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1. Introduction

The generalization of 2-variable Kampé de Fériet polynomials (or, Gould
Hopper polynomials) introduced by Gould and Hopper [15,p.58,(6.2)] (see
also [14, 4]):
B y NPT
HP) (z,9) = n! Z T p—— (1.1)

These polynomials are usually deﬁned by the generating function
[15,p.58,(6.3)]:

o n

t
Tyt Z Hép)(iﬂ,y)ﬁ, (1.2)
n=0 '

and reduce to the ordinary Hermite polynomials Hy(z) (see [1, 2]) when
p =2,y = —1 and x is replaced by 2x.

Recently, in the framework of the monomiality principle [8, 13], a class of
generalized exponential functions, the so-called Laguerre-type exponentials
(shortly L-exponentials), was introduced by Dattoli and Ricci [14]. These
functions are determined by using a differential isomorphism, denoted by
the symbol T := T,,, acting onto the space A := A, of analytic functions of
the x variable by means of the correspondence

D:=D, — Dy :=DzD; z— D;}

where n
_n N x_

so that "
ny _ X

T(z") = g

Note that the exponential function is transformed by 7" into the Laguerrian

exponential e (z)
oo n

x
Te" =e(z) = —.
nz:%) (n!)?
This is in accordance with the results of a paper by Dattoli and Ricei [11]
about the definition of the higher-order Laguerre-type exponentials, which
are defined in such a way that

T (e") = es(x) :

[
(8
3
N o
1
5
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A first example of the above-mentioned isomorphism was found proving
the connection between the Hermite-Kamp é de Fériet (or Gould-Hopper)
polynomials [7, 10] and the two variable Laguerre polynomials. Now use
of the above isomorphism already permitted us to extend the ordinary
higher-order Laguerre polynomials which are the Laguerrian counterpart
of the Gould-Hopper ones [6], and Laguerre type Bessel functions [9]. Par-
ticular cases of higher-order type Laguerre polynomials were used for the
computation of moments of chaotic radiations (see [4]).

General classes of higher-order Laguerre polynomials were defined in [4]

as
Giss 7 k 2 jk
Jss
Ly 2_: k!) a+1 [(n— jk)]s+1 (1.3)
and are given by the generating function
— B t" t+yt t yt/
> LG ) = T () = extelt (1.49)
n=0

Note that L (x,y) are the 2-variable generalized Laguerre polynomials

kn]k
my—nz IRk (1.5)

which are special cases of (1.3) and (1.4), when s = o = 0.

The exponential generating function for the geometric polynomials (also
known as Fubini polynomials) F,,(z) is given by [6] (see also [5])

1—ad =T x(let 4y = nX:%Fn(x)%. (1.6)

Geometric polynomials also have close relation ship with Apostol-Bernoulli
numbers 3, () and Euler numbers E,, as (see [6])

B = T )N £ 1
En = Fn(__l)a
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where Apostol-Bernoulli numbers 3,,(\) are defined by

() - Zﬁn

Ramanujan obtained the exponential generating function of the exponential
(one variable Bell) polynomials ¢ (z) (see [Berndt [3],Part 1,Chapter 3])
as

z(et—1) }OO: "
n=0 :
and proved the recurrence relation

Sn1() = 2(pn(z) + = 6n(0)).

Geometric and exponential polynomials are connected by the relation

x) = /Ooo dn(z)e .

Recently, Ozarslan [18] introduced the following unification of the Apostol-
Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Explicitly,
Ozarslan studied the following generating function:

1-kik o
£9) (@it a,b) = (2—t> ZY (2;k,a, b (1.8)

Bbet — b

[6]

(|t+bln< ) < 27,k € Nosa, b € R\ {0}; a,ﬂeC)

For @« =1 in (1.8), we get

21 ktk . 0 "
fap(z;t,a,b) = Fa—at gyn,ﬁ(l‘;k,a, b)— (1.9)

<|t+bln(ﬁ) |< 27,k € Ny;a, be?R*,ﬁeC)
From (1.8) and (1.9), we have
Y (@ k. a,b) = Yo p(z:kya,b), (n € N),

which is defined by Ozden [19]. Ozden et al. [21] introduced many proper-
ties of these polynomials. We give some specific special cases:
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1. By substitutinga = b=k = 1 and = A into (1.8), one has the Apostol-
Bernoulli polynomials erlg (;1,1,1) = Bfla)(a:;)\), which are defined by
means of the following generating function

EON L & e
<—/\et_1) etzZOB,%)(:B;A)H,(\Hlogkkzm, (1.10)
n=

(see for details [16-25]; see also the references cited in each of these earlier
works).

