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954 Samer Al Ghour and Salma El-Issa

1. Introduction

Let (X, τ) be a topological space and let A ⊆ X. A is called an ω-open
set in (X, τ) [1] if for each x ∈ A, there is U ∈ τ and a countable set
C ⊆ X such that x ∈ U −C ⊆ A. The family of all ω-open sets in (X, τ) is
denoted by τω. It is well known that τω is a topology on X which contains
τ . Denote the closure of A in (X, τ) (resp. (X, τω)) by A (resp. A

ω
). A

point x ∈ X is in θ-closure of A [2] (x ∈ Clθ (A)) if for every U ∈ τ with
x ∈ U , we have U ∩ A 6= ∅. A is called θ-closed [2] if Clθ (A) = A. The
complement of a θ-closed set is called a θ-open set. The family of all θ-open
sets in (X, τ) is denoted by τθ. It is well known that τθ ⊆ τ and τθ = τ if
and only if (X, τ) is regular. A topological space (X, τ) is called ω-regular
[3] if for each closed set F in (X, τ) and x ∈ X − F , there exist U ∈ τ
and V ∈ τω such that x ∈ U,F ⊆ V and U ∩ V = ∅. In [4] the author
defined θω-closure operator as follows: A point x ∈ X is in θω-closure of
A (x ∈ Clθω (A)) if for any U ∈ τ with x ∈ U we have U

ω ∩ A 6= ∅. A
is called θω-closed if Clθω (A) = A. The complement of a θω-closed set is
called a θω-open set. The family of all θω-open sets in (X, τ) is denoted by
τθω . It is proved in [4] that τθω forms a topology on X which lies between
τθ and τ , and that τθω = τ if and only if (X, τ) is ω-regular. Also, ω-
T2 topological spaces are characterized via θω-open sets. Moreover, four
new classes of functions, namely: θω-continuous, ω-θ-continuous, weakly
θω-continuous and faintly θω-continuous are defined and investigated. This
paper is organized as follows:

In section two, we use the θω-closure operator to define θω-connectedness
as a property which is weaker than connectedness and stronger than θ-
connectedness. We give several sufficient conditions for the equivalence be-
tween θω-connectedness and connectedness, and between θω-connectedness
and θ-connectedness. We give two results regarding the union of θω-connected
sets and also we show that the weakly θω-continuous image of a connected
set is theta omega connected.

In section three, we define and investigate V -θω-connectedness as a
strong form of V -θ-connectedness. We show that the θω-connectedness and
V -θω-connectedness are independent.

In section four, we continue the study of R1 as a known topological
property by giving several results rgarding it. We introduce ω-R1 (I), ω-
R1 (II), ω-R1 (III) and weakly ω-R1 as four weaker forms of R1 by utilizing
ω-open sets. We give several relationships regarding them and we raise two
open questions.
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θw−Connectedness and w−R1 properties 955

In this paper, R,Q,Qc and N denote, respectively the set of real num-
bers, the set of rational numbers, the set of irrational numbers and the set
of natural numbers.

The following definitions and theorems will be used in the sequel:

Definition 1.1. [5] Let (X, τ) be a topological space. A pair (P,Q) of
non-empty subsets of X is said to be separation relative to (X, τ), if (P ∩
Q) ∪ (P ∩Q) = ∅.

Definition 1.2. [6] Let (X, τ) be a topological space. A pair (P,Q) of
non-empty subsets of X is said to be θ-separation relative to (X, τ), if
(P ∩ Clθ(Q)) ∪ (Clθ(P ) ∩Q) = ∅.

Theorem 1.3. [4] Let (X, τ) be a topological space and let A ⊆ X. Then
A ⊆ Clθω (A) ⊆ Clθ (A).

Definition 1.4. [7] Let (X, τ) be a topological space. Then (X, τ) is called
locally countable if for each x ∈ X, there is U ∈ τ such that x ∈ U and U
is countable.

Theorem 1.5. [4] If (X, τ) is locally countable and A ⊆ X, then A =
Clθω (A).

Definition 1.6. [8] Let (X, τ) be a topological space. Then (X, τ) is called
anti-locally countable if each U ∈ τ − {∅} is uncountable.

Theorem 1.7. [4] If (X, τ) is anti-locally countable and A ⊆ X, then
Clθ (A) = Clθω (A).

Definition 1.8. [5] Let (X, τ) be a topological space. A subset A of X is
said to be connected relative to (X, τ) if there is no separation relative to
(X, τ), (P,Q), such that A = P ∪Q.

Definition 1.9. [6] Let (X, τ) be a topological space. A subset A of X is
said to be θ-connected relative to (X, τ) if there is no θ-separation relative
to (X, τ), (P,Q), such that A = P ∪Q.

Definition 1.10. [3]. A topological space (X, τ) is called ω-regular if for
each closed set F in (X, τ) and x ∈ X − F , there exist U ∈ τ and V ∈ τω
such that x ∈ U,F ⊆ V and U ∩ V = ∅.
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956 Samer Al Ghour and Salma El-Issa

Theorem 1.11. [4]. If (X, τ) is an ω-regular topological space and A ⊆ X,
then A = Clθω(A).

Theorem 1.12. [4] If (X, τ) is a regular topological space and A ⊆ X,
then A = Clθ(A) = Clθω(A).

Theorem 1.13. [8] Let (X, τ) be a topological space and let A be a
non-empty subset of X. Then (τA)ω = (τω)A.

Definition 1.14. [4] A function f : (X, τ) −→ (Y, σ) is said to be weakly
θω-continuous if for each x ∈ X and V ∈ σ containing f(x), there is U ∈ τ
such that x ∈ U and f(U) ⊆ V

ω
.

