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Abstract:

We consider weak convergence and weak compactness in
the space L'(m) of real valued integrable functions with re-
spect to a Banach space valued measure m equipped with its
natural norm. We give necessary and sufficient conditions for
a sequence in L'(m) to be weak Cauchy, and we give necessary
and sufficient conditions for a subset of L'(m) to be condition-
ally sequentially weakly compact.
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124 Charles Swartz

1. Introduction

In this note we consider weak convergence and weak compactness in the
space, L' (m), of integrable functions with respect to a Banach space valued,
countably additive measure m. We use a characterization of the dual space
LY(m)’ due to Okada ([7]).

Let X be a o—algebra of subsets of a set S, let X be a Banach space
and m : ¥ — X be countably additive. We consider the space L!(m) of
functions f : S — R which are integrable with respect to m. A measurable
function f : S — R is weakly m integrable if f is 'm = z’ o m integrable
for every 2’ € X’ and f is m integrable if f is weakly m integrable and for
every A € 3 there exists x4 € X such that [, fdim = 2'(z4) for 2’ € X';
We set z4 = [, fdm. (See [5],[6] for the properties of the integral; another
approach to the integral is given in [2] IV.10.) This space is a Banach space
with respect to the norm

171y = sup{ [ 1fldfa’m] ') < 1}
where |2'm| denotes the variation of the scalar measure x'm.

Notation 1. If g € L*°(m), A € ¥ and 2’ € X', denote the continuous
linear functional

£ = [Loadm= [ grdam
on L*(m) by gxaz'.

Okada has shown that if [ € L(m)’ there exist g € L>®(m), {A;} C &
< 1, such that

pairwise disjoint and z; € X', ||z’

=3 /. ofdaim

for f € L'(m), where the series converges; that is, [ = 5219x4;7; ([7]).
Note that if the series >322; [ A, 9 fdzm converges for every f € LY(m)

<1, then

W) =22/ A, 9 fdx’;m defines a continuous linear functional on Lt(m) (

when g € L>(m), {A;} C X pairwise disjoint and 2, € X', ||z}

for each n, 1,(f) = 227, | A, 9 fdz;m is linear and continuous and
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W)= [, afddim =5

for every f so [ is continuous by the Banach-Steinhaus Theorem).
Thus, the dual of L!(m) is the space of all g € L>®(m), {4,} C ¥ pair-

wise disjoint and 2 € X, < 1, such that the series 3272, [ A9 fdzim

7}
converges for every f € L*(m).
Not every g € L>(m), {A;} C ¥ pairwise disjoint and z; € X,

/
x| <

1, may define elements of L!(m)’; that is, there may exist such elements
where the series >272; i) A9 fdx}m may fail to converge. Indeed, we have

Theorem 2. The measure m has bounded variation iff the series
Py fAj gfdx’;m converges for every f € LY(|ml|), g € L>®(m), {A;} C X

pairwise disjoint and z/; € X', <1.

!
Zj

Proof.  Suppose m has bounded variation, |m|. If f € LY(|m]), g €
L*>°(m), {A;} C X pairwise disjoint and z; € X/, H:v; <1, then

> [ afdsim < S| [ grachm| <3 [ losiafam)
=174 j=1174i j=174
< > [ lestdiml < gl S [ 11dim]
=174 j=174i
<

lollo [, 171d1m

shows the series converges.
For the converse, set f = g = 1 and let {A;} be any pairwise disjoint
sequence from ¥. Pick 2, € X/, < 1, such that z;(m(A4;)) = ||m(4;)|l.

Then

!
Zj

S /A gfdrim =3 al(m(4;)) = 3 [lm(A;)]| < oo.
j=174 j=1 j=1

This implies m has bounded variation ([12],[10] 3.51).
The computation above shows that if m has bounded variation and
LY(m) = L'(|m|), then the dual of L!(m) is the space of all g € L°°(m),
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/ !/ /
jeX, T

21 fAj gfdx’;m converges for every f € LY (m).

{A;} C ¥ pairwise disjoint and x < 1, such that the series

For later use we observe that if | =377, gx4; :v; € L'(m)’, then the se-

ries 3322 [ A9 fda:;m is subseries convergent for every f € L'(m). Indeed,
if o C Nand f € LY(m) let A= U e, A;j and set f, = xaf € L*(m). Then

o0
W)= [, otedzim = [ grdaim.
7=1 J Viste J
We now consider weak convergence and weak sequential compactness
in L!(m). First we consider necessary conditions for weak sequential com-
pactness. A subset K of L'(m) is relatively sequentially weak compact if
every sequence {fr} in K has a subsequence which is weakly convergent
and K is conditionally sequentially weakly compact if every sequence { fx}
in K has a subsequence which is weakly Cauchy.

Theorem 3. Suppose K C L'(m) is conditionally sequentially weakly
compact. Then

(#) for every 3772, gxa,7} € L'(m)’, the series {2524 fAj gfdxim : f €
K} are uniformly subseries convergent.