For A = a =1 in (1.10), the result reduces to

¢, & ¢
xrl __
7 1¢ —nEZOBn(x)n!,]tK 27,

where B),(z) denotes the classical Bernoulli polynomials (see from example
[16-25]; see also the references cited in each of these earlier works).

2. If we substitute b=a =1, k=0, a = —1 and 5 = X into (1.8), we have
the Apostol-Euler polynomials Yn(lg (x;0,—1,1) = Er(Ll)(m, A)

2 “ xt R ( t"
<)\€t + 1) € »,;:0: n (x’A)nl’ (| t+ Og)\ |< 77'), (1 11)

(see for details [16-25]; see also the references cited in each of these earlier
works).

For A =1 1in (1.11), the result reduces to

2 = t"
et——{—lex :ZEn(x)m,’t|< ™,
n=0 :

where E,(z) denotes the classical Euler polynomials (see from example [16-
25]; see also the references cited in each of these earlier works).

3. By substitutingb=a =1, k=1, a= —1 and § = X into (1.8), one has
the Apostol-Genocchi polynomials erlﬁ) (x;1,—-1,1) = %Gn(a:;)\), which is
defined by means of the following generating function
2t s "
xt . v
N1t T T;Gn(ﬂf, /\)n!, (| t+logA[<m)),
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(see for details [16-25]; see also the references cited in each of these earlier
works).

4. By substituting z = 0 in the generating function (1.8), we obtain the
corresponding unification of the generating functions of Bernoulli, Euler
and Genocchi numbers of higher order. Thus we have

Y% (05 k,a,0) = Y% (k, a,0), (n € N).

Very recently, Pathan and Khan [22] introduced 2-variable Hermite-
based Apostol type polynomials as follows:

Definition 1.1. The generalized Hermite-based Apostol type polynomials
HP( B) (z,y; k,a,b, e) for nonnegative integer n are defined by

n

ol—kgk \* t
(o) v = 3wl koo
e —a

(yt+bln<5> < 2,k € Nos a,b € R\{0}; a,ﬁeC)

For the existence of the expansion, we need

b
(i)|ty<27rwhereaeN0,k—1and(ﬁ) = 1; | t|< 27 when o € Ny,
k:2,3,-~and( ) =1; |t <] blog( ) | when a € Ny, &k € N and

b
() #1or (#-1);z,y R, Be C/H{O}, 17 =

@ 111 2w () 1k b2 when (341
z,ye R, k=0,a,8€C, a,b,ce C1*=

b
(iii)| ¢ |< 27 when o € Ny and (g) = lLazyeR keN,BeC,
a,b,c € C/{0} 1% = 1 where w =| w | €, —r < 0 < 7 and log(| w |) + i0.

The generalized Stirling numbers of the second kinds S(n,v,a,b, ) of
order v are defined in [26] as follows:

iS(nyabﬁ)tn M.

n=0

(1.12)

V!
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Setting 5 = A, a = b =1, (1.12) reduces to

e’} n t _ v
S S(n, v, )\)t_l — u.
n—0 n. V!

2. A new class of extended Laguerre-based Apostol-type poly-
nomials

In this section, we introduce a new class of extended Laguerre-based Apostol-
type-Bernoulli, Apostol-type-Euler and Apostol-type-Genocchi polynomi-
als

LYéogj i5:0) (z,y; k,a,b), for a real or complex parameter « defined in a suit-
able neighborhood of ¢ = 0 by means of the following generating function

21—ktk o p "
<7b> eltelt Z Y ‘]SU)({E y; k,a, b) (2.1)

bt _
Bbet —a =

which contains as special cases not only generalized Apostol-type polyno-
mials (1.8) to (1.11) but also generalization of the Laguerre polynomials

LY* (z,y) (c.f. Eq.(1.4)).