Definition 1.15. [2] Let (X, τ) be a topological space and let A ⊆ X. A
is said to be V -θ-connected relative to (X, τ) if there are no disjoint non-
empty sets P and Q and no open sets U and V such that A = P ∪ Q,
P ⊆ U , Q ⊆ V , and U ∩ V = ∅.

Theorem 1.16. [3] Let (X, τ) be a topological space and let A ⊆ X.
Then A

ω ⊆ A.

Theorem 1.17. [3] If (X, τ) is an anti-locally countable topological space,
then for all U ∈ τω, U = U

ω
.

Definition 1.18. [10] A topological space (X, τ) is said to be R1 if for any
two points x, y ∈ X with {x} 6= {y}, there are U,V ∈ τ such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

Definition 1.19. [4] A topological space (X, τ) is said to be ω-T2 if for
any pair (x, y) of distinct points in X there exist U ∈ τ and V ∈ τω such
that x ∈ U , y ∈ V and U ∩ V = ∅.

Theorem 1.20. [4] (a) A topological space is ω-T2 if and only if for each
x ∈ X, Clθω({x}) = {x}.

(b) Every ω-T2 topological space is T1.

Theorem 1.21. [11] A topological space (X, τ) is T2 if and only if it is R1
and T1.

Definition 1.22. [4] A topological space (X, τ) is said to be ω-locally
indiscrete if every open set in (X, τ) is ω-closed.
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θw−Connectedness and w−R1 properties 957

Theorem 1.23. [4] a. If A is a subset of an ω-locally indiscrete topological
space (X, τ), then A = Clθω (A).

b. Every locally indiscrete topological space is ω-locally indiscrete.
c. Every locally countable topological space is ω-locally indiscrete.

Theorem 1.24. [12] A topological space (X, τ) is R1 if and only if for
each x ∈ X, Clθ({x}) = {x}.

2. 2. θω-Connectedness

In this section, we use the θω-closure operator to define θω-connectedness
as a property which is weaker than connectedness and stronger than θ-
connectedness. We give several sufficient conditions for the equivalence be-
tween θω-connectedness and connectedness, and between θω-connectedness
and θ-connectedness. We give two results regarding the union of θω-connected
sets and also we show that the weakly θω-continuous image of a connected
set is θω-connected.

Definition 2.1. Let (X, τ) be a topological space. A pair (P,Q) of non-
empty subsets of X is a said to be a θω-separation relative to (X, τ), if
(P ∩ Clθω(Q)) ∪ (Clθω(P ) ∩Q) = ∅.

Theorem 2.2. Let (X, τ) be a topological space and let (P,Q) be a pair
of non-empty subsets of X. If (P,Q) is a θω-separation relative to (X, τ),
then it is a separation relative to (X, τ).

Proof. Since the pair (P,Q) is a θω-separation relative to (X, τ), then
(P ∩ Clθω(Q)) ∪ (Clθω(P ) ∩Q) = ∅. By Theorem 1.3, we have

(P∩Q) ∪ (P ∩Q) ⊆ (P ∩ Clθω(Q)) ∪ (Clθω(P ) ∩Q) = ∅.
It follows that (P ∩ Q) ∪ (P ∩ Q) = ∅. Hence, the pair (P,Q) is a

separation relative to (X, τ).

Theorem 2.3. Let (X, τ) be a locally countable topological space and let
(P,Q) be a pair of non-empty subsets of X. Then (P,Q) is a θω-separation
relative to (X, τ) if and only if it is a separation relative to (X, τ).

Proof. Necessity. We can see it by Theorem 2.2.
Sufficiency. Suppose that the pair (P,Q) is a separation relative to

(X, τ). Then (P ∩Q)∪ (P ∩Q) = ∅. Since (X, τ) is locally countable, then
by Theorem 1.5 P = Clθω (P ) and Q = Clθω (Q). Thus,
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958 Samer Al Ghour and Salma El-Issa

(P ∩ Clθω(Q)) ∪ (Clθω(P ) ∩Q) = (P ∩Q) ∪ (P ∩Q)
= ∅.

It follows that (P,Q) is a θω-separation relative to (X, τ).

Example 2.11 will show that the condition ’locally countable’ in Theo-
rem 2.3 cannot be dropped.

Theorem 2.4. Let (X, τ) be a topological space and let (P,Q) be a pair
of non-empty subsets of X. If (P,Q) is a θ-separation relative to (X, τ),
then it is a θω-separation relative to (X, τ).

Proof. Since the pair (P,Q) is a θ-separation relative to (X, τ), then
(P ∩ Clθ (Q)) ∪ (Clθ (P ) ∩Q) = ∅. By Theorem 1.3, we have

(P∩Clθω (Q)) ∪ (Clθω (P ) ∩Q) ⊆ (P ∩ Clθ (Q)) ∪ (Clθ (P ) ∩Q) = ∅.
It follows that (P ∩ Clθω (Q)) ∪ (Clθω (P ) ∩ Q) = ∅. Hence, the pair

(P,Q) is a θω-separation relative to (X, τ).

Theorem 2.5. Let (X, τ) be an anti-locally countable topological space
and let (P,Q) be a pair of non-empty subsets of X. Then (P,Q) is a θ-
separation relative to (X, τ) if and only if it is a θω-separation relative to
(X, τ).

Proof. Necessity. We can see it by Theorem 2.4.
Sufficiency. Suppose that the pair (P,Q) is a θω-separation relative to

(X, τ). Then (P ∩ Clθω (Q)) ∪ (Clθω (P ) ∩ Q) = ∅. Since (X, τ) is anti-
locally countable, then by Theorem 1.7 Clθ (P ) = Clθω (P ) and Clθ (Q) =
Clθω (Q).

Thus,

(P ∩ Clθ (Q)) ∪ (Clθ (P ) ∩Q) = (P ∩ Clθω (Q)) ∪ (Clθω (P ) ∩Q)
= ∅.

It follows that (P,Q) is a θ-separation relative to (X, τ).

