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1. Introduction

The study of differential equations with piecewise constant arguments has
been treated widely in the literature. This type of equation, in which tech-
niques of differential and difference equations are combined, models, among
others, some biological phenomena (see [3, 15] and references therein), the
stabilization of hybrid control systems with feedback discrete controller [16],
or damped oscillators [7]. The first studies in this field have been given in
[4, 20], after this, some papers related with stability, oscillation properties
and existence of periodic solutions have been treated by several authors
(see [5, 8, 9, 14, 22] for details).

It is well known that the theory of differential inequalities for initial-
value problems has been very useful in the theory of differential equations
[18, 21]. Existence of extremal solutions for a variety of nonlinear differen-
tial equations is studied by a combined approach of the method of maximal
and minimal solutions and the monotone iterative technique [17]. It is nat-
ural to extend this useful method to retarded differential equations.

In this paper we continue the investigation of differential equations with
piecewise constant argument of generalized type (DEPCAG) originated in
[2, 19], using differential inequalities. These equations are closely related
to impulse and loaded equations and, especially, to difference equations
of a discrete argument. They have the structure of continuous dynamical
systems within intervals of certain length. Continuity of a solution at a
point joining any two consecutive intervals then implies recursion relations
for the solution at such points. The results obtained in
[2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19] show that all types of DEPCAG share
similar characteristics.

First of all, it is natural to pose the initial-value problem for such equa-
tions not on an interval but at a number of individual points. Secondly,
two-sided solutions exist for all types of DEPCAG. Finally, since DEPCAG
combine the features of both differential and difference equations, their
asymptotic behavior as t → ∞ resembles the solutions growth of differen-
tial equations in some cases, while in others it inherits the properties of
difference equations.

The paper is organized as follows, in Section 2 we present the main tools
that we will use in the rest of the paper. Section 3 is devoted to obtain
the unique solution of the associated linear problem, from which we derive
comparison results.

In Section 4, we present results concerning the existence of extremal
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solutions and the uniqueness of solution in the presence of lower and upper
solutions.

2. Preliminaries

Let Z and R be the sets of integer and real numbers, respectively. Fix a
real sequence ti, i ∈ Z, is a strictly ordered sequence of real number, such
that ti < ti+1, ti →∞ as i→∞. Let β : R→ R be a step function given
by β(t) = ti for t ∈ Ii = [ti, ti+1) and there exists a positive real number ϑ
such that ti+1− ti = ϑi ≤ ϑ, i ∈ Z. For every t ∈ R, let i = i(t) ∈ Z be the
unique integer such that t ∈ Ii = [ti, ti+1). To simplify notations, we will
denote by Θ that is a space of strictly ordered sequences {ti} ∈ R, i ∈ Z,
such that |ti|→∞ if |i|→∞.

We study, in this paper, the existence of minimal and maximal solutions
for the differential equation with piecewise constant generalized delay of the
form

x0(t) = f(t, x(t), x(β(t))), x(τ) = c0,(2.1)

where β(t) = ti if t ∈ Ii = [ti, ti+1), i ∈ Z, is the identification function and
f is continuous on R×R×R.

We introduce the following definition.

Definition 1. A function x is a solution of the DEPCAG (2.1) in R if i)
x is continuous on R.
ii) The derivative x0(t) exists at each point t ∈ R with the possible exception
of the points ti ∈ R, i ∈ Z, where the one-side derivatives exist.
iii) The DEPCAG (2.1) is satisfied for x on each interval (ti, ti+1), i ∈ Z,
and it holds for the right derivative at the points ti, i ∈ Z.

We will use, in the discussion of the problem, several properties of the
function λa,b(t) = λ(t) : [τ,∞)→ R defined by

λa,b(t) = λ(t) = eat +
b

a
(eat − 1).(2.2)

It is easy to verify that λ0a,b(t) = (a+ b)eat for all t ∈ [τ,∞) and, as an
immediate consequence, is strictly monotone increasing on R for a+ b > 0
and strictly monotone decreasing on R if a + b < 0. Obviously, when
a = −b, is a constant function equal to 1. Clearly, for all a, b ∈ R, we have
that λ(0) = 1.
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3. The linear problem: comparison results

In this section we analyze the following linear differential equation with a
general piecewise constant delay

y0(t) = ay(t) + by(β(t)) + g(t), y(τ) = c0,(3.1)

where τ ∈ Θ, a and b are real constants and g(t) is continuous function on
[τ,∞). At a first moment we prove that this problem has a unique solution.