By substituting £ = y = 0 in (2.1), we obtain the corresponding uni-
fication of the generalized Apostol-type-Bernoulli, Apostol-type-Euler and
Apostol-type-Genocchi numbers Yé%)(k, a,b), for a real or complex param-
eter o given by means of the generating function

21—ktk o (a
<—5bet — ab> Z Y, % (k,a, b
Now by taking s = ¢ = 0 in (2.1) and using (1.2), we have the representa-

tion

n

LY,ST“A“O”)(x,y;k,a,b):Z(Z?)Yé"” (k. a,b)H}(z,y).

r=0

It is evident that this explicit formula is a generalization of the following
familiar results (see Kurt [16])

By (z,y) = zn: ( ::L ) By Hy(,y),

r=0
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Hofwy) =Y ( " ) )

r=0

On setting 7 = 2 and s = ¢ = 0 in (2.1), we get a recent result of
Pathan and Khan [22,p.118,Eq(2.6)]. For k,8 = 1l,a=b=1,j =2
and s = 0 = 0, (2.1) reduces to a known result of Pathan and Khan [23].
Further if @ = 1 the result reduces to known result of Pathan [25], which is
a generalization of the generating function of Dattoli et al. [12, p.386(1.6)]
in the form

t iyl e tm
() e = S uenyy

Theorem 2.1. Let a,b > 0. Then for z,y € R and n > 0, we have

LY, (@,51,1,1) = LB (2, M),

LYn(,o)ilj;SJ) (z,5;0,1,—1) = LB (2, y; ),

n

alj;s,o 1 B
RN (xy L3 1) = LGP (@, y; ). (2:2)

Proof. By using special values of k, a, b in generating function (2.1), we
can obtain the results (2.2). We omit the proof. O

Theorem 2.2. Let a,b > 0 and a # b. Then for z,y € R and n > 0, we
have

LY(%HU;S’U) (x+y,z+uwk,a,b)

n,

S (" )Lygg?s"”(y,u;a,b>LY;“L3;;“><x,z;k,a,b>, (23)

m=0 m

LY\ @+ 2y + usa,b)

m - )
=2 ( ? ) LY, 057 (@, ys b, 0, 0) L) (2, ). (2.4)

n=0



On the three families of extended Laguerre-based ... 321

Proof.  Applying definition (2.1), we have

n

o

N t
> LYTI(%J’V‘]’S’U) (x+y,z+uk,a, b)ﬁ
n=0 ’

= Z LYé%'J’S’U) (z,2k,a,b)— Z LYQ};’S’U)(g/,u;k,a, b)—
= n! = m!

= Z Z LYTEZg;SJ) (y’ u; k, a, b)LYTEgyeré’a) ($, 2 k, a, b)

n=0m=0

(n—m)!"

Now equating the coefficients of the like powers of £ in the above equation,
we get the result (2.3). Again by definition (2.1) of generalized polynomials,

we have
21*ktk @ .
= ") et (ytur
Bhet —qb ) o

n

o0
_ (ajis.0) : &
= nEZOLYnﬂ (x+ 2,y +uk,a, b)n!,

which can be written as

21—k‘tk @ )
W egx+z)t€gy+u)t1
e —a

o~y (aljiso) " o t"
_ «|};8,0 . 7 3
= Z LY, 5 (z,y;k, a, b)m Z_ L%SJ)(Z,U)E.
n=0 m=0

On replacing n by n — m in the above equation and comparing the coeffi-
cients of %, we get the desired result (2.4). O

