds.

Since g(W ) is pre-compact, we have k Qx(t) − Qx(0) k→ 0 uniformly on
W as t → 0. Thus, QW is equicontinuous at t = 0 and QW (0) = g(W ) is
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relatively compact, which implies that Q :W →W is a compact continuous
operator. Therefore, by Schauder’s fixed point theorem, we obtain a fixed
point of mapping Q onW , which is just the integral solution of the nonlocal
impulsive problem (2.2). 2

3.3. Example

Let R be a system Hilbert space and Γ(L2(R+,C)) the noise(or reservoir)
Fock space, the interaction between the system and the reservoir is repre-
sented by the tensor product R ⊗ Γ(L2(R+,C)). For a unitary operator
Ut (for each t ≥ 0) defined on the Hilbert space R ⊗ Γ(L2(R+,C)) the
quantum stochastic flow

jt(X) = U∗t XUt

satisfies the quantum stochastic differential equation ([12])

djt(X) = jt

Ã
i[H,X]− 1

2(L
∗LX +XL∗L− 2L∗XL)

!
dt

+jt([L
∗,X]W )dAt + jt(W

∗[X,L])dA+t
+jt(W

∗XW −X)dΛt
j0(X) = X
∆jt(X) = Ii(jti(X))

which is a generalization of classical quantum mechanical evolution equa-
tions.

It is an example of equation (2.2) where X is a bounded system oper-
ator. The case of QSDE with unbounded coefficients was first considered
in [10]. The unbounded property can be circumvented by the measure of
non-compactness used above.

The added assumptions (H8), (H9) and (H10) guaranteed the existence
of unitary operator which satisfy such system and generalized the Evans-
Hudson (E-H) flow [15] to the case with impulsive effects. In this case, the
condition (H10) makes the unitary operator of the evolution to be relatively
compact and not necessarily compact.
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