Theorem 1. The linear initial value problem with the DEPCAG (3.1) has
on [τ,∞) a unique solution given by

y(t) = µ(t)(c0µ
i(t)−1
i(τ) + S) +

Z t

β(t)
ea·(t−s)g(s)ds,(3.2)

where

S =
Xi(t)−1

j=i(τ)
µ
i(t)−1
j

Z tj+1

tj

ea·(tj+1−s)g(s)ds,

g(t) is continuous on [τ,∞), τ ∈ Θ, and

µ(t) = λ(t−β(t)), µij =
iY

k=j

λ(tk+1 − tk) =
iY

k=j

λ(ϑk), and i ≥ j > i(τ).

Proof. Let yn(t) be solutions of the DEPCAG (3.1) in the interval
[tn, tn+1), satisfying the condition yn(tn) = yn, for n ∈ {i(τ) + j}j∈N.
Then we have

yn(t) = ynλ(t− tn) +

Z t

tn
ea·(t−s)g(s)ds,(3.3)

where, λ is given in (2.2). From (3.3) and t→ tn+1, we obtain

yn+1 = ynλ(ϑn) +

Z tn+1

tn
ea·(tn+1−s)g(s)ds.(3.4)

Applying (3.4) repeatedly for yn−1, yn−2, ..., yi(τ)+1 yields

yn+1 =

µYn

j=i(τ)+1
λ(ϑj)

¶
yi(τ)+1

+
Xn

j=i(τ)+1

Yn

k=j+1
λ(ϑk)×

R tj+1
tj ea·(tj+1−s)g(s)ds

+

Z tn+1

tn
ea·(tn+1−s)g(s)ds.

(3.5)
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From (3.3), one gets

y(ti(τ)+1) = y(τ)λ(ti(τ)+1 − τ) +

Z ti(τ)+1

τ
ea·(ti(τ)+1−s)g(s)ds.(3.6)

Use (3.3), (3.5), (3.6) and τ ∈ Θ to obtain finally
yn(t) = λ(t− tn)

µYn−1
j=i(τ)

λ(ϑj)

¶
y(τ)

+λ(t− tn)

µYn−1
j=i(τ)

λ(ϑj)

¶Z ti(τ)

τ
ea·(τ−s)g(s)ds

+λ(t− tn)
Xn−1

j=i(τ)

Yn−1
k=j+1

λ(ϑk)

Z tj+1

tj
ea·(tj+1−s)g(s)ds

+

Z t

tn
ea·(tn−s)g(s)ds,

(3.7)

from where (3.2) follows. 2

Note that (3.2) is obtained with the implicit assumption a 6= 0. If a = 0,
then the unique solution of (3.1) is given by

y(t) = (1 + b(t− β(t)))

½
c0
Yi(t)−1

j=i(τ)
(1 + bϑj) + Ŝ

¾
+

Z t

β(t)
g(s)ds,(3.8)

where

Ŝ =
Xi(t)−1

j=i(τ)

µYi(t)−1
k=j

(1 + bϑk)

¶Z tj+1

tj

g(s)ds,

which is the limiting case of (3.2) as a→ 0.

Remark 1. Theorem 1 generalizes the linear differential equation with a
piecewise constant delay considered by Aftabizadeh and Wiener [1, pp.190]
with β(t) = [t].

In order to obtain existence results for the DEPCAG (2.1) we will use
monotone iterative techniques. It is very well known that a fundamental
tool to treat this kind of problems consists in maximum principles of the
linear operator studied above. From the form of the solution of the linear
DEPCAG (3.1) we can deduce the following.
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Lemma 1. Suppose that y ∈ C[[τ,∞),R], and the derivative y0(t) exists at
each point t ∈ [τ,∞), with the possible exception of the points ti ∈ [τ,∞),
i ∈ Z, where one-sided derivatives exist. Assume that

y0(t) ≤ ay(t) + by(β(t)), y(τ) ≤ 0,(3.9)

where a and b are constants such that

b ≥ − aeaϑj

eaϑj − 1 , j ≥ i(τ).(3.10)

Then y(t) ≤ 0 on [τ,∞).

Proof. For t ∈ [tn, tn+1), for n ≥ i(τ), consider

y0n(t) ≤ ayn(t) + byn(tn), yn(tn) ≤ 0.