Theorem 2.3. For n > 1, we have

L"), p)

n! 1,1]j;s,0 1,1|7;s,0
~ 2K (n + k) BLY 5 @ Lk a,b) — a1 Y @,y ke, b)
(2.5)
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Proof. = We begin with the definition (2.1) and write

at_ytl 1 2!~k bt b\ _xt _yt!
erel = SRk \ Fhel —ab (ﬁ e —a ) es el

—k4k 1—k4k
_ 1 21—kt Bbe(x+1)t€ytj _ 277 abe:cteytj )
oi—kk |\ Bhet — gb s o Bbet — b s Co
';S,O')(

Then using the definition of a general class of Laguerre polynomials Lgf
given by (1.9) together with (2.1), we have

Z lej,sp' (.’L’, y)ﬁ
n=0

z,y)

b 1

L1]jss, 1,1|5ss,
= Z =Ty [,Bb 7z(+k|JBSU)(x+1vyvk a, b)—a Yé+kljsa)($,y;k,a,b)} mn
n=0
Finally, comparing the coefficients of t", we get (2.5). O

Theorem 2.4. The Hermite-based unified Apostol-type polynomials sat-
isfying the following relation holds true:

B Y, ) (@ + 1,y k,a,b) — a Y (2, K, a,0)

= 21_kHYn(f;7}3|j) (z,y; k,a,b) Ik

Proof. For s =0 = 0 in the generating function (2.1), we have

21—ktk @ ) 21—ktk‘ @ )
Bb e(m+1)t+yt3 . ab emt+yt3
5b€t —ab 5b€t —ab

—9l- ktkz Y“ 1IJ)($ y,kab)
n=0
tn

Z (ﬁb Ol|])( +1,y:k,a,b) —a Hy(alj)(x’y;k;,a, b)) =
2 .

(a—1]j) tn+k
21kz Ya J(xy,kab)
n=0
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o] . j "
> (Ba¥i @+ Lykab) - aaY P @k a0)
n=|
— 9l—k i Hy(afllj)(l, yi k,a,b) ¢ .
n=k B R (n - k)l

By comparing the coefficients of %, we arrive at the desired result (2.6).
O

Theorem 2.5. For a € N, the following relation between the A-Stirling
numbers of second kinds and extended Laguerre-based unified Apostol type

polynomials LY(%j;S’U) (z,y; k,a,b) holds true:

n

n . b
aaly ( ? ) LYﬁL{E’U)(%y;k,av b)S (T,a, (g) )
r=0

0, for n < ka,

2(1*’“)0‘L51i8,;‘;) (z,y), forn > ka,
with @ € Ng = NU {0} and k € N fixed.

Proof. By using equations (2.1), (1.5) and (1.12), we have

= (aliise) (2R \T L
355 . R xl Y
HZ:%LYTL,B (,y;k,a,b) ol =\ B —ab € €y

o(1—k)a ke egt eg_tj

abe ((g)bet _ 1) - abaq! ijos (r,oz, (§>b> i—:’

or, equivalently

8,0 ) | Ll il
E LY, 5 (z,y; k,a,b)n!a a! E S (r,a, (a) ) T

n=0 r=0

tn
av

0o n b\ 4n
e} n (&3 ‘;S’U t
a3 3 (1) ekans (ne (2)) 5

n=0r=0

_ 2(17k)atka Z ng;s,a) (x’ y)
n=0
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thrka

1 k)a ZLU,S,U) ZL‘ y)
n=0

By comparing the coefficients of , we obtain the desired result (2.7).
O

Theorem 2.6. The following relation between the A-Stirling numbers of
second kinds and extended Laguerre-based unified Apostol type polynomi-

als LYé%‘j;s’U) (z,y; k,a,b) holds true:

n . b
a1y ( ::L >LY7ff;’,§’U)(w,y; k,a,b)s (r,% (g) )
r=0

0, for n < k~,
2(k_1)7L$:1__]JYIj;S’U) (z,y), forn > kv,

with v € Ng = N U {0} and k € N fixed.

Proof. From (2.1) and (1.12), we have

tn 21—ktk‘ =y )
_ ol—kk aeacteytj Bbet — gb ¥
Bhel —qb | =% ol—kk ’
t”‘HW
o(k—1) Z Y (a— ’Y)|JSU)($ y; k,a,b)
n=0
o0 g /8 tfr
= a’y! Z LY;%‘]’S’U)(QC,y; k,a, b Z S (r ~, ( ) ) g
n=0 n!