Example 2.12 will show that the condition ’anti-locally countable’ in
Theorem 2.5 cannot be dropped.
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θw−Connectedness and w−R1 properties 959

Definition 2.6. Let (X, τ) be a topological space. A subset A of X is said
to be θω-connected relative to (X, τ) if there is no θω-separation relative to
(X, τ), (P,Q), such that A = P ∪Q.

Theorem 2.7. Let (X, τ) be a topological space and A ⊆ X. If A is
connected relative to (X, τ), then A is θω-connected relative to (X, τ).

Proof. Suppose A is not θω-connected relative to (X, τ). Then there is a
θω-separation relative to (X, τ), (P,Q), such that P ∪Q = A. By Theorem
2.2, (P,Q) is a separation relative to (X, τ) with P ∪Q = A. Therefore, A
is not connected relative to (X, τ), a contradiction.

Theorem 2.8. Let (X, τ) be a topological space and A ⊆ X. If A is
θω-connected relative to (X, τ), then A is θ-connected relative to (X, τ).

Proof. Suppose A is not θ-connected relative to (X, τ). Then there is a
θ-separation relative to (X, τ), (P,Q), such that P ∪Q = A. By Theorem
2.4, (P,Q) is a θω-separation relative to (X, τ) with A = P ∪Q. Therefore,
A is not θω-connected relative to (X, τ), a contradiction.

Theorem 2.9. Let (X, τ) be a locally countable topological space and
A ⊆ X. Then A is connected relative to (X, τ) if and only if A is θω-
connected relative to (X, τ).

Proof. Necessity. We can see it by Theorem 2.7.
Sufficiency. Suppose that A is θω-connected relative to (X, τ) and sup-

pose to the contrary that A is not connected relative to (X, τ). Since A
is not connected relative to (X, τ), then there is a separation relative to
(X, τ), (P,Q), such that P ∪ Q = A. By Theorem 2.3, the pair (P,Q) is
a θω-separation relative to (X, τ) with P ∪ Q = A. Therefore, A is not
θω-connected relative to (X, τ), a contradiction.

Theorem 2.10. Let (X, τ) be an anti-locally countable topological space
and A ⊆ X. Then A is θω-connected relative to (X, τ) if and only if A is
θ-connected relative to (X, τ).

Proof. Necessity. We can see it by Theorem 2.8.
Sufficiency. Suppose that A is θ-connected relative to (X, τ) and sup-

pose to the contrary that A is not θω-connected relative to (X, τ). Since A
is not θω-connected relative to (X, τ), then there is a θω-separation relative
to (X, τ), (P,Q), such that P ∪ Q = A. By Theorem 2.5, the pair (P,Q)
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960 Samer Al Ghour and Salma El-Issa

is a θ-separation relative to (X, τ) with P ∪ Q = A. Therefore, A is not
θ-connected relative to (X, τ), a contradiction.

The following example shows in Theorem 2.9 that the condition ’locally
countable’ cannot be dropped:

Example 2.11. (Example 2.4 of [6]) Let I = [0, 1],X = I × I, and A =
I × {0}. Let τ be the topology on X generated by the following base on
X: (1) the relative open sets from the plane in X − A and (2) for x ∈ A,
sets of the form (V ∩ (X − A)) ∪ {x} where V is open in the plane with
x ∈ V . It is proved in [15] that A is θ-connected relative to (X, τ) but A
is not connected relative to (X, τ). Since (X, τ) is anti-locally countable,
then by Theorem 2.10, A is θω-connected relative to (X, τ).

The following example shows in Theorem 2.10 that the condition ’anti-
locally countable’ cannot be dropped:

Example 2.12. (Example 4 of [9]) Let X = Z and τ be the topology
generated by B = {{2m− 1},m ∈ Z} ∪ {{2m− 1, 2m, 2m+ 1},m ∈ Z} as
a base. Let A = {2m, 2m + 2}. It is proved in [9] that A is θ-connected
relative to (X, τ). On the other hand, it is not difficult to check that the
pair ({2m}, {2m+ 2}) is a separation of A relative to (X, τ) and so A is
not connected relative to (X, τ). Since (X, τ) is locally countable, then by
Theorem 2.9, A is not θω-connected relative to (X, τ).

For ω-regular topological spaces, the concepts connectedness relative to
(X, τ) and θω-connectedness relative to (X, τ) are equivalent:

Theorem 2.13. Let (X, τ) be an ω-regular topological space and A ⊆ X.
Then the following are equivalent:

(a) A is θω-connected relative to (X, τ).
(b) A is connected relative to (X, τ).

Proof. The definitions and Theorem 1.11.

For regular topological spaces, the concepts connectedness relative to
(X, τ), θω-connectedness relative to (X, τ) and θ-connectedness relative to
(X, τ) are equivalent:

Theorem 2.14. Let (X, τ) be a regular topological space and A ⊆ X.
Then the following are equivalent:
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θw−Connectedness and w−R1 properties 961

(a) A is connected relative to (X, τ)

(b) A is θω-connected relative to (X, τ)

(c) A is θ-connected relative to (X, τ).

Proof. The definitions and Theorem 1.12.

Notation 2.15. Let (X, τ) be a topological space and let B ⊆ A ⊆ X
with A is non-empty.

(a) The closure of B in (A, τA) will be denoted by
³
B
´
A
.

(b) The θ-closure of B in (A, τA) will be denoted by (ClθB)A.

(c) The θω-closure of B in (A, τA) will be denoted by (ClθωB)A.

(d) The ω-closure of B in (A, τA) will be denoted by
³
B
ω
´
A
.

Theorem 2.16. Let (X, τ) be a topological space and let B ⊆ A ⊆ X
with A is non-empty. Then (ClθωB)A ⊆ Clθω (B) ∩A.