From this and (3.10) we find that yn(t) ≤ 0, t ∈ [tn, tn+1). This implies,
because of the continuity, y(t) ≤ 0 for t ≥ τ . 2

Remark 2. Lemma 1 generalizes the corresponding inequality considered
by Aftabizadeh and Wiener [1, Lemma 3.2] with β(t) = [t].

Note that if a = 0, from the proof of Lemma 1, we can obtain the
following Corollary.

Corollary 1. Suppose that y ∈ C[[τ,∞),R], and the derivative y0(t) exists
at each point t ∈ [τ,∞), with the possible exception of the points ti ∈
[τ,∞), i ∈ Z, where one-sided derivatives exist. Assume that

y0(t) ≤ by(β(t)), y(τ) ≤ 0,(3.11)

where b is a real constant such that

b ≥ − 1
ϑj

, j ≥ i(τ).(3.12)

Then y(t) ≤ 0 on [τ,∞).
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4. Minimal and maximal solutions

In this section we apply the monotone method to prove the existence of
minimal and maximal solutions for DEPCAG, so we recall the DEPCAG
(2.1):

x0(t) = f(t, x(t), x(β(t))), x(τ) = c0,(4.1)

where τ ∈ Θ and f ∈ C[[τ,∞) × R × R,R]. This constructive method
yields monotone sequences that converge to solutions of (4.1). Since each
member of these sequences happens to be the solution of a linear delay
differential equation which can be computed explicitly, the advantage and
importance of the technique need no special emphasis. For more details of
the monotone iterative technique, the reader should refer to [4, 23].

We introduce the following definitions.

Definition 2. We say that α(t)is a lower solution of the DEPCAG (4.1)
if the following inequalities hold

α(t) ≤ f(t, α(t), α(β(t))), α(τ) ≤ c0.

In an analogous way, we say that α(t) is an upper solution of the DEPCAG
(4.1) if the following inequalities hold

α(t) ≥ f(t, α(t), α(β(t))), α(τ) ≥ c0.

Theorem 2. Let α(t) and α(t) be lower and upper solutions of the DE-
PCAG (4.1) such that α(t) ≤ α(t) on I = [τ,∞). Suppose that

f(t, u, v)− f(t, x, y) ≥ a · (u− x) + b · (v − y), t ≥ τ,(4.2)

for α(t) ≤ x(t) ≤ u(t) ≤ α(t), α(t) ≤ y(t) ≤ v(t) ≤ α(t), and

b ≥ − aeaϑj

eaϑj − 1 , j ≥ i(τ).(4.3)

Then there exist monotone sequences {αm(t)} and {αm(t)} with α0(t) =
α(t), α0(t) = α(t) such that αm(t) → α∗(t), αm(t) → α∗(t) as m → ∞
monotonically on I, and α∗(t), α∗(t) are minimal and maximal solutions of
the DEPCAG (4.1).
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Proof. For any η ∈ C[[τ,∞),R] such that α(t) ≤ η(t) ≤ α(t), we
consider the linear DEPCAG (3.1) with

g(t) = f(t, η(t), η(β(t)))− aη(t)− bη(β(t)),

i.e.,

y0(t) = ay(t) + by(β(t)) + f(t, η(t), η(β(t)))− aη(t)− bη(β(t)),(4.4)

with y(τ) = c0. It is clear that for every such η, by Theorem 1, there exists
a unique solution y(t) of the linear DEPCAG (4.4) on [τ,∞). Define a
mapping = by =η = y, where y is the unique solution of the linear DE-
PCAG (4.4). This mapping will be used to define the sequences {αm(t)}
and {αm(t)}. We complete the proof by four steps:

Step 1. We claim that α ≤ =α and =α ≤ α.
Let α1 = =α, then α1 satisfies

α01(t)− aα1(t)− bα1(β(t)) = f(t, α(t), α(β(t)))− aα(t)− bα(β(t)).

Let
p(t) = α(t)− α1(t).

On each unit interval [tn, tn+1), n ≥ i(τ), we have

pn(t) = αn(t)− αn1(t),

where αn1(t) is the solution of the DEPCAG (4.4) on [tn, tn+1) with η = αn
and αn1(tn) = ĉn. Then from p0n(t) = α0n(t)−α0n1(t) and the fact that αn(t)
is the lower solution of the DEPCAG (4.1), i.e.,

α0n(t) ≤ f(t, αn(t), αn(tn)),

we have
p0n(t) ≤ apn(t) + bpn(tn), pn(tn) ≤ 0.

