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126 Charles Swartz

1. Introduction

In this note we consider weak convergence and weak compactness in the
space, L1(m), of integrable functions with respect to a Banach space valued,
countably additive measure m. We use a characterization of the dual space
L1(m)0 due to Okada ([7]).

Let Σ be a σ−algebra of subsets of a set S , let X be a Banach space
and m : Σ → X be countably additive. We consider the space L1(m) of
functions f : S → R which are integrable with respect to m. A measurable
function f : S → R is weakly m integrable if f is x0m = x0 ◦m integrable
for every x0 ∈ X 0 and f is m integrable if f is weakly m integrable and for
every A ∈ Σ there exists xA ∈ X such that

R
A fdx́m = x0(xA) for x0 ∈ X 0;

We set xA =
R
A fdm. (See [5],[6] for the properties of the integral; another

approach to the integral is given in [2] IV.10.) This space is a Banach space
with respect to the norm

kfk1 = sup{
Z
S
|f | d

¯̄
x0m

¯̄
:
°°x0°° ≤ 1},

where |x0m| denotes the variation of the scalar measure x0m.

Notation 1. If g ∈ L∞(m), A ∈ Σ and x0 ∈ X 0, denote the continuous
linear functional

f →
Z
S
gfχAdx

0m =

Z
A
gfdx0m

on L1(m) by gχAx
0.

Okada has shown that if l ∈ L1(m)0 there exist g ∈ L∞(m), {Aj} ⊂ Σ
pairwise disjoint and x0j ∈ X 0,

°°°x0j°°° ≤ 1, such that
l(f) =

∞X
j=1

Z
Aj

gfdx0jm

for f ∈ L1(m), where the series converges; that is, l =
P∞

j=1 gχAjx
0
j ([7]).

Note that if the series
P∞

j=1

R
Aj

gfdx0jm converges for every f ∈ L1(m)

when g ∈ L∞(m), {Aj} ⊂ Σ pairwise disjoint and x0j ∈ X 0,
°°°x0j°°° ≤ 1, then

l(f) =
P∞

j=1

R
Aj

gfdx0jm defines a continuous linear functional on L1(m) (

for each n, ln(f) =
Pn

j=1

R
Aj

gfdx0jm is linear and continuous and
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Weak convergence and weak compactness in the space of integrable ...127

ln(f)→
∞X
j=1

Z
Aj

gfdx0jm = l(f)

for every f so l is continuous by the Banach-Steinhaus Theorem).
Thus, the dual of L1(m) is the space of all g ∈ L∞(m), {Aj} ⊂ Σ pair-

wise disjoint and x0j ∈ X 0,
°°°x0j°°° ≤ 1, such that the series P∞

j=1

R
Aj

gfdx0jm

converges for every f ∈ L1(m).

Not every g ∈ L∞(m), {Aj} ⊂ Σ pairwise disjoint and x0j ∈ X 0,
°°°x0j°°° ≤

1, may define elements of L1(m)0; that is, there may exist such elements
where the series

P∞
j=1

R
Aj

gfdx0jm may fail to converge. Indeed, we have

Theorem 2. The measure m has bounded variation iff the seriesP∞
j=1

R
Aj

gfdx0jm converges for every f ∈ L1(|m|), g ∈ L∞(m), {Aj} ⊂ Σ
pairwise disjoint and x0j ∈ X 0,

°°°x0j°°° ≤ 1.
Proof. Suppose m has bounded variation, |m|. If f ∈ L1(|m|), g ∈
L∞(m), {Aj} ⊂ Σ pairwise disjoint and x0j ∈ X 0,

°°°x0j°°° ≤ 1, then
¯̄̄̄
¯̄ ∞X
j=1

Z
Aj

gfdx0jm

¯̄̄̄
¯̄ ≤ ∞X

j=1

¯̄̄̄
¯
Z
Aj

gfdx0jm

¯̄̄̄
¯ ≤

∞X
j=1

Z
Aj

|gf | d
¯̄̄
x0jm

¯̄̄

≤
∞X
j=1

Z
Aj

|gf | d |m| ≤ kgk∞
∞X
j=1

Z
Aj

|f | d |m|

≤ kgk∞
Z
S
|f | d |m|

shows the series converges.
For the converse, set f = g = 1 and let {Aj} be any pairwise disjoint

sequence from Σ. Pick x0j ∈ X 0,
°°°x0j°°° ≤ 1, such that x0j(m(Aj)) = km(Aj)k.