Proof. (ClθωB)A ⊆ A is obvious. To see that (ClθωB)A ⊆ Clθω (B), let
x ∈ (ClθωB)A and U ∈ τ with x ∈ U . Let V = U ∩ A, then V ∈ τA and

x ∈ V . Since x ∈ (ClθωB)A, then
³
V
ω
´
A
∩ B 6= ∅. By Theorem 1.13,³

V
ω
´
A
= V

ω∩A. Thus,
³
V
ω
´
A
∩B = V

ω ∩A∩B ⊆ U
ω ∩A∩B ⊆ U

ω ∩B
and hence U

ω ∩B 6= ∅. It follows that x ∈ Clθω (B).

Theorem 2.17. Let (X, τ) be a topological space and let A ⊆ X. If A is
θω-connected relative to (A, τA), then A is θω-connected relative to (X, τ).

Proof. Suppose to the contrary thatA is not θω-connected relative to(X, τ).
Then there is a θω-separation relative to (X, τ), (P,Q), such thatA = P∪Q.
By Theorem 2.16,

(P ∩ (ClθωQ)A) ∪ ((ClθωP )A ∩Q) ⊆ (P ∩ (Clθω (Q) ∩A)) ∪ (Clθω (P ) ∩A ∩Q)
⊆ (P ∩ (ClθωQ)) ∪ ((ClθωP ) ∩Q)
= ∅.

It follows that A is not θω-connected relative to (A, τA), a contradiction.

Theorem 2.18. Let (X, τ) be a topological space and A ⊆ X, let D be
the closure of A in (X, τθω). Then Clθω (A) ⊆ D.

rvidal
Cuadro de texto
929



962 Samer Al Ghour and Salma El-Issa

Proof. Let x ∈ Clθω (A) and let U ∈ τθωwith x ∈ U . Choose V ∈ τ such
that x ∈ V ⊆ V

ω ⊆ U . Since x ∈ Clθω (A), then V
ω ∩ A 6= ∅ and so

U ∩A 6= ∅. Thus, x ∈ D.

Theorem 2.19. Let (X, τ) be a topological space and let A ⊆ X. If A is
θω-connected relative to (X, τ), then A is connected relative to (X, τθω).

Proof. Suppose to the contrary that A is not connected relative to (X, τθω).
Then there is a separation, (P,Q), relative to (X, τθω) such that A = P ∪Q.
Let C and D be the closures of P and Q in (X, τθω), respectively. By
Theorem 2.18,

(P ∩Clθω (Q)) ∪ (Clθω (P ) ∩Q) ⊆ (P ∩D) ∪ (C ∩Q)
= ∅.

It follows that A is not θω-connected relative to (X, τ), a contradiction.

The next example shows that the converse of Theorem 2.19 is not true
in general:

Example 2.20. (Example 2.26 of [4]) Let τ = {∅,R,N,Qc,N∪Qc}. It is
proved in [4] that τθω = {R, ∅,N}. Let A = N ∪ {

√
2}, then

(a) A is connected relative to (X, τθω).

(b) A is not θω-connected relative to (X, τ).

Proof. a) Suppose to the contrary that A is not connected relative to
(X, τθω). Then there is a separation, (P,Q), relative to (X, τθω) such that
A = P∪Q. Let C andD be the closures of P andQ in (X, τθω), respectively.
Without loss of generality let us assume that

√
2 ∈ P . Then

√
2 /∈ D. So,

there is U ∈ τθω such that
√
2 ∈ U and U ∩ Q = ∅. Since U = R, then

U ∩Q = Q 6= ∅, a contradiction.
b) Let P = N and Q = {

√
2}.To see that P ∩ Clθω (Q) = ∅, let x ∈ P .

Since P ∈ τ and P
ω ∩Q = Nω ∩{

√
2} = N∩{

√
2} = ∅, then x /∈ Clθω (Q).

To see that Clθω (P ) ∩ Q = ∅ we show that
√
2 /∈ Clθω(N). Since

√
2 ∈

Qc ∈ τ and Qcω ∩N = (R−N) ∩N = ∅, then
√
2 /∈ Clθω(N).

Theorem 2.21. Let (X, τ) be a topological space and let A ⊆ X. Then
A is θω-connected relative to (X, τ) if and only if when (P,Q) is a θω-
separation relative to (X, τ) and A ⊆ P ∪Q, then either A ⊆ P or A ⊆ Q.
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θw−Connectedness and w−R1 properties 963

Proof. Necessity. Suppose that A is θω-connected relative to (X, τ).
Let (P,Q) be θω-separation relative to (X, τ) such that A ⊆ P ∪ Q. Let
G = A ∩ P and H = A ∩Q. Then

(G ∩Clθω(H)) ∪ (Clθω(G) ∩H) ⊆ (P ∩Clθω(Q)) ∪ (Clθω(P ) ∩Q)
= ∅.

Thus, (G,H) is a θω-separation relative to (X, τ). Since A = G ∪ H
and A is θω-connected relative to (X, τ), either G = ∅ or H = ∅. Thus
eitherA = A ∩ P or A = A ∩Q. Hence either A ⊆ P or A ⊆ Q.

Sufficiency. Suppose to the contrary that A is not θω-connected relative
to (X, τ). Then there is a θω-separation, (P,Q), relative to (X, τ) such that
A = P ∪Q. By assumption either A ⊆ P or A ⊆ Q. Hence Q = ∅ or P = ∅,
a contradiction.

Theorem 2.22. Let (X, τ) be a topological space and let A be θω-
connected relative to (X, τ) and let B ⊆ X such that A ⊆ B ⊆ Clθω(A).
Then B is θω-connected relative to (X, τ).

