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1. Introduction

A classical question in the theory of functional equation is the following:
”When is it true that a function which approximately satisfies a functional
equation must be close to an exact solution of this equation.”
If the answer is affirmative, then we say that equation is stable. In 1940,

S. M. Ulam [37]) asked the following question concerning the stability
of group homomorphisms
Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric
d(., .). Given ε > 0, does there exists a δ > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d
³
h(x ∗1 y), h(x) ∗2 h(y)

´
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
³
h(x),H(x)

´
< ε

for all x ∈ G1?
This question seems to be the starting point of studying the stability
of functional equations. Since then, this question has attracted the
attention of many researchers. The first partial answer was raised by D.

H. Hyers [24] in 1941 under the assumption that G1 and G2 are Banach
spaces for the the additive functional equation as follows:

Theorem 1.1.[24] Let E1 and E2 be two Banach spaces and f : E1 → E2
be a function such that

kf(x+ y)− f(x)− f(y)k ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function
such that

kf(x)−A(x)k ≤ δ

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1,
then the function A is linear.
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Later, T. Aoki [8] and D. G. Bourgin [9] considered the problem of

stability with unbounded Cauchy differences. In 1978, Th. M. Rassias

[31] attempted to weaken the condition for the bound of the norm of
Cauchydifference kf(x+y)−f(x)−f(y)k and proved a generalization of
Theorem1.1 by using a direct method (cf. Theorem 1.2):

Theorem 1.2.[31] Let E1 and E2 be two Banach spaces. If f : E1 → E2
satisfies the inequality

kf(x+ y)− f(x)− f(y)k ≤ θ
³
kxkp + kykp

´
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then
there exists a unique additive function A : E1 → E2 such that

kf(x)−A(x)k ≤ 2θ

2− 2pkxk
p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed
x ∈ E1, then the function A is linear.

After then, Th. M. Rassias [32],[33] motivated Theorem 1.2 as follows:

Theorem 1.3. [32],[33] Let E1 be a normed space, E2 be a Banach
space,and f : E1 → E2 be a function. If f satisfies the inequality

kf(x+ y)− f(x)− f(y)k ≤ θ
³
kxkp + kykp

´
(1.1)

for some θ ≥ 0, for some p ∈ R with p = 1, and for all x, y ∈ E1 − {0E1},
then there exists a unique additive function A : E1 → E2 such that

kf(x)−A(x)k ≤ 2θ

|2− 2p|kxk
p(1.2)

for each x ∈ E1 − {0E1}.

Note that Theorem 1.3 reduces to Theorem 1.1 when p = 0. For p = 1, the

analogous result is not valid. Also, J. Brzdȩk [11] showed the
estimation(1.2) is optimal for p ≥ 0 in the general case.

In 1994, P. Găvruţa[23] provided a further generalization of Rassias
theorem in which he replaced the bound θ (kxkp + kykp) in (1.1) by a gen-
eral control function ϕ(x, y) for the existence of a unique linear mapping.
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Recently, J. Brzdȩk [15] showed that Theorem 1.3 can be
significantly improved. Namely, in the case p < 0, each f : E1 → E2
satisfying (1.1) must actually be additive. This result is called the
hyperstability of Cauchy functional equation. However, the term of

hyperstability was introduced for the first time probably in [28] and it
was developed with the fixed point theorem of Brzdȩk in [12]. There

after, the hyperstability of a several functional equations have been
studied by many authors (see, for example, [5, 7, 2, 15, 28]).

In 2013, Brzdȩk [14] improved, extended and complemented
several earlier classical stability results concerning the additive Cauchy
equation (in particular Theorem 1.3). Over the last few years, many
mathematicians have investigated various generalizations, extensions and
applications of the Hyers-Ulam stability of a number of functional
equations (see, for instance, [16], [17] and references therein).

Characterizing quasi-inner product spaces, H. Drygas considers in
[19] the functional equation

f(x) + f(y) = f(x− y) +

½
f(

x+ y

2
)− f(

x− y

2
)

¾
, x, y ∈ R,(1.3)

which can be reduced to the following equation [34, Remark 9.2, p. 131]
f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ R.(1.4)

This equation is known in the literature as Drygas equation and is a gener-
alization of the quadratic functional equation f(x+y)+f(x-y)=2f(x)+2f(y),
x,y∈ R. The general solution of Drygas equation was given by B. R. Ebanks,
P. L. Kannappan and P. K. Sahoo in[20]. It has the form f(x)=A(x)+Q(x),
x∈ R, where A:R → R is an additive function and Q:R → R is a

quadratic function, see also [25]. A set-valued version of Drygas

equa- tion was considered by W. Smajdor in [36].
Recently, the hyperstability of the Drygas functional equation has been
studied in [29], [35] and [6].