Then

∞X
j=1

Z
Aj

gfdx0jm =
∞X
j=1

x0j(m(Aj)) =
∞X
j=1

km(Aj)k <∞.

This implies m has bounded variation ([12],[10] 3.51). 2
The computation above shows that if m has bounded variation and

L1(m) = L1(|m|), then the dual of L1(m) is the space of all g ∈ L∞(m),
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128 Charles Swartz

{Aj} ⊂ Σ pairwise disjoint and x0j ∈ X 0,
°°°x0j°°° ≤ 1, such that the seriesP∞

j=1

R
Aj

gfdx0jm converges for every f ∈ L1(m).

For later use we observe that if l =
P∞

j=1 gχAjx
0
j ∈ L1(m)0, then the se-

ries
P∞

j=1

R
Aj

gfdx0jm is subseries convergent for every f ∈ L1(m). Indeed,

if σ ⊂N and f ∈ L1(m) let A = ∪j∈σAj and set fσ = χAf ∈ L1(m). Then

l(fσ) =
∞X
j=1

Z
Aj

gfσdx
0
jm =

X
j∈σ

Z
Aj

gfdx0jm.

We now consider weak convergence and weak sequential compactness
in L1(m). First we consider necessary conditions for weak sequential com-
pactness. A subset K of L1(m) is relatively sequentially weak compact if
every sequence {fk} in K has a subsequence which is weakly convergent
and K is conditionally sequentially weakly compact if every sequence {fk}
in K has a subsequence which is weakly Cauchy.

Theorem 3. Suppose K ⊂ L1(m) is conditionally sequentially weakly
compact. Then

(#) for every
P∞

j=1 gχAjx
0
j ∈ L1(m)0, the series {P∞

j=1

R
Aj

gfdx0jm : f ∈
K} are uniformly subseries convergent.

Proof. If the conclusion fails to hold, there exist > 0, fk ∈ K and an
increasing sequence of intervals {Ik} with

(∗)

¯̄̄̄
¯̄X
j∈Ik

Z
Aj

gfkdx
0
jm

¯̄̄̄
¯̄ > .

We may assume that limk hl, fki exists for every l ∈ L1(m)0. For any
σ ⊂ N, define lσ belonging to L1(m)0 by

hlσ, fi =
X
j∈σ

Z
Aj

gfdx0jm.

Then for every σ ⊂N,

lim
k
hlσ, fki = lim

k

X
j∈σ

Z
Aj

gfkdx
0
jm

exists. Set aj = limk
R
Aj

gfkdx
0
jm. By the Hahn-Schur Theorem ([10]7.18),

the series
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{
∞X
j=1

Z
Aj

gfkdx
0
jm : k}

are uniformly subseries convergent and

lim
k

X
j∈σ

Z
Aj

gfdx0jm =
X
j∈σ

aj

uniformly for σ ⊂ N. But, this contradicts (*). 2

Remark 4. Note that the conclusion (#) in Theorem 3 implies that the in-
definite integrals {

R
· gfdm : f ∈ K} are uniformly countably additive. For

if this is not the case , there exist > 0, pairwise disjoint {Aj} ⊂ Σ, fk ∈ K

and an increasing sequence of intervals {Ik} such that
°°°Pj∈Ik

R
Aj

gfkdm
°°° >

. Set Bk = ∪j∈IkAj and pick x
0
k ∈ X 0, kx0kk ≤ 1, such that

¯̄̄̄
¯̄x0k X

j∈Ik

Z
Aj

gfkdm

¯̄̄̄
¯̄ = ¯̄̄̄Z

Bk

gfkdx
0
km

¯̄̄̄
=

°°°°°°
X
j∈Ik

Z
Aj

gfkdm

°°°°°° > .

Using g, {Bk}, {x0k} this contradicts the condition (#).

Theorem 5. Suppose K ⊂ L1(m) is conditionally (relatively) sequentially
weakly compact. Then

(##) for every g ∈ L∞(m), A ∈ Σ the set {
R
A gfdm : f ∈ K} is condition-

ally (relatively) sequentially weakly compact.

Proof. The integration map Ig : L
1(m)→ X, Ig(f) =

R
A gfdm, is norm

continuous

(kIgfk = sup{
¯̄̄̄Z
S
gfdx0m

¯̄̄̄
:
°°x0°° ≤ 1}

≤ kgk∞ sup{
Z
S
|f | d

¯̄
x0m

¯̄
:
°°x0°° ≤ 1} = kgk∞ kfk1)

and, therefore, weak-weak continuous so the result is immediate. 2
We next consider sufficient conditions for weak sequential compactness.