Proof. Suppose to the contrary that B is not θω-connected relative to
(X, τ). Then there exists, (P,Q), θω-separation relative to (X, τ) such that
B = P∪Q. Since A ⊆ P∪Q, then by Theorem 2.21 either A ⊆ P or A ⊆ Q.
Thus, either we have Q ⊆ Clθω (A) ⊆ Clθω (P ) or P ⊆ Clθω (A) ⊆ Clθω (Q).
So either we haveQ ⊆ Clθω (P )∩Q = ∅ or P ⊆ P∩Clθω (Q) = ∅. Therefore,
either P = ∅ or Q = ∅, a contradiction.

Corollary 2.23. Let (X, τ) be a topological space. If A is θω-connected
relative to (X, τ), then Clθω(A) is θω-connected relative to (X, τ).

Theorem 2.24. Let (X, τ) be a topological space. If for each α ∈ 4, the
set Aα is θω-connected relative to (X, τ) such that Aα ∩Aβ 6= ∅ for each α,
β ∈ 4, then S

α∈4
Aα is θω-connected relative to (X, τ).

Proof. Suppose to the contrary that
S

α∈4
Aα is not θω-connected relative

to (X, τ). Then there exists (P,Q), θω-separation relative to (X, τ) such
that

S
α∈4

Aα = P ∪ Q. For each β ∈ 4, Aβ is θω-connected relative to

(X, τ) and Aβ ⊆
S

α∈4
Aα = P ∪ Q, so by Theorem 2.21 either Aβ ⊆ P or

Aβ ⊆ Q. Without loss of generality we may assume that Aβ ⊆ P .
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964 Samer Al Ghour and Salma El-Issa

Claim. Either we have Aα ⊆ P for all α ∈ 4 or we have Aα ⊆ Q for all
α ∈ 4.

Proof of Claim. Suppose to the contrary that there are α, β ∈ 4 such
that Aα ⊆ P and Aβ ⊆ Q. Then Aα ∩Aβ ⊆ P ∩Q = ∅, a contradiction.

By the above claim either (
S

α∈4
Aα = P and Q = ∅) or ( S

α∈4
Aα = Q

and P = ∅) which is a contradiction.

Theorem 2.25. Let fn be a sequance of θω-connected relative to (X, τ)
subsets such that for all n ∈N, fn∩fn+1 6= ∅. Then

S
n∈N

fn is θω-connected

relative to (X, τ).

Proof. For each n ∈ N, let Bn =
nS
i=1

fn.

Claim. For all n ∈ N, Bn is θω-connected relative to (X, τ).

Proof of Claim. By induction.

B1 = f1 is θω-connected relative to (X, τ). Suppose Bn is θω-connected
relative to (X, τ). Since fn ∩ fn+1 6= ∅ and fn ∩ fn+1 ⊆ Bn ∩ fn+1 then
Bn ∩ fn+1 6= ∅ and by Theorem 2.24 Bn+1 = Bn ∪ fn+1 is θω-connected
relative to (X, τ).

Since for each n,m ∈ N, Bn ∩ Bm = Bt 6= ∅ where t = min {n,m},
then again by Theorem 2.24,

S
n∈N

Bn =
S

n∈N
fn is θω-connected relative to

(X, τ).

Theorem 2.26. Let (X, τ) be a topological space and let A$beanon −
emptysubsetofX.ThenAisθω-connected relative to (X, τ) if and only if for
each two points x, y ∈ A, there is a subset B ⊆ A with x, y ∈ B, such that
B is θω-connected relative to (X, τ).

Proof. Necessity. Obvious.

Sufficiency. Choose x ∈ A. By assumption, for each y ∈ A there is θω-
connected relative to (X, τ) Bxy which contains x and y and Bxy ⊆ A. Since
A = y ∈ A∪Bxy and x ∈

T
y∈A

Bxy, then by Theorem 2.24, A is θω-connected

relative to (X, τ).

rvidal
Cuadro de texto
932



θw−Connectedness and w−R1 properties 965

Theorem 2.27. Let f : (X, τ) −→ (Y, σ) be a weakly θω-continuous
function. If K is connected relative to (X, τ), then f(K) is θω-connected
relative to (Y, σ).

Proof. Suppose on the contrary that there is, (P,Q), θω-separation relative
to (Y, σ) such that f(K) = P∪Q. Let A = K∩f−1(P ) andB = K∩f−1(Q).
Then A 6= ∅, B 6= ∅ and K = A ∪B.

Claim. (A,B) is separation relative to (X, τ).

Proof of claim. Assume not. Without loss of generality we may assume
that there is x ∈ A ∩ B. Then x ∈ K and f (x) ∈ P ⊆ Y − Clθω (Q)
∈ τθω . Choose V ∈ σ such that f(x) ∈ V ⊆ V

ω ⊆ Y − Clθω (Q). Since f
is weakly θω-continuous, there is U ∈ τ such that x ∈ U and f(U) ⊆ V

ω
.

So f(U) ∩ Q = ∅. Since x ∈ B, then U ∩ B 6= ∅. Choose t ∈ U ∩ B =
U ∩K ∩ f−1(Q), then f (t) ∈ f (U) ∩Q, a contradiction.

By the above claim we conclude that K is connected relative to (X, τ)
which is a contradiction.

3. 3. V -θω-Connectedness

In this section, we define and investigate V -θω-connectedness as a strong
form of V -θ-connectedness. We show that the θω-connectedness and V -θω-
connectedness are independent.

We start by the following relationship between connectedness and V -θ-
connectedness.

Theorem 3.1. Let (X, τ) be a topological space and let A ⊆ X. If A is
connected relative to (X, τ), then A is V -θ-connected relative to (X, τ).

Proof. Suppose to the contrary that A is not V -θ-connected relative to
(X, τ), then there are disjoint non-empty sets P and Q and open sets U, V
such that A = P ∪Q,P ⊆ U,Q ⊆ V , and U ∩ V = ∅. Thus,

³
P ∩Q

´
∪
³
P ∩Q

´
⊆

³
U ∩ V

´
∪
³
U ∩ V

´
⊆

³
U ∩ V

´
∪
³
U ∩ V

´
= ∅ ∪ ∅
= ∅.
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Thus the pair (P,Q) is a separation relative to (X, τ), and so A is not
connected relative to (X, τ). This is a contradiction.