During the 16th International Conference on Functional Equations and
Inequalities (Bȩdlewo, Poland, May 17-23, 2015), W. Sintunavarat pre-
sented a talk concerning the Ulam type stability (for information and fur-

ther references concerning this notion see, e.g., [10]) of the so-called
radical functional equation

f
³q

x2 + y2
´
= f(x) + f(y)
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in the class of real functions. A question of J. Schwaiger about the general
solution of the equation was answered a bit later by the author of this paper

(see [30], p. 196). In this regard, many papers concerning the solutions
and stability of radical functional equations have been established (the
readercan refer, for example, to [1, 2, 4, 21, 22, 26, 27]).

Let us recall (see, for instance, [26]) some basic definitions and
factsconcerning non-Archimedean normed spaces.

Definition 1.4. By a non-Archimedean field we mean a field K equipped
with a function (valuation) | · | : K→ [0,∞) such that for all r, s ∈ K, the
following conditions hold:

1. |r| = 0 if and only if r = 0,

2. |rs| = |r||s|,

3. |r + s| ≤ max
n
|r|, |s|

o
.

The pair (K, |.|) is called a valued field.

In any non-Archimedean field we have |1| = | − 1| = 1 and |n| ≤ 1 for
n ∈N0. In any field K the function | · | : K→ R+ given by

|x| :=
(
0, x = 0,
1, x = 0,

is a valuation which is called trivial, but the most important examples of
non-Archimedean fields are p-adic numbers which have gained the interest
of physicists for their research in some problems coming from quantum
physics, p-adic strings and superstrings.

Definition 1.5. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation | · |. A function || · ||∗ : X → R is a
non-Archimedean norm (valuation) if it satisfies the following conditions:

1. kxk∗ = 0 if and only if x = 0,

2. krxk∗ = |r| kxk∗ (r ∈ K, x ∈ X),

3. The strong triangle inequality (ultrametric); namely :

kx+ yk∗ ≤ max
n
kxk∗, kyk∗

o
x, y ∈ X.
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Then (X, k·k∗) is called a non-Archimedean normed space or an ultrametric
normed space.

Definition 1.6. Let {xn} be a sequence in a non-Archimedean normed
space X.

1. A sequence{xn}∞n=1 in a non-Archimedean space is a Cauchy sequence
if the sequence {xn+1 − xn}∞n=1 converges to zero;

2. The sequence {xn} is said to be convergent if, there exists x ∈ X
such that, for any ε > 0, there is a positive integer N such that
kxn − xk∗ ≤ ε, for all n ≥ N . Then the point x ∈ X is called the
limit of the sequence {xn}, which is denoted by limn→∞xn = x;

3. If every Cauchy sequence in X converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space or an
non-Archimedean Banach space.

Definition 1.7. (Linear space)[3] Let K be an arbitrary field (such as
the field of real numbers or of complex numbers, for concrete examples).
A nonempty set V of elements x, y, z, ... of an arbitrary nature, together
with an operation, called vector addition, or simply addition, associating
with any two elements x, y ∈ V an element z ∈ V , called the sum of x and
y, and denoted by z = x+ y, as well as an operation associating with any
x ∈ V and a ∈ K an element w ∈ V , called the product or scalar product
of a and x, and denoted by w = a · x, is called a linear space if

1. For all x, y, z ∈ V , the operation of vector addition satisfies:

• Associativity, i.e., (x+ y) + z = x+ (y + z).

• Commutativity, i.e., x+ y = y + x.

• Existence of a neutral element, i.e., there exists an element 0V ∈
V , for which x+ 0V = x = 0V + x.

• Existence of additive inverses, i.e., there exists an element x0 ∈ V
such that x+ x0 = 0V = x0 + x.

2. For all x ∈ V and α, β ∈ K , the scalar product operation satisfies:

• Associativity, i.e., α · (β · x) = (αβ) · x.
• Neutrality of 1V ∈ K , i.e., 11V · x = x.