First an observation about weak convergence.
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130 Charles Swartz

Lemma 6. Let {fk} ⊂ L1(m). Then {fk} is weakly Cauchy iff for everyP∞
j=1 gχAjx

0
j ∈ L1(m)0

(i) limk
R
Aj

gfkdx
0
jm = aj exists for every j

and

(ii) the series {P∞
j=1

R
Aj

gfkdx
0
jm : k ∈ N} converge uniformly.

Proof. ⇒: For (i) consider the linear functional lj = gχAjx
0
j ∈ L1(m)0.

For (ii) consider the linear functional

lσ =
∞X
j=1

gχAjx
0
j ∈ L1(m)0, σ ⊂ N.

Since limk lσ(f) = limk
P

j∈σ
R
Aj

gfkdx
0
jm exists, the Hahn-Schur Theo-

rem ([10] 7.18) gives (ii) and also implies limk
P

j∈σ
R
Aj

gfkdx
0
jm =

P
j∈σ aj

uniformly for σ ⊂ N.
⇐: Let > 0, l =

P∞
j=1 gχAjx

0
j ∈ L1(m)0. By (ii) there exists N such

that
¯̄̄P∞

j=N+1

R
Aj

gfkdx
0
jm
¯̄̄
< for all k. By (i) there exists k0 such that

i, k ≥ k0 implies ¯̄̄̄
¯̄ NX
j=1

Z
Aj

gfkdx
0
jm−

NX
j=1

Z
Aj

gfidx
0
jm

¯̄̄̄
¯̄ < .

Then

|l(fk)− l(fi)| ≤
¯̄̄PN

j=1

R
Aj

gfkdx
0
jm−

PN
j=1

R
Aj

gfidx
0
jm
¯̄̄

+
¯̄̄P∞

j=N+1

R
Aj

gfkdx
0
jm
¯̄̄
+
¯̄̄P∞

j=N+1

R
Aj

gfidx
0
jm
¯̄̄
< 3

for i, k ≥ k0. 2

Remark 7. Note the proof above implies that fk → 0 weakly iff (i) holds
for aj = 0 and (ii).

We consider conditional sequential weak compactness.

Theorem 8. If K ⊂ L1(m) satisfies conditions (#) and (##), then K is
conditionally sequentially weakly compact.
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Weak convergence and weak compactness in the space of integrable ...131

Proof. Let {fk} ⊂ K. There exists a countable algebra A such that
each fk is measurable with respect to the σ algebra Σ1 generated by A. By
replacingΣ by Σ1 we may assume that Σ is generated by a countable algebra
A. By (##) and the diagonalization method, there is a subsequence of
{fk}, still denoted by {fk}, such that

weak − lim
k

Z
A
fkdm = F (A)

exists for every A ∈ A ([4], page 238).
We claim that weak− limk

R
A fkdm = F (A) exists for every A ∈ Σ. For

this, put

Σ1 = {A ∈ Σ : weak − lim
k

Z
A
fkdm = F (A) exists}.

Note A is contained in Σ1. We claim that Σ1 is a monotone class.
Suppose Bj ∈ Σ1 with Bj ↑ B. For every j,

weak − lim
k

Z
Bj

fkdm = F (Bj) ∈ X

exists. By (#)

weak − lim
j

Z
Bj

fkdm =

Z
B
fkdm

uniformly for k ∈ N. Let x0 ∈ X 0. Then

lim
k
x0
Z
Bj

fkdm = lim
k

Z
Bj

fkdx
0m = x0F (Bj)

for all j and

lim
j
x0
Z
Bj

fkdm = x0F (Bj) = lim
j

Z
Bj

fkdx
0m = x0

Z
B
fkdm =

Z
B
fkdx

0m

uniformly for k ∈ N. By the Iterated Limit Theorem ([2] I.7.6),

lim
j
lim
k

Z
Bj

fkdx
0m = lim

k
lim
j

Z
Bj

fkdx
0m = lim

j
x0F (Bj) = lim

k

Z
B
fkdx

0m.

Therefore, {
R
B fkdm}k is weak Cauchy. But (##) implies {

R
B fkdm}k

is relatively weak compact so weak − limk
R
B fkdm = F (B) exists. Hence,
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132 Charles Swartz

B ∈ Σ1 and Σ1 is a monotone class. By the Monotone Class Theorem ([3]
I.6, [9] 2.1.6) Σ1 = Σ and the claim is established.