Example 3.6 will show that the converse of Theorem 3.1 is not true in
general.

Definition 3.2. Let (X, τ) be a topological space and let A ⊆ X. A is
V -θω-connected if there are no disjoint non-empty sets P and Q and no
open sets U and V such that A = P ∪Q, P ⊆ U , Q ⊆ V and U

ω ∩V ω
= ∅.

Theorem 3.3. Let (X, τ) be a topological space and let A ⊆ X. If A is
connected relative to (X, τω), then A is V -θω-connected relative to (X, τ).

Proof. Suppose to the contrary that A is not V -θω-connected relative to
(X, τ). Then there are disjoint non-empty sets P and Q and open sets
U ,V such that A = P ∪Q, P ⊆ U , Q ⊆ V , and U

ω ∩V ω
= ∅. Thus,

³
P ∩Qω

´
∪
³
P
ω ∩Q

´
⊆

³
U ∩ V ω

´
∪
³
U
ω ∩ V

´
⊆

³
U
ω ∩ V ω

´
∪
³
U
ω ∩ V ω

´
= ∅ ∪ ∅
= ∅.

Thus the pair (P,Q) is a separation relative to (X, τω), and so A is not
connected relative to (X, τω). This is a contradiction.

Question 3.4. Let (X, τ) be a topological space. Is it true that every
V -θω-connected relative to (X, τ) is connected relative to (X, τω)?

Theorem 3.5. Let (X, τ) be a topological space and let A ⊆ X. If A
is V -θω-connected relative to (X, τ), then A is V -θ-connected relative to
(X, τ).

Proof. Suppose to the contrary that A is not V -θ-connected relative to
(X, τ). Then there are disjoint non-empty sets P and Q and open sets U ,V
such that A = P ∪Q, P ⊆ U , Q ⊆ V , and U ∩ V = ∅. By Theorem 1.16,
U
ω ∩ V ω ⊆ U ∩ V = ∅, and so A is not V -θω-connected relative to (X, τ),

a contradiction.
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The following example shows that the converse of Theorem 3.5 is not
true in general:

Example 3.6. (Example 2.26 of [4]) Consider (R, τ) where τ = {∅,R,N,Qc,N∪
Qc}. It is proved in [4] that τθω = {R, ∅,N}. Let A = N ∪Qc. Then

(a) A is V -θ-connected relative to (R, τ).
(b) A is not V -θω-connected relative to (R, τ).
(c) A is θω-connected relative to (R, τ).

Proof . a) Suppose to the contrary that A is not V -θ-connected relative
to (R, τ). Then there are disjoint non-empty sets P and Q and open sets
U ,V such that A = P ∪ Q, P ⊆ U , Q ⊆ V , and U ∩ V = ∅. If U
= N∪Qc or V =N∪Qc, then U ∩ V = N ∪Qc ∩ V = R∩ V = V 6= ∅ or
U ∩V = U ∩N ∪Qc = U ∩R = U 6= ∅. So either (U = N and V = Qc) or
(V = N and U = Qc). Thus, U ∩ V = Q ∩ (R−N) 6= ∅, a contradiction.

b) Note that τω = τcoc∪{C : C ⊆ N} where τcoc denotes the cocountable
topology on R, and {R} ∪ {M : M is countable} ∪ {R − C : C ⊆ N} is
the collection of ω-closed sets of (R, τ). Let P = N = U and Q = Qc = V .
Then U

ω
=N and V

ω
= Qc = R−N and so U

ω ∩V ω
= (R−N)∩N = ∅.

This shows that A is not V -θω-connected relative to (X, τ).
c) Suppose to the contrary that there is a pair, (P,Q), that is θω-

separation relative to (X, τ) such thatN∪Qc = P∪Q. Note that {∅,R,R−
N} is the collection θω-closed sets of (R, τ). Thus, Clθω(P ) = Clθω(Q) =
R −N. Since P ∩ Clθω(Q) = Q ∩ Clθω (P ) = ∅, then P ⊆ N and Q ⊆ N
and so P ∪Q ⊆ N, a contradiction.

Theorem 3.7. Let (X, τ) be an anti-locally countable topological space
and A ⊆ X. Then A is V -θω-connected relative to (X, τ) if and only if A
is V -θ-connected relative to (X, τ).

Proof. Necessity. Theorem 3.5.

Sufficiency. We can see it by Theorem 1.17.

The following example, together with Example 3.6, shows that θω-
connectedness relative to (X, τ) and V -θω-connectedness relative to (X, τ)
are independent:

Example 3.8. (Example 1 of [9]) Consider that topological space (R, τu)
where τu is the usual topology on R. Let A = (0, 1) ∪ (1, 2). Then

(a) A is not θω-connected relative to (R, τu).
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(b) A is V -θω-connected relative to (R, τu).

Proof. a) Since A is not interval, then A is not connected relative to
(R, τu). Since (R, τu) is regular, then by Theorem 2.14 A is not θω-
connected relative to (R, τu).

b) It is proved in [9] that A is V -θ-connected relative to (R, τu). Since
(R, τu) is anti-locally countable, then by Theorem 3.7, A is V -θω-connected
relative to (R, τu).

4. 4. R1 and ω-R1 Separation Axioms

In this section, we continue the study of R1 as a known topological property
by giving several results regarding it. We introduce ω-R1 (I), ω-R1 (II), ω-
R1 (III) and weakly ω-R1 as four weaker forms of R1 by utilizing ω-open
sets.