Proof. If the conclusion fails to hold, there exist € > 0, fr € K and an
increasing sequence of intervals {I} with

(%) Z/A.gfkdx;»m > e

JEl)

We may assume that limyg (I, fi,) exists for every [ € L'(m)’. For any
o C N, define I, belonging to L'(m)’ by

o) =3 [ gfdaim.

j€o

Then for every o C N,

lim (o, i) =l > [, fudafm

JjET
exists. Set a; = limy, fAj 9frdzym. By the Hahn-Schur Theorem ([10]7.18),
the series
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{ frdzim : k}
j;/Ajgk:BJm

are uniformly subseries convergent and

li’?Z/ gfdx;m: Zaj
Aj

j€Eo j€Eo
uniformly for o C N. But, this contradicts (*).

Remark 4. Note that the conclusion (#) in Theorem 3 implies that the in-
definite integrals { [ gfdm : f € K} are uniformly countably additive. For
if this is not the case , there exist e > 0, pairwise disjoint {A;} C ¥, f, € K
and an increasing sequence of intervals {Ij} such that szelk fAj gfkde >
€. Set B, = Ujer, A; and pick x) € X', ||z}.|| <1, such that

> €.

> /Aj gfrdm

Jjely

Ty / gfkdm‘—\ / gfkdxzm\—
Aj Bk

JEly

Using g,{By},{x},} this contradicts the condition (#).

Theorem 5. Suppose K C L'(m) is conditionally (relatively) sequentially
weakly compact. Then

(##) for every g € L>(m), A € ¥ the set { [, gfdm : f € K} is condition-
ally (relatively) sequentially weakly compact.

Proof. The integration map I, : L'(m) — X, I,(f) = [4 gfdm, is norm
continuous

(Mg ]

sup{’/sgfdx'm) 2] < 1}
< Ngllsupl [ 1£1dJa'm| : o] < 1} = gl 1£]1)

and, therefore, weak-weak continuous so the result is immediate.
We next consider sufficient conditions for weak sequential compactness.
First an observation about weak convergence.
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Lemma 6. Let {fx} C L'(m). Then {fi} is weakly Cauchy iff for every
Y32 gxa; @ € LY(m)

(1) limy fAj g9frdzim = a; exists for every j
and
(ii) the series {3°72, [ 4,9 frdzm : k € N} converge uniformly.

Proof. = For (i) consider the linear functional I; = gx 4,2} € LY(m)'.
For (ii) consider the linear functional

o
lo = ZQXAJ-UU;‘ € LY(m),o0 C N.
j=1

Since limy, 5 (f) = limg 3 e, fAj gfkdl‘;-m exists, the Hahn-Schur Theo-
rem ([10] 7.18) gives (ii) and also implies limy 3 ;¢ fA]- gfrdzim =3, a;
uniformly for ¢ C N.
< Let e > 0,1 = 3272, gxa,; € L'(m)’. By (ii) there exists N such
that ‘Z;‘iNH fAj gfkdwg-m‘ < e for all k. By (i) there exists ko such that

i,k > ko implies

< €.

N N
Z/ gfkdxgm—Z/ gfidx;m
j=174 =174

Then
(fe) = U < SN fa; ofedaym = S, [ gfdam]

+ ‘ZJQO:NJA I, gflcdx}m) + ’Z;’;NH Ja, gfz'dw;m’ < 3e
for i,k > ko.

Remark 7. Note the proof above implies that fi — 0 weakly iff (i) holds
for a; = 0 and (ii).

We consider conditional sequential weak compactness.

Theorem 8. If K C L'(m) satisfies conditions (#) and (##), then K is
conditionally sequentially weakly compact.
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Proof. Let {fi} C K. There exists a countable algebra A such that
each fr is measurable with respect to the o algebra 1 generated by A. By
replacing X by 31 we may assume that X is generated by a countable algebra
A. By (#+#) and the diagonalization method, there is a subsequence of
{fx}, still denoted by {fx}, such that

weak — lim/ frdm = F(A)
k Ja
exists for every A € A ([4], page 238).
We claim that weak —limy, [, frdm = F(A) exists for every A € 3. For
this, put

Y1 ={A X weak — lilgn/ frdm = F(A) exists}.
A

Note A is contained in 7. We claim that Y7 is a monotone class.
Suppose B; € X1 with B; T B. For every j,

weak — lillcn/ frdm = F(Bj) € X
B;
exists. By (#)

weak—lim/ fkdm:/ frdm
i JB; B

uniformly for k € N. Let 2/ € X’. Then
Jim 2/ / fodm = lim / fuda'm = o' F(B;)
k B; k JB;
for all j and

limx'/ fedm = 2'F(B;) zlim/ fkdx'm::n'/ fkdm:/ frdz'm
j B; i JB; B B

uniformly for £ € N. By the Iterated Limit Theorem ([2] 1.7.6),

lim lim/ frdx'm = lim lim/ fedx'm = lim2'F(B;) = lim/ frdx'm.
J k JB, E 5 JB, J k JB

Therefore, { [ frdm} is weak Cauchy. But (#+#) implies { [ frdm}y
is relatively weak compact so weak — limy, [5 frdm = F(B) exists. Hence,
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B € ¥, and ¥ is a monotone class. By the Monotone Class Theorem ([3]
1.6, [9] 2.1.6) ¥; = X and the claim is established.