Thus, weak − limk
R
S gfkdm exists for every simple function g.

We next claim that {
R
S gfkdm} is weak Cauchy for every g ∈ L∞(m).

Let > 0. Pick a simple function h such that kh− gk∞ < . Fix x0 ∈ X 0,
kx0k ≤ 1. Then

(&)

¯̄̄̄
x0(
Z
S
g(fk − fj)dm

¯̄̄̄
=

¯̄̄̄Z
S
g(fk − fj)dx

0m

¯̄̄̄
≤

¯̄̄̄Z
S
(g − h)(fk − fj)dm

¯̄̄̄
+

¯̄̄̄Z
S
h(fk − fj)dm

¯̄̄̄

≤ kg − hk∞
Z
S
|fk − fj | d

¯̄
x0m

¯̄
+

¯̄̄̄Z
S
h(fk − fj)dm

¯̄̄̄
≤ kfk − fjk1 +

¯̄̄̄Z
S
h(fk − fj)dm

¯̄̄̄
.

The first term on the right hand side of (&) is bounded by someM > 0
and the last term is small for j, k large by the result for simple functions
established above and the claim is established.

By (##) {
R
S gfkdm} is relatively sequentially weak compact so

(∗) weak − lim
k

Z
S
gfkdm

exists.
Let l =

P∞
j=1 gχBjx

0
j ∈ L1(m)0. We show limk l(fk) exists and this will

establish the result. By (*)

lim
k

Z
Bj

gfkdx
0
jm = lim

k
x0j

Z
Bj

gfkdm

exists for every j and by (#) the series {P∞
j=1

R
Bj

gfkdx
0
jm}k converge

uniformly for k ∈ N. Lemma 6 shows limk l(fk) exists. 2
Another similar weak compactness result for a ”weak type topology”

on L1(m) is established in [11] 9.15.
If L1(m) is weakly sequentially complete, the conditions (#) and (##)

above in Theorem 8 imply that the subset K is relatively sequentially com-
pact. Conditions which guarantee that L1(m) is order isomorphic to an AL
space and is weakly sequentially complete are given in [1] and conditions
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for which L1(m) is reflexive and is, therefore, weakly sequentially complete
are given in [7]. See also [8].

We use the results above to show that L1(m) is weakly sequentially
complete when m is an atomic measure and X is weakly sequentially com-
plete.

Let P be the power set of N and let m : P → X be countably additive.
First, an observation.

Proposition 9. The function f : N → R is m integrable ⇐⇒ the seriesP∞
j=1 f(j)m(j) is subseries convergent.

Proof. =⇒: Follows from the countable additivity of the integral
R
· fdm.

⇐=: Let x0 ∈ X 0 and A ∈ P. Then
R
A fdx0m =

P
j∈A f(j)x0m(j) = x0P

j∈A f(j)m(j) so f is m integrable with
R
A fdm =

P
j∈A f(j)m(j). 2

Theorem 10. If X is weakly sequentially complete, then L1(m) is weakly
sequentially complete.

Proof. Let {fj} be weakly Cauchy in L1(m). For x0 ∈ X 0 and k ∈
N, define ekx0 ∈ L1(m)0 by ekx0(f) = f(k)x0m(k). Then limj e

kx0(fj) =
limj x

0fj(k)m(k) exists. Pick x0k
0 such that x0k(m(k)) = km(k)k and kx0kk ≤

1. Define

F (k) = lim
j
x0kfj(k)m(k) = lim

j
fj(k) km(k)k

and set f(k) = F (k)/ km(k)k if m(k) 6= 0 and f(k) = 0 otherwise. Then

lim
j
fj(k) = lim

j
km(k)k f(k)/ km(k)k = F (k)/ km(k)k = f(k)

so fj → f pointwise.
We claim f ∈ L1(m). For σ ⊂ N and x0 ∈ X 0, define lσ ∈ L1(m)0 by

lσ(h) =
P

i∈σ h(i)x
0m(i). Then limj lσ(fj) = limj

P
i∈σ fj(i)x

0m(i) exists
and limj fj(i)x

0m(i) = f(i)x0m(i). The Hahn-Schur Theorem ([10] 7.18)
implies that the series

P
i f(i)x

0m(i) is subseries convergent and

(∗) lim
j

X
i∈σ

fj(i)x
0m(i) =

X
i∈σ

f(i)x0m(i)

uniformly for σ ⊂ N. Thus, the series Pi f(i)m(i) is weakly uncondition-
ally Cauchy and weakly subseries convergent since X is weakly sequentially
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