Definition 4.1. A topological space (X, τ) is said to be ω-R1 (I) if for any
two points x, y ∈ X with {x} 6= {y}, there are U ∈ τ , V ∈ τω such that
x ∈ U , y ∈ V and U ∩ V = ∅.

Definition 4.2. A topological space (X, τ) is said to be ω-R1 (II) if
Clθω({x}) = {x} for all x ∈ X.

Definition 4.3. A topological space (X, τ) is said to be ω-R1 (III) if for
any two points x, y ∈ X with {x} 6= {y}, there are disjoint sets U ∈ τ and
V ∈ τω such that (x ∈ U and y ∈ V ) or (y ∈ U and x ∈ V ).

Theorem 4.4. Every R1 topological space is ω-R1 (I).

Proof. Follows directly from the definitions.

Theorem 4.5. Every ω-R1 (I) topological space is ω-R1 (II).

Proof. Let (X, τ) be ω-R1 (I). Suppose to the contrary that there is x ∈ X
such that Clθω({x}) 6= {x}. Since {x} ⊆ Clθω({x}) is always true, then
there is y ∈ Clθω({x}) − {x}. Since y /∈ {x}, then {x} 6= {y} and by
assumption, there exist U ∈ τω and V ∈ τ such that x ∈ U , y ∈ V and
U ∩ V = ∅. Since y ∈ Clθω({x}) and y ∈ V ∈ τ , then V

ω ∩ {x} 6= ∅. So
x ∈ V

ω
. Since x ∈ U ∈ τω and x ∈ V

ω
, then U ∩ V 6= ∅, a contradiction.

Theorem 4.6. Every ω-R1 (II) topological space is ω-R1 (III).
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Proof. Let (X, τ) be ω-R1 (II). Let x, y ∈ X with {x} 6= {y}. Since
(X, τ) is ω-R1 (II), then Clθω({x}) = {x} and Clθω({y}) = {y} and so
Clθω({x}) 6= Clθω({y}). We have two cases to be considered:

Case 1. There is z ∈ Clθω({x}) − Clθω({y}). Since z /∈ Clθω({y}), then
there exists U ∈ τ such that z ∈ U and U

ω ∩ {y} = ∅. Since z ∈ U ∈ τ and
z ∈ Clθω({x}) = {x}, then U ∩ {x} 6= ∅ and so x ∈ U . Set V = X − U

ω
.

Then we have x ∈ U ∈ τ , y ∈ V ∈ τω and U ∩ V = ∅.

Case 2. There is z ∈ Clθω({y})−Clθω({x}). As Case 1, we can find U ∈ τ ,
V ∈ τω such that y ∈ U ∈ τ , x ∈ V ∈ τω and U ∩ V = ∅.

Theorem 4.7. Every ω-T2 topological space is ω-R1 (I).

Proof. Let (X, τ) be ω-T2 and let x, y ∈ X with {x} 6= {y}. Then x 6= y.
Since (X, τ) is ω-T2, there are U ∈ τ , V ∈ τω such that x ∈ U , y ∈ V and
U ∩ V = ∅. Therefore, (X, τ) is ω-R1 (I).

Theorem 4.8. A topological space (X, τ) is ω-T2 if and only if it is ω-
R1 (II) and T1.

Proof. Suppose that (X, τ) is ω-T2. Then by Theorems 4.7 and 4.5 it is
ω-R1 (II). Also, by Theorem 1.20 (b) it is T1. Conversely, suppose that
(X, τ) is ω-R1 (II) and T1. To show that (X, τ) is ω-T2, we apply Theorem
1.20 (a). Let x ∈ X. By the definition of ω-R1 (II), Clθω({x}) = {x}.
Since (X, τ) is T1, then {x} = {x}. It follows that Clθω({x}) = {x}. Hence
by Theorem 1.20 (a), it follows that (X, τ) is ω-T2.

Corollary 4.9. A topological space (X, τ) is ω-T2 if and only if it is
ω-R1 (I) and T1.

Proof. Suppose that (X, τ) is ω-T2. Then by Theorems 4.7 and 4.5 it
is ω-R1 (II). Also, by Theorem 4.8 it is T1. The converse follows from
Theorems 4.5 and 4.8.

Recall that a proper non-empty open subset U of a topological space
(X, τ) is said to be a minimal open set if any open set which is contained
in U is ∅ or U .

Theorem 4.10. Let U be a minimal open set of a topological space (X, τ).
If for some x ∈ U we have {x} ⊆ U , then {x} = U . In particular, U is
clopen.
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Proof. Suppose to the contrary that {x} 6= U . Then there is y ∈ U −{x}.
Choose V ∈ τ such that y ∈ V and {x}∩V = ∅. Since y ∈ U ∩V ∈ τ−{∅},
U ∩ V ⊆ U and U is minimal open, then U ∩ V = U and hence U ⊆ V .
Since x ∈ {x} ⊆ U , then x ∈ V , a contradiction.

Recall that a space (X, τ) is locally indiscrete if every open subset of X
is closed. It is known that a topological space (X, τ) is locally indiscrete
if and only if (X, τ) is generated by a partition of X as a base. If B is a
partition of a non-empty setX and (X, τ) is the topological space generated
by B as a base, then U is a minimal open set of (X, τ) if and only if U ∈ B.

Theorem 4.11. Every locally indiscrete topological space is R1.

Proof. Let (X, τ) be locally indiscrete. Let B be a a partition of X which
forms a base of (X, τ). Let x, y ∈ X such that {x} 6= {y}. If x, y ∈ B for
some B ∈ B, then {x} ⊆ B = B and {y} ⊆ B = B. Since B is a minimal
open set of (X, τ) then by Theorem 4.10, {x} = {y} = B. Therefore, there
are B1, B2 ∈ B such that x ∈ B1, y ∈ B2 and B1 ∩ B2 = ∅. This ends the
proof that (X, τ) is R1.