Some hyperstability results of a p-radical functional... 159

3. For all x, y ∈ V and α, β ∈ K , the scalar product and vector addition
operations are compatible in the sense that

• Scalar product distributes over vector addition α · (x + y) =
α · x+ α · y.

• Scalar product distributes over scalar addition (α + β) · x =
α · x+ β · x.

A linear space is also called a vector space, its elements are called vectors,
and the elements of the field K are called scalars.

Throughout this paper, we will denote the set of natural numbers by
N, N0 := N ∪ {0}, the set of real numbers by R, R+ = [0,∞) the set of
non negative real numbers and R0 = R\{0}. By Nm0, m0 ∈ N, we will
denote the set of all natural numbers greater than or equal to m0.

Let X be a linear space and let p ∈N3 be an odd natural number. We
introduce the following functional equation

f
¡
p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
= 2f(x) + f(y) + f(−y) x, y ∈ R,(1.5)

where f : R → X which is called p-radical functional equation related
to Drygas equation (1.4).

The main purpose of this paper is to achieve the general solution of the
functional equation (1.5) and establish some hyperstability results for the
considered equation in non-Archimedean Banach space. We also provide
some corollaries and outcomes concerning the hyperstability results for the
inhomogeneous of p-radical functional equation.

Before proceeding to the main results, we state Theorem 1.8 which is
useful for our purpose. To present it, we introduce the following three
hypotheses:

(H1) X is a nonempty set, Y is an non-Archimedean Banach space over
a non-Archimedean field, f1, ..., fk : X −→ X and L1, ..., Lk : X −→
R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality°°°°T ξ(x)− T µ(x)°°°°
∗
≤ max
1≤i≤k

½
Li(x)

°°°°ξµfi(x)¶− µ

µ
fi(x)

¶°°°°
∗

¾
,
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ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) := max
1≤i≤k

½
Li(x)δ

µ
fi(x)

¶¾
, δ ∈ RX

+ , x ∈ X.

Thanks to a result due to J. Brzdȩk and K. Ciepliński [13, Remark
2],we state an analogue of the fixed point theorem [13, Theorem 1] in
non-Archimedean Banach space. We use it to assert the existence of a
uniquefixed point of operator T : Y X −→ Y X .

Theorem 1.8. Let hypotheses (H1)-(H3) be valid and functions ε : X −→
R+ and ϕ : X −→ Y fulfil the following two conditions

kT ϕ(x)− ϕ(x)k∗ ≤ ε(x), x ∈ X,

lim
n→∞

Λnε(x) = 0, x ∈ X.

Then there exists a unique fixed point ψ ∈ Y X of T with

kϕ(x)− ψ(x)k∗ ≤ sup
n∈N0

Λnε(x), x ∈ X.

Moreover

ψ(x) := lim
n→∞

T nϕ(x), x ∈ X.

2. Main results

The next theorem can be derived from ([18], Corollary 2.3 and
Proposition2.4(a)). However, for the convenience of readers we present it
with a directproof.

Theorem 2.1. Let Y be a linear space and p ∈ N3 be an odd natural
number. A function f : R → Y satisfies the functional equation (1.5) if
and only if

f(x) = D(xp), x ∈ R(2.1)

where D : R→ Y is a Drygas function.
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Proof. First, if f : R → Y satisfies (2.1) for all x ∈ R, then, for each
x, y ∈ R, we get that

f( p
√
xp + yp) + f( p

√
xp − yp) = D(xp + yp) +D(xp − yp)

= 2D(xp) +D(yp) +D((−y)p)
= 2f(x) + f(y) + f(−y)

which means

that f is a solution of equation (1.5). Also, if f : R → Y is a solution of
(1.5), then we can write D(x) = f( p

√
x) for all x ∈ R to find that

D(x+ y) +D(x− y) = f( p
√
x+ y) + f( p

√
x− y)

= 2f( p
√
x) + f( p

√
y) + f( p

√−y)
= 2D(x) +D(y) +D(−y),

for all x, y ∈ R. 2
Next, we examine the hyperstability of the equation (1.5) in non-

Archimedean Banach space by using, as a basic tool, the fixed point The-
orem 1.8.