On comparing the coefficients of L o1, we get the required result (2.8). O

Theorem 2.7. The following implicit summation formulae for extended
Laguerre-based Apostol-type polynomials LY(aU i5:0) (x,y; k,a,b) holds true:

q,!
« .;570' q l n 35,0
Y Gk ab) = (n)<p>< —a)" LY S0 (@, yi ks a,b).

n,p=0
(2.9)
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Proof. We replace t by ¢ + u and rewrite the generating function (2.1)
as
217k (¢ )k . £ !
[ A— +’LL — t+u) a|j7s7g
<5bet+u_ab eyt = Z LYo (@ yikya,b) g
q,1=0
Replacing = by z in the above equation and equating the resulting
equation to the above equation, we get

za:t—l—u |J30 |JSU tqu
q;‘o g+5 xy’kab q;o s (B Yk ab)= PN
(2.10)
On expanding exponential function (2.10) gives
[e.e]
[(z — 2)(t + w)]" (aljis) 94!
N Z Yoiig (@ yk,ab)— g v
N=0 : q,l=0
(alj;s,o) 9 u'
Z q+l,6’ zy7kab)'|7
q,1=0 i
which on using series manipulation formula
(z+ y) = "y
= n+m)—-—:,
LI 3 S
in the left hand side becomes
o0 o0
(z — x)" PP \] 5,0) 4 4!
~ 19 ’k, b
n%_:o nlpl q’lz:o q+1.pB J: 'Y a, ) | l‘
1a
Z L oﬂljgg (z,y;k,a,b) '1; (2.11)
q,l=0

Now replacing ¢ by ¢ — n, [ by | — p in the left hand side of (2.11), we get

l
(z—x)" (aljis0) t u
LY x,y; k,a,b
ZZ T R R T

19 !t
Z q+llj/3w (2,93 k0, b)— P
q,l=0 !

Finally on equating the coefficients of the like powers of ¢ and u in the
above equation, we get the required result (2.9).
O
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3. Extended Laguerre-based Apostol-type Bell and Fubini
polynomials

The starting point for the second generalization of the extended Laguerre-
based Apostol-type polynomials, Bell polynomials and Gould-Hopper poly-
nomials which we wish to consider is given by the following generating
function

tn

2!k : x(t+et—1) ytI - (alf;s,0)
ol —gb ) ed’ = LY,y (x, i ks a, by (31)
n=0 ’

The clue to seeing a relation between Apostol-type polynomials, Bell
polynomials [1,2] and extended Laguerre polynomials [1] such as (2.1), (1.7)
and (1.5) and the special cases of (3.1) is given in the following useful The-
orem.

Theorem 3.1. For n > 0, we have
a,m|j;s,0 - n s a,ml|j;s,o
¢L£L”3 g )({L',y; k,a, b) = Z ( r > (;5$ )(x)HIﬁ(lfr,g )(ajay 1k, a, b)7
r=0

where Bell polynomials ¢, (x) are given by (1.7).

Proof. We begin with the definition (3.1) and write

1—ksk \ & , 1—ksk \ @ ,
2 t em(t+et71)eyt3 _ ex(etfl) 2 t egmfeytJ
Bbet —ab s o s /6bet —ab s 7o -

Now the steps of the proof are similar to the proof of (2.4). O

The third generalization of the Laguerre-based Apostol-type polyno-
mials (2.1), Fubini polynomials (1.6) and Gould-Hopper polynomials (1.1)
considered is given by the following generating function:

n

21_ktk « eg‘teg_tj 00 (aljie) ;
(ﬁbet—ab> 1 —z(et_ 1) 7T;)LFY7L,B <$7y72',]€,a7b)a. (32)

We are thus motivated to consider the following theorems on generaliza-
tion of the Apostol type polynomials, Fubini polynomials and extended
Laguerre polynomials. In the course of proving Theorems 3.2 and Theorem
3.3, we have used the generating function (3.2).
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Theorem 3.2. For n > 0, we have
a,ml|j;s,o - n alj;s,o
pLC5 (@, gk a,b) = Y ( . )FT(Z)LY,EL{’ﬁ’ )2,y k,a,b),
r=0

where Fubini polynomials F),(z) are given by (1.6).