From (4.3) and Lemma 1, we obtain pn(t) ≤ 0 for [tn, tn+1), n ≥ i(τ), and
thus p(t) ≤ 0 on [τ,∞), which shows that α ≤ =α. Similarly, we can show
that =α ≤ α.
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Step 2. We show that =η1 ≤ =η2 if α ≤ η1 ≤ η2 ≤ α.
Let η∗1 = =η1, η∗2 = =η2 and p = η∗1 − η∗2, then for [tn, tn+1), and by (4.2),
we obtain

p0n(t) = f(t, η1(t), η1(β(t)))− f(t, η2(t), η2(β(t)))
+a · (η∗1(t)− η1(t))− a · (η∗2(t)− η2(t))
+b · (η∗1(β(t))− η1(β(t)))− b · (η∗2(β(t))− η2(β(t)))
≤ −a · (η2(t)− η1(t))− b · (η2(β(t))− η1(β(t)))
+a · (η∗1(t)− η1(t))− a · (η∗2(t)− η2(t))
+b · (η∗1(β(t))− η1(β(t)))− b · (η∗2(β(t))− η2(β(t)))
≤ a · (η∗1(t)− η∗2(t)) + b · (η∗1(β(t))− η∗2(β(t))) = apn(t) + bpn(tn),

(4.5)

with pn(tn) ≤ 0. Still by (4.3) and Lemma 1, we obtain pn(t) ≤ 0 for
[tn, tn+1), n ≥ i(τ), and thus p(t) ≤ 0 on [τ,∞), which implies =η1 ≤ =η2.

Step 3. We prove that the DEPCAG (4.1) have solutions.

Let αi = =αi−1, αi = =αi−1, n = 1, 2, 3, .... Following the first two s,
we have

α(t) = α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ · · · ≤ αn(t) ≤ · · · ≤ α1(t) ≤ α0(t) = α(t).

Obviously, each αi, αi (i = 1, 2, 3, ...) satisfies

α0i(t)−aαi(t)−bαi(β(t)) = f(t, αi−1(t), αi−1(β(t)))−aαi−1(t)−bαi−1(β(t)),

α0i(t)−aαi(t)−bαi(β(t)) = f(t, αi−1(t), αi−1(β(t)))−aαi−1(t)−bαi−1(β(t)),

with α(τ) = α(τ) = c0. Therefore there exist α∗ and α∗ such that

lim
i→∞

αi = α∗ (t) , lim
i→∞

αi = α∗(t)

uniformly on [τ,∞). Clearly, α∗ and α∗ satisfy the DEPCAG (4.1).

Step 4. We prove α∗ and α∗ are extreme solutions of the DEPCAG
(4.1). Let y(t) be any solution of the DEPCAG (4.1), which satisfies
α(t) ≤ y(t) ≤ α(t), t ∈ [τ,∞). Also suppose there exists a positive in-
teger n such that for t ∈ [τ,∞), αn(t) ≤ y(t) ≤ αn(t).
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Setting p(t) = αn+1(t) − y(t), then for t ∈ [τ,∞), and by (4.2), we
obtain

p0(t) = f(t, αn(t), αn(β(t))) + a · (αn+1(t)− αn(t))
+b · (αn+1(β(t))− αn(β(t)))− f(t, y(t), y(β(t)))

= a · (αn+1(t)− y(t)) + b · (αn+1(β(t))− y(β(t)))
+f(t, αn(t), αn(β(t)))− f(t, y(t), y(β(t)))
−a · (αn(t)− y(t))− b · (αn(β(t))− y(β(t)))
≤ ap(t) + bp(β(t)).

(4.6)

By (4.3) and Lemma 1, we have for all t ∈ [τ,∞), p(t) ≤ 0, i.e., αn+1 ≤
y(t). Similarly, we can prove y(t) ≤ αn+1, t ∈ [τ,∞). Thus αn+1 ≤ y(t) ≤
αn+1, for all t ∈ [τ,∞), which implies α∗(t) ≤ y(t) ≤ α∗(t). We complete
the proof. 2

Conclusions

In this paper, the monotone iterative technique is used to solve first-order
differential equations with piecewise constant generalized delay (2.1) and
some new comparison results are obtained. Two converging monotone se-
quences are obtained with the monotone iterative technique based on upper
and lower solutions. Those two converging monotone sequences will con-
verge to the extremal solution of the DEPCAG (2.1).
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