Theorem 2.2. Let p be an odd natural number, (X , k.k∗) be a non-
Archimedean Banach space and let h1, h2 : R0 → R+ be two functions
such that

U :
=
n
n ∈N : αn = max{λ1(n+ 1)λ2(n+ 1) , λ1(2n+ 1)λ2(2n+ 1)

λ1(n)λ2(n)λ1(−n)λ2(−n) } < 1
o
6= φ,

where

λi(m) := inf {t ∈ R+:hi(mx) ≤ t hi(x), x ∈ R0} ,

for all m ∈ N, where i = 1, 2 such that

lim
m→∞

λ1(m+ 1)λ2(m) = 0.(2.2)

Assume that f : R→ X satisfies the inequality

°°f ¡ p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
− 2f(x)− f(y)− f(−y)

°°
∗ ≤ h1(x

p)h2(y
p),

(2.3)

for all x, y ∈ R0 such that x 6= y and x 6= −y. Then f is a solution of the
equation (1.5) on R0.

Proof. Replacing x by p
√
m+ 1 x and y by p

√
m x in the inequality (2.3),

we get
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°°°°2f ³ p
√
m+ 1 x

´
− f

³
p
√
2m+ 1 x

´
+ f

¡
p
√
m x

¢
+ f

³
p
√
−m x

´
− f(x)

°°°°
∗

≤ h1((m+ 1)xp)h2((m)x
p),(2.4)

for all x ∈ R0. For each m ∈ N, we define the operator Tm : XR0 → XR0

by

Tmξ(x) := 2ξ
³

p
√
m+ 1 x

´
− ξ

³
p
√
2m+ 1 x

´
+ ξ ( p

√
m x)+ ξ

¡
p
√
−m x

¢
,

for all ξ ∈ XR0 , x ∈ R0 and the function εm : R0 → R+ by

εm(x) := h1((m+ 1)xp)h2((m)x
p), m ∈ N, x ∈ R0.

We observe that

εm(x) ≤ λ1(m+ 1)λ2(m)h1(x
p)h2(x

p),(2.5)

for all x ∈ R0 and all m ∈ U . Then the inequality (2.4) become as°°°Tmf(x)− f(x)
°°°
∗
≤ εm(x), x ∈ R0.

Furthermore, the operator Λm : R
R0
+ → RR0

+ defined by

Λmδ(x) := max
1≤i≤4

{Li(x)δ (fi(x)},

for all x ∈ R0 and all δ ∈ RR0
+ where f1(x) =

p
√
m+ 1

f2(x) =
p
√
2m+ 1 x , f3(x) = p

√
m x , f4(x) =

p
√
−m x , and

L1(x) = L2(x) = L3(x) = L4(x) = 1.

Moreover, for every x ∈ R0, ξ, µ ∈ XR0 , we obtain
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°°°Tmξ(x)− Tmµ(x)°°°∗
=

°°°°2³ξ ³ p
√
m+ 1 x

´
− µ

³
p
√
m+ 1 x

´´
−
³
ξ
³

p
√
2m+ 1 x

´
−µ

³
p
√
2m+ 1 x

´
+

µ
ξ ( p
√
m x)− µ ( p

√
m x)

¶
+

µ
ξ
¡
p
√
−m x

¢
− µ

¡
p
√
−m x

¢¶°°°°
∗

≤ max
½
2
°°°ξ ³ p
√
2m+ 1 x

´
− µ

³
p
√
2m+ 1 x

´ °°°
∗
,°°°ξ ³ p

√
m+ 1 x

´
− µ

³
p
√
m+ 1 x

´ °°°
∗
,
°°°ξ ( p
√
m x)− µ ( p

√
m x)

°°°
∗°°°ξ ¡ p

√
−m x

¢
− µ

¡
p
√
−m x

¢ °°°
∗

¾
≤ max

½°°°ξ ³ p
√
2m+ 1 x

´
− µ

³
p
√
2m+ 1 x

´ °°°
∗
,
°°°ξ ³ p
√
m+ 1 x

´
−µ

³
p
√
m+ 1 x

´ °°°
∗
,
°°°ξ ( p
√
m x)− µ ( p

√
m x)

°°°
∗
,
°°°ξ ¡ p
√
−m x

¢
− µ

¡
p
√
−m x

¢ °°°
∗

¾
= max1≤i≤4

½
Li(x)

°°°ξ(fi(x))− µ(fi(x))
°°°
∗

¾
,

which means that (H2) is valid. Now we will show, by induction on n ∈N0,
that

Λnεm(x) ≤ λ1(m+ 1)λ2(m)α
n
mh1(x

p)h2(x
p).(2.6)

for all x ∈ R0 and all m ∈ U where

αm = max
n
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) , λ1(m)λ2(m) ,

λ1(−m)λ2(−m)
o
.