Theorem 3.3. For n > 0, we have
Sy A CNTER NN ED Y ( . >LF7§‘”$"’)($ y; 2)Y,\ "), 5(k a,b),
r=0

where extended Laguerre-based polynomials LEgj i5:0) (z,y; z) are generated
by

xt oyt oo "

_ %% @ _ (535:0) (. - =)
1—Z(€t—1) T;)LFTL (x?yﬂ Z)Tl' (33)

Interpreting the left hand side of (3.3) in terms of Fubini and extended
Laguerre polynomials, we arrive at the representation

LFIS ) (2) = Y ( : ) F ()L (@, y).

r=0

Theorem 3.4. For n > 0, we have

LFY( aliss U)(x7y; 2 k7a7 b)

k=0

n l
Z ( ) YT @,y k,a,0) Y 2FRISH (1 k), (3.4)
v,1) = Sa(n,v) is the Stirling number of second kind.

where S(n,

Proof. From (3.2), we have

tn 21 ktk o ezteyt]
Y |J 5,0) k‘ b
nZ:OLF (.3 25k, 0, 0) 7 n!  \plel —ab ] 1—z(et —1)

ol—kyk \ PR
~\ga—a erteyt sz(et— 1)k
el —a

k=0
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21_ktk @ ot _yt! 9] |
~\ga—w) ' >z %kSglk)l‘

k=0

e}

Z Y@ (5 4k, a0, b) Z Zk'Sglk:

Replacing n by n — [ in above equation, we get

n

ZL Yaljsg)(x y; 23k, a, b)
n=0

Z (Z ( ) Y(a‘]’s U)(x,y; k,a,b) zl: RISy (1, k)
n=0 \[= k=0

Comparing the coefficients of % in both sides, we get (3.4).

Theorem 3.5. For n > 0, we have

LFY( N0559) (4, y; 2; k, a, b)

n
=0 k=0

where S(n,v,1) = Sa(n,v) is the Stirling number of second kind.

Proof. Replacing = by = + r in (3.2), we have

n

ZL Yalj”)(x y,zk:ab)
n=0

ol—kyk \ @ egﬁr)tegtj
C\Blet —ab ] 1—z(et —1)

9l—kyk @ ; )
= G — o eZtedt et Z et — 1)k
et —a

k=0

— 217ktk : IEt ytj T‘t LS. l ki
— \ Bet —ab ];) ; 2 l'

n

o) m 2 l ¢
Z lj’s :L‘y;k:,a,b)—'szZk'SQ —H“,k—H“)ﬁ.

= " 1=0 k=0

n s) k s)
Z(l ) (x,y; k,a,b) Zz k:'S ({+rk+r),

tn
m.

l
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Replacing n by n — [ in above equation, we get

= alj;s,o t"

ZLFYr,SﬁIJy ’ )(%y;z;k?a,b)_,

n—0 mn.
. l tm
— Z (Z ( ) Y(ﬂj”;’g)(a:,y; k,a,b) Z zkk!S;)(l +rk+ r)) —.
n=0 \I=0 k=0 s

Comparing the coefficients of %n, in both sides, we get (3.5). O

4. Symmetry identities

In this section, we derive general symmetry identities for the extended
Laguerre-based Apostol-type polynomials LYn(Oé“7 i9:7) (z,y; k,a,b). We start
with the following theorem.

