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Abstract

The boundary layer flow of temperature-dependent variable ther-
mal conductivity and dynamic viscosity on flow, heat, and mass trans-
fer of magnetized and dissipative Casson fluid over a slenderized stretch-
ing sheet has been studied. The model explores the Cattaneo-Christov
heat flux paradox instead of the Fourier’s law plus the stratifications
impact. The variable temperature-dependent plastic dynamic viscosity
and thermal conductivity were assumed to vary as a linear function of
temperature. The governing systems of equations in PDEs were trans-
formed into non-linear ordinary differential equations using the suit-
able similarity transformations, hence the approximate solutions were
obtained using Chebyshev Spectral Collocation Method (CSCM). Ef-
fects of pertinent flow parameters on concentration, temperature, and
velocity profiles are presented graphically and tabled, therein, thermal
relaxation and wall thickness parameters slow down the distribution of
the flowing fluid. A rise in Casson parameter, temperature-dependent
thermal conductivity, and velocity power index parameter increases
the skin friction thus leading to a decrease in energy and mass gra-
dient at the wall, also, temperature gradient attain maximum within
0.2 - 1.0 variation of Casson parameter.

Keywords: Casson fluid, Cattaneo-Christov, MHD, Spectral Collo-
cation Method, Stratifications.
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1. Introduction

Alloy’s systems such as plasma, electrolytes, and liquid metals exhibit
higher thermal conductivity as a result of their effectiveness in higher pos-
session of electrical conductivity, and transformation of energy from the
heat source to the liquid. This is found applicable in power generation,
MHD pumps, engineering, chemical industries among others [1]. Under-
standing the analysis of an electrically conducting fluid, known as Magneto
fluid dynamics (MHD), basically, the concept that generates its magnetic
field from the induced electric current due to the migration of the con-
ducting fluid into a magnetic field [2]. Due to industrial and engineering
applications of MHD, the attention of various researchers was drawn into
the modeling of MHD in different physical