For n = 0, the inequality (2.6) is exactly (2.5). Next we will assume
that (2.6) holds for n = k, where k ∈ N. Then

Λk+1m εm(x) = Λm
³
Λkmεm(x)

´
= max

n
Λkmεm

³
p
√
m+ 1 x

´
, Λkmεm

³
p
√
2m+ 1 x

´
, Λkmεm (

p
√
m x) ,

Λkmεm
¡
p
√
−m x

¢ o
≤ λ1(m+ 1)λ2(m)α

k
mmax

½
h1
³
(m+ 1)xp

´
h2
³
(m+ 1)xp

´
,

h1
³
(2m+ 1)xp

´
h2
³
(2m+ 1)xp

´
, h1

³
(m)xp

´
h2
³
(m)xp

´
,

h1
³
(−m)xp

´
h2
³
(−m)xp

´ ¾
≤ λ1(m+ 1)λ2(m)α

k
mmax

½
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1)

λ1(m)λ2(m), λ1(−m)λ2(−m)
¾
h1(x

p)h2(x
p)

= λ1(m+ 1)λ2(m)α
k+1
m h1(x

p)h2(x
p),
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for all x ∈ R0 and all m ∈ U . It shows that (2.6) holds for n = k + 1. We
conclude that the inequality (2.6) holds for all n ∈N0.
Since αm < 1 for all m ∈ U , we get

lim
n→∞

Λnεm(x) = 0,

for all x ∈ R0. According to Theorem 1.8, there exists, for each m ∈ U , a
fixed point Fm : R0 → X of the operator Tm such that°°°f(x)− Fm(x)°°°∗ ≤ supn∈N nΛnmεm(x)o

≤ supn∈N
n
λ1(m+ 1)λ2(m)α

n
mh1(x

p)h2(x
p)
o
, x ∈ R0.

Moreover,
Fm(x) = lim

n→∞
(T n

mf) (x), x ∈ R0.

Next, we should prove the following inequality

°°°°T n
mf

¡
p
√
xp + yp

¢
+ T n

mf
¡
p
√
xp − yp

¢
− 2T n

mf(x)− T n
mf(y)− T n

mf(−y)
°°°°
∗

≤ αnmh1(x
p)h2(y

p),(2.7)

for all m ∈ U , all x, y ∈ R0 such that x 6= y , x 6= −y and all n ∈ N .

We proceed by induction that the case n = 0 gives us (2.3). Assume
that (2.8) holds for n = k where k ∈ N. Then for each m ∈ U and every
x, y ∈ R0 such that x 6= y and x 6= −y , we have
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°°°°T k+1
m f ( p

√
xp + yp) + T k+1

m f ( p
√
xp − yp)− 2T k+1

m f(x)− T k+1
m f(y)− T k+1

m f(−y)
°°°°
∗

=

°°°°2T k
mf

³
p
√
m+ 1 p

√
xp + yp

´
− T k

mf
³

p
√
2m+ 1 p

√
xp + yp

´
+ T k

mf (
p
√
m p
√
xp + yp)

+T k
mf

¡
p
√
−m p
√
xp + yp

¢
+ 2T k

mf
³

p
√
m+ 1 p

√
xp − yp

´
− T k

mf
³

p
√
2m+ 1 p

√
xp − yp

´
+T k

mf (
p
√
m p
√
xp − yp) + T k

mf
¡
p
√
−m p
√
xp − yp

¢
− 4T k

mf
³

p
√
m+ 1 x

´
+2T k

mf
³

p
√
2m+ 1 x

´
− 2T k

mf (
p
√
m x)− 2T k

mf
¡
p
√
−m x

¢
− 2T k

mf
³

p
√
m+ 1 y

´
+T k

mf
³

p
√
2m+ 1 y

´
− T k

mf (
p
√
m y)− T k

mf
¡
p
√
−m y

¢
− 2T k

mf
³

p
√
m+ 1 (−y)

´
+T k

mf
³

p
√
2m+ 1 (−y)

´
− T k

mf (
p
√
m (−y))− T k

mf
¡
p
√
−m (−y)

¢ °°°°
∗

≤ max
½°°°°T k

mf
³

p
√
m+ 1 p

√
xp + yp

´
+ T k

mf
³

p
√
m+ 1 p

√
xp − yp

´
− 2T k

mf
³

p
√
m+ 1 x

´
−T k

mf
³

p
√
m+ 1 y

´
− T k

mf
³

p
√
m+ 1 (−y)