Theorem 4.1. Let o,k € Ng;a,b € R\ {0}; 5 € C,z,y € R and n > 0,
the following identity holds true:

Sdrenr ( f ) LY, 59 (e, dPy; k, a, b)Y, 9757 (cx, Pys k, a,b)

n
r=0

_ Zcrdnfr ( . ) LY(aU ;8,0) (Cx, 022:; k,a, b)LY;ﬂ(,ng;S’U) (dﬂ?,d2y; ]{E,CL, b)
(4.1)

Proof. Let

f(t) _ 22(1ik)<6dt)k : cdxt c?d?yt
~\(Bret — ) (Bredt —aby) = 0 -

Then the expression for f(¢) is symmetric in ¢ and d and we can expand
f(t) into series in two ways to obtain

(dt)’"

o0
ZLY( U’s’g)(dzv d?y; k,a,b) ( Z Y(ab’s’o)(cm Ay: k, a,b)——

n7
n=0

n=0

=2 (Z de" ( ) LY, 057 (e, Py k,a, )Y, (e, Py b a, b))

tn

n!’
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Similarly, we have

Z (Zcrd” " ( ) yle B’;U)(c:z: Ay k,a, b)LY( ‘]’SU)(d:E d?y; k. a b)) L

n=0

n

Comparing the coefficients ’;Z—", in last two equations, we get the desired
result (4.1). O

Theorem 4.2. The following symmetry relations for the extended Laguerre-
based unified Apostol-type polynomials holds true;

c—1 B bm n n
(‘) Z(Z )HY( 057 (. i 0, b)e" (dm)!

a7 1=
= dil B bmi " HY(alj;s’U)(ca: A2k, a,b)d" Fem).  (4.2)
l n—I,8 ) s vy Wy . .

Proof. Let us consider

g(t) _ 21*ktk «a ecdxtecdeytj /BbdGCdt _ abd
Bbedt _ b s o 5bect —ab

- “ bd o d
_ L2 N i g e 1— (2)bdeet
g5 \Bhedi —gb | & o = (Epen

© . n d—1 bm
— gbd=1) 4(=F) Z Lyﬁﬁlﬁs,v)(cx’ 22k a, b) (dt) Z (é) ectm

n=0 © m=0

n,
n=0 © m=0

- 8 237

n=0m=0

[e%e} n d—1 bm o0 l
_ b(d=1) 7(—Fk) Y(Oc|j;s,0) 2 . (dt) <é> lt_
a d E LY, 5 (cx,cz;k,a,b) E " E (cm)

LY(ﬁllj’;’U) (cx, 22k, a,b)d" ! (em) =
’ n

n

On the similar lines, we have

s RO (E(7)

n=0m=0
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S,0 tn
LY, 05 (de, d?2; k, a,0)c" (dm)! =t (4.4)

On comparing the coefficients of % in (4.3) and (4.4), we arrive at the
desired result (4.2). O

Theorem 4.3. The extended Laguerre-based unified Apostol-type poly-
nomials satisfy the following relation holds true:

n . r b
S (1) errrtetpananan s (1) (e ()
r=0 =0

XL}/,ﬂ(fggs’a) (cX,cY;k,a,b)

T

b
_ n —r 41 y-(ljiso) , T\ o (B
- Z ( T > dn TCT LYH*T‘,B (C$’ Cy7 k:’ a? b) Z ( Z > SZ (d - 17 <E) )

=0
x Y, "7 (X, dY; k,a,b). (4.5)

Proof. We now use

h(t) — 22(1716) (Cdt)k ecda:tecdytj /Bbealt — ab echtechtj
(Bbedt — qb)(Bbect — qb)

S g ﬁbedt_ab S g
b n
S S S (-1 (2))

(d )”

X Z LY, S5 (X, eY 'k, a,b)
r=0

:ZZ<:> oty S (4, dy; k, a,b) (:)

n=0r=0 =0

b ..
S; <c— 1;(2) ) x LY ) (eX, Y sk, a,b) . (4.6)

Using a similar plan, we get

Z Z ( ) d"’TC’”“LYTffL{E’U)(C%Cy;k,a, b) ( : )

n=0r= =0

b
S; (d— 1; (é) ) x Y, VSN dX, dY 'k, a, b) (4.7)
a

Equating the coefficients of L; in last equations (4.6) and (4.7), we get (4.5).
O
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