Theorem 4.12. Let (X, τ) be locally indiscrete. Then (X, τ) is ω-T2 if
and only if it is a discrete topological space.

Proof. Suppose that (X, τ) is locally indiscrete and ω-T2. Then by Corol-
lary 4.9 it is T1. Thus, the singletons are closed in (X, τ). Since (X, τ) is
locally indiscrete, then the singletons are open in (X, τ). This shows that
(X, τ) is a discrete topological space. Conversely, if (X, τ) is a discrete
topological space, then (X, τ) is obviously ω-T2.

Theorem 4.13. Every ω-locally indiscrete topological space is ω-R1 (II).

Proof. Follows from Theorem 1.23 (a).

Theorem 4.14. Let (X, τ) be an anti-locally countable topological space.
Then the following are equivalent:

a. (X, τ) is R1.
b. (X, τ) is ω-R1 (I).
c. (X, τ) is ω-R1 (II).

Proof. (a) =⇒ (b): Theorem 4.4.
(b) =⇒ (c): Theorem 4.5.
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(c) =⇒ (a): We apply Theorem 1.24. Let x ∈ X. By (c), we have
Clθω({x}) = {x}. Since (X, τ) is anti-locally countable, then by Theorem
1.7, Clθ ({x}) = Clθω ({x}). Therefore, we have Clθ({x}) = {x} Thus by
Theorem 1.24, it follows that (X, τ) is R1.

The following example shows that the converse of Theorem 4.4 is not
true in general:

Example 4.15. Consider (N, τ) where τ is the cofinite topology. It is
given in [4] as an example of an ω-T2 topological space that is not T2. By
Theorem 4.10, (N, τ) is ω-R1 (I) and by Corollary 4.9 it is T1. On the other
hand, if it is R1, then by Theorem 1.21, it is T2. Therefore, it is not R1.

The following example shows that the converse of Theorem 4.5 is not
true in general:

Example 4.16. Consider (R, τ) where τ = {∅,R,Q}. Clearly that (R, τ)
is ω-locally indiscrete and by Theorem 4.13 it is ω-R1 (II). To see that
(R, τ) is not ω-R1 (I), suppose to the contrary that it is ω-R1 (I). Sincen√
2
o
= R−Q and {1} = R, there are U ∈ τω and V ∈ τ such that 1 ∈ U ,

√
2 ∈ V and U ∩ V = ∅. Since the only open set which contains

√
2 is R,

then V = R and so U ∩ V = U 6= ∅, a contradiction.

The following example shows that the converse of Theorem 4.7 is not
true in general:

Example 4.17. Let (X, τ) be any locally indiscrete topological space that
is not discrete. By Theorem 4.11 it is R1, so by Theorem 4.4 it is ω-R1 (I).
On the other hand, by Theorem 4.12 it is not ω-T2.

Question 4.18. Is every ω-R1 (III) topological space ω-R1 (II)?

Definition 4.19. A topological space (X, τ) is said to be weakly ω-R1 if
for all x, y ∈ X with {x} 6= {y}, there exist U, V ∈ τω such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

Theorem 4.20. Let (X, τ) be a topological space. Then (X, τω) is R1 if
and only if (X, τω) is T2.

Proof. Since (X, τω) is T1, then by Theorem 1.21 (X, τω) is R1 if and only
if (X, τω) is T2.
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Theorem 4.21. Let (X, τ) be a topological space. If (X, τω) is R1, then
(X, τ) is weakly ω-R1.

Proof. Suppose (X, τω) is R1. Let x, y ∈ X with {x} 6= {y}. Then x 6= y
and so {x}ω = {x} 6= {y} = {y}ω. Since (X, τω) is R1, then there exist
U, V ∈ τω such that x ∈ U , y ∈ V and U ∩ V = ∅. This shows that (X, τ)
is weakly ω-R1.

The converse of Theorem 4.21 is not true in general as the following
example clarifies:

Example 4.22. Consider (R, τ), where τ = {∅,R, (−∞, 2] , (2,∞)}.
(R, τ) is weakly ω-R1: Since is locally indiscrete, then by Theorem 4.11

it is R1.
(R, τω) is not R1: By Theorem 4.20 it is sufficient to see that (R, τω)

is not T2. Suppose to the contrary that (R, τω) is T2. Then there are
U, V ∈ τω such that 0 ∈ U, 1 ∈ V and U ∩ V = ∅. Choose H,S ∈ τ and
countable subsets C,D ⊆ R such that 0 ∈ H −C ⊆ U and 1 ∈ S−D ⊆ V .
Then we must have H = S = (−∞, 2] and (H − C)∩(S −D) ⊆ U ∩V = ∅.
So, (−∞, 2] ⊆ C ∪D, a contradiction.

Theorem 4.23. If (X, τ) is locally countable, then (X, τω) is R1.

Proof. Suppose that (X, τ) is locally countable. Then (X, τω) is a discrete
topological space and so (X, τω) is T2. By Theorem 4.20, (X, τω) is R1.

Theorem 4.24. A locally indiscrete topological space (X, τ) is locally
countable if and only if it has a base which consists of countable sets that
form a partition of X.

Proof. Necessity. Suppose that (X, τ) is locally indiscrete and locally
countable. Let B be a base for (X, τ) which forms a partition of X. Let
B ∈ B. Choose x ∈ B and choose a countable set U ∈ τ such that x ∈ U .
Since B ∩ U ∈ τ − {∅} and B ∩ U ⊆ B, then B ∩ U = B and so B ⊆ U .
Therefore, B is countable.

Sufficiency. Obvious.

Theorem 4.25. Let (X, τ) be a locally indiscrete topological space. Then
(X, τω) is R1 if and only if (X, τ) is locally countable.

Proof. Necessity. Suppose that (X, τ) is locally indiscrete and (X, τω)
is R1. Let B be a base for (X, τ) which forms a partition of X. Let B ∈ B.
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