´ °°°°
∗
,°°°°T k

mf
³

p
√
2m+ 1 p

√
xp + yp

´
+ T k

mf
³

p
√
2m+ 1 p

√
xp − yp

´
− 2T k

mf
³

p
√
2m+ 1 x

´
−T k

mf
³

p
√
2m+ 1 y

´
− T k

mf
³

p
√
2m+ 1 (−y)

´ °°°°
∗
,°°°°T k

mf (
p
√
m p
√
xp + yp) + T k

mf (
p
√
m p
√
xp − yp)− 2T k

mf (
p
√
m x)

−T k
mf (

p
√
m y)− T k

mf (
p
√
m (−y))

°°°°
∗
,°°°°T k

mf
¡
p
√
−m p
√
xp + yp

¢
+ T k

mf
¡
p
√
−m p
√
xp − yp

¢
− 2T k

mf
¡
p
√
−m x

¢
−T k

mf
¡
p
√
−m y

¢
− T k

mf
¡
p
√
−m (−y)

¢ °°°°
∗

¾
≤ max

½
αkmh1

³
(m+ 1)xp

´
h2
³
(m+ 1)yp

´
, αkmh1

³
(2m+ 1)xp

´
h2
³
(2m+ 1)yp

´
,

αkmh1
³
(m)xp

´
h2
³
(m)yp

´
, αkmh1

³
(−m)xp

´
h2
³
(−m)yp

´ ¾
≤ αkmh1(x

p)h2(y
p)max

½
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) ,

λ1(m)λ2(m) , λ1(−m)λ2(−m)
¾

= αk+1m h1(x
p)h2(y

p).

Thus, we have shown that (2.8) holds for n ∈ N0, and all m ∈ U .
Letting n→∞ in (2.8), we obtain

Fm
¡
p
√
xp + yp

¢
+ Fm

¡
p
√
xp − yp

¢
= 2Fm(x) + Fm(y) + Fm(−y),

for all x, y ∈ R0 such that x 6= y , x 6= −y and m ∈ U . This implies that
Fm : R→ X is a solution of the equation (1.5).
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Therefore, we construct a sequence {Fm}m∈U of the solutions of equa-
tion (1.5) on R0 such that°°°Fm(x)− f(x)k∗ ≤ supn∈NΛnmεm(x)

≤ supn∈N
n
λ1(m+ 1)λ2(m)α

n
mh1(x

p)h2(x
p)
o
,

for all x ∈ R0 and all m ∈ U . Letting n → ∞ in the previous inequality
and using (2.2), we deduce that f is a solution of the equation (1.5) on R0
which means that the equation (1.5) is hyperstable on R0. 2

In a similar way, we can prove the following theorem.

Theorem 2.3. Let p be an odd natural number, (X , k.k∗) be a non-
Archimedean Banach space and let h : R0 → R+ be a mapping such that

U :=
n
n ∈ N : αn = max{λ(n+ 1) , λ(2n+ 1) , λ(n) , λ(−n) } < 1

o
6= φ,

where
λ(n) = inf {t ∈ R+:h(nx) ≤ t h(x), x ∈ R0} ,

for all n ∈ N, such that

lim
n→∞

³
λ(n+ 1) + λ(n)

´
= 0.

Assume that f : R→ X satisfies the inequality

°°°°f ¡ p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
− 2f(x)− f(y)− f(−y)

°°°°
∗
≤ h(xp) + h(yp),(2.8)

for all x, y ∈ R0 such that x 6= y and x 6= −y. Then f is a solution of the
equation (1.5) on R0.

Proof. We will suffice with the basic idea of the proof. Replacing x by
p
√
m+ 1 x and y by p

√
m x in the inequality (2.8) where x ∈ R0 , m ∈ U ,

we get°°°°2f ³ p
√
m+ 1 x

´
− f

³
p
√
2m+ 1 x

´
+ f ( p

√
m x) + f

¡
p
√
−m x

¢
− f(x)

°°°°
∗

≤ h((m+ 1)xp) + h((m)xp)

≤
µ
λ(m+ 1) + λ(m)

¶
h(xp),

for all m ∈ U and all x ∈ R0. We define operators Tm : XR0 → XR0 and
Λm : R

R0
+ → RR0

+ by
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Tmξ(x) := 2ξ
³

p
√
m+ 1 x

´
− ξ

³
p
√
2m+ 1 x

´
+ ξ

¡
p
√
m x

¢
+ ξ

³
p
√
−m x

´
,

for all ξ ∈ XR0 and all x ∈ R0 and

Λmδ(x) := max

½
δ
³

p
√
m+ 1 x

´
, δ
³

p
√
2m+ 1 x

´
, δ
¡
p
√
m x

¢
, δ
³

p
√
−m x

´ ¾
.