Thus, weak — limy, [§ g frdm exists for every simple function g.

We next claim that {[qgfxdm} is weak Cauchy for every g € L*®(m).
Let € > 0. Pick a simple function h such that |h — g||, < e. Fix 2’ € X',
|=’|] < 1. Then

(&)

x/(/sg(fk_fj)dm‘ = ‘/Sg(fk_fj)dﬂ?/m‘
< | o= ms = fam| +| [ (g~ )am]

IN

lg—Hl [ 15— 5l dla'm] + \ [ hts - fj>dm]
< Gka—fjHl—l-’/Sh(fk—fj)dm’.

N

The first term on the right hand side of (&) is bounded by some Me > 0
and the last term is small for j, k large by the result for simple functions
established above and the claim is established.

By (##) { /s 9frdm} is relatively sequentially weak compact so

() weak — lim/ gfrdm
k Js

exists.
Let I = >272, gxB,7; € L'(m)'. We show limy, I(f;) exists and this will
establish the result. By (*)

I da'im = 1 ’./ d
1}£n/ngfk zym = lim ngfk m

exists for every j and by (#) the series {3272, [ B, 9 fkda:;-m}k converge
uniformly for k£ € N. Lemma 6 shows limy [(fj) exists.

Another similar weak compactness result for a ”weak type topology”
on L!(m) is established in [11] 9.15.

If L' (m) is weakly sequentially complete, the conditions (#) and (##)
above in Theorem 8 imply that the subset K is relatively sequentially com-
pact. Conditions which guarantee that L!(m) is order isomorphic to an AL
space and is weakly sequentially complete are given in [1] and conditions
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for which L!(m) is reflexive and is, therefore, weakly sequentially complete
are given in [7]. See also [8].

We use the results above to show that L'(m) is weakly sequentially
complete when m is an atomic measure and X is weakly sequentially com-
plete.

Let P be the power set of N and let m : P — X be countably additive.
First, an observation.

Proposition 9. The function f : N — R is m integrable <= the series
521 f(4)m(4) is subseries convergent.

Proof. = Follows from the countable additivity of the integral [ fdm.
<=: Let 2’ € X" and A € P. Then [, fdz'm =34 f(j)z'm(j) =2
>jea f(7)m(j) so fis m integrable with [, fdm =3",c4 f(5)m(j).

Theorem 10. If X is weakly sequentially complete, then L'(m) is weakly
sequentially complete.

Proof.  Let {f;} be weakly Cauchy in L'(m). For 2’ € X’ and k €
N, define ¥z’ € L(m)’ by e*2/(f) = f(k)z'm(k). Then lim;e2/(f;) =
lim; 2’ f;(k)m(k) exists. Pick z} such that = (m(k)) = ||m(k)| and ||z} | <
1. Define

F(k) = lim . fi(k)ym(k) = lim £; (k) [[m (k)|

and set f(k) = F(k)/|[[m(k)|| if m(k) # 0 and f(k) = 0 otherwise. Then

lim f(k) = lim [|m (k)| f(k)/ [|m(K)l| = F(k)/ [[m(K)I| = (k)

so fj — f pointwise.

We claim f € L'(m). For ¢ C N and 2’ € X', define I, € L*(m)’ by
lo(h) = Yico M(1)x'm(i). Then lim;l,(f;) = lim; >, fi(0)ax'm(i) exists
and lim; fj(¢)a'm(i) = f(i)z’m(i). The Hahn-Schur Theorem ([10] 7.18)
implies that the series Y, f(i)x’m(i) is subseries convergent and

(+) lim > fi(D)am(i) =Y f@)a'm(i)

1€0 1€o
uniformly for o C N. Thus, the series Y, f(i)m(i) is weakly uncondition-
ally Cauchy and weakly subseries convergent since X is weakly sequentially
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complete. The Orlicz-Pettis Theorem gives that the series is norm subseries
convergent so f is m integrable by the proposition above.

Next, we show f; — f weakly. Let I = 372, gxa, 2} € L'(m) with
|lz3.]| <1, {Ax} C N pairwise disjoint and g € L>(m). We show lim; I(f;)
exists by checking Lemma 6. Now {g(7)} € [*°. Since X is weakly sequen-
tially complete, Theorem 7.30 of [10] applies to condition (*) and implies
that

i, afydst = lim 32 905 9eiom(i)

exists for every k so (i) of Lemma 6 holds. Now {f; : j} is conditionally
sequentially weakly compact so condition (#) of Theorem 3 implies (ii) of
Lemma 6. Hence, f; — f weakly.
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