Moreover, we write

εm(x) = h
³
(m+ 1)xp

´
+ h

³
(m)xp

´
≤
³
λ(m+ 1) + λ(m)

´
h(xp), x ∈ R0.

As in Theorem 2.2, we observe that inequality (2.8) takes the following
form °°°f(x)− Tm(x)|°°°∗ ≤ εm(x), x ∈ R0 , m ∈ U ,

then we complete the proof by similar steps of the proof of Theorem 2.2.
2

3. Consequences

In this section, we get, as particular cases of our main results, the hyper-
stability results in the sense of Hyers-Ulam-Rassiass. Also, we get the same
results for the inhomogeneous general p-radical functional equation

f
¡
p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
= 2f(x) + f(y) + f(−y) +G(x, y).(3.1)

Corollary 3.1. Let p be an odd natural number, (X , k.k∗) be a non-
Archimedean Banach space and let c, r, s ∈ R such that r + s < 0 and
c ≥ 0. Assume that a function f : R→ X satisfies the inequality

°°°°f ¡ p
√
xp + yp

¢
+f

¡
p
√
xp − yp

¢
−2f(x)−f(y)−f(−y)

°°°°
∗
≤ c|Q1(xp)|r|Q2(yp)|s,

(3.2)

for all x, y ∈ R0 where Q1,Q2 : R → R+ are two quadratic mappings.
Then f is a solution of the equation (1.5) on R0.
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Proof. The proof follows from Theorem 2.2 by taking h1, h2 : R0 → R+
as follows:

h1(x
p) = c1|Q1(xp)|r

and
h2(x

p) = c2|Q2(xp)|s

for all x, y ∈ R0 where c1, c2 ∈ R+ such that c1c2 = c ≥ 0. For each
m ∈ N , we define λ1(m) as in Theorem 2.2 by

λ1(m) = inf {t ∈ R+ : h1 (mxp) ≤ th1(x
p)}

= inf

½
t ∈ R+ : c1

¯̄̄̄
Q1 (mxp)

¯̄̄̄r
≤ tc1

¯̄̄̄
Q1(x

p)

¯̄̄̄r¾
= inf

½
t ∈ R+ : m2r

¯̄̄̄
Q1(x

p)

¯̄̄̄r
≤ t

¯̄̄̄
Q1(x

p)

¯̄̄̄r
= m2r,

for all x ∈ R0. Also, for each m ∈ N, we have λ2(m) = m2s. It is clear
that there exists m0 ∈ N such that, for each m ≥ m0, we get

αm = max
n
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1),

λ1(m)λ2(m) , λ1(m)λ2(m)
o
,

= max
n
(m+ 1)2(r+s) , (2m+ 1)2(r+s) , m2(r+s) , (−m)2(r+s)

o
< 1

According to Theorem 2.2, there exists a unique function Fm : R0 → X
satisfies the equation (1.5) such that

kFm − f(x)k∗ ≤ c supn∈N
n
λ1(m+ 1)λ2(m)α

n
m|Q1(xp)|r|Q2(xp)|s

o
= c(m+ 1)2r m4s|Q1(xp)|r|Q2(xp)|s supn∈N

n
αnm

o
,

for all x ∈ R0. On the other hand, Since r + s < 0, one of r, s must be
negative. Assume that r < 0. Then

lim
m→∞

λ1(m+ 1)λ2(m) = lim
m→∞

m2(r+s) = 0(3.3)

We get the desired result. 2

Corollary 3.2. Let p be an odd natural number, (X , k.k∗) be a non-
Archimedean Banach space and let c, r ∈ R such that c ≥ 0 and r < 0.
Assume that a function f : R→ X satisfies the inequality

°°°°f ¡ p
√
xp + yp

¢
+f

¡
p
√
xp − yp

¢
−2f(x)−f(y)−f(−y)

°°°°
∗
≤ c

µ
|Q(xp)|r+|Q(yp)|r

¶
,

(3.4)
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for all x, y ∈ R0 where Q : R → R+ is a quadratic mapping. Then f is a
solution of the equation (1.5) on R0.

Proof. The proof is similar to the proof of Corollary 3.1 with taking

h : R0 → R+ defined by h(xp) = c

¯̄̄̄
Q(xp)

¯̄̄̄r
for all x ∈ R0 where c ≥ 0

and r < 0. 2
In the following corollaries, we get the hyperstability results for the

inhomogeneous general p-radical functional equation related to quadratic
mappings.

Corollary 3.3. Let p be an odd natural number, c, r, s ∈ R such that
c ≥ 0 and r + s < 0, (X , k.k∗) be a non-Archimedean Banach space,
G : R×R→ X be a function such that G(0, 0) = 0 and let f : R→ X be
a function such that f(0) = 0. Assume that f and G satisfy the inequality°°°°f ¡ p

√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
− 2f(x)− 6f(y)− f(−y)−G(x, y)

°°°°
∗

≤ c |Q1(xp)|r|Q2(yp)|s,(3.5)

for all x, y ∈ R0, where Q1, Q2 : R → R+ are two quadratic mappings. If
the functional equation

f
¡
p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
− 2f(x)− f(y)− f(−y)−G(x, y) = 0(3.6)

has a solution f0 : R→ X on R0, then f is a solution of the equation (3.6)
on R0.

Proof. Let ψ : R → X be a function defined by ψ(x) := f(x) − f0(x)
for all x ∈ R. Then we get that
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°°°°ψ ( p
√
xp + yp) + ψ ( p

√
xp − yp)− 2ψ(x)− ψ(y)− ψ(−y)

°°°°
∗

=

°°°°f ( p
√
xp + yp) + f ( p

√
xp − yp)− 2f(x)− f(y)− f(−y)

−G(x, y)− f0 ( p
√
xp + yp)− f0 ( p

√
xp − yp)

+2f0(x) + f0(y) + f0(−y) +G(x, y)

°°°°
∗

≤ max
½°°°f ( p

√
xp + yp) + f ( p

√
xp − yp)− 2f(x)− f(y)− f(−y)−G(x, y)

°°°°
∗
,°°°°f0 ( p

√
xp + yp) + f0 ( p

√
xp − yp)− 2f0(x)− f0(y)− f0(−y)−G(x, y)

°°°°
∗

¾
≤
°°°°f ( p
√
xp + yp) + f ( p

√
xp − yp)− 2f(x)− f(y)− f(−y)−G(x, y)

°°°°
∗

≤ c

¯̄̄̄
Q1(x

p)

¯̄̄̄r ¯̄̄̄
Q2(y

p)

¯̄̄̄s
,

for all x, y ∈ R0. By using Corollary 3.1, we deduce that ψ is a solution of
equation (1.5). Moreover, for all x, y ∈ R0, we have

f ( p
√
xp + yp) + f ( p

√
xp − yp)− 2f(x)− f(y)− f(−y)−G(x, y)

= ψ ( p
√
xp + yp) + ψ ( p

√
xp − yp)− 2ψ(x)− ψ(y)− ψ(−y)

+f0 ( p
√
xp + yp) + f0 ( p

√
xp − yp)− 2f0(x)− f0(y)− f0(−y)−G(x, y) = 0,

which means that f is a solution of (3.6) on R0. 2

With an analogous proof of Corollary 3.3, we can prove the following
corollary.

Corollary 3.4. Let p be an odd natural number, c, r ∈ R such that c ≥ 0
and r < 0, (X , k.k∗) be a non-Archimedean Banach space and let G :
R × R → X be a function such that G(0, 0) = 0 and f : R → X be a
function such that f(0) = 0. Assume that f and G satisfy the inequality°°°f ( p

√
xp + yp) + f ( p

√
xp − yp)− 2f(x)− f(y)− f(−y)−G(x, y)

°°°
∗

≤ c (|Q(xp)|r + |Q(yp)|r) ,

for all x, y ∈ R0, where Q : R → R+ is a quadratic mapping. If the
functional equation

f
¡
p
√
xp + yp

¢
+ f

¡
p
√
xp − yp

¢
− 2f(x)− f(y)− f(−y)−G(x, y) = 0,(3.7)

has a solution f0 : R→ X on R0, then f is a solution of the equation (3.7)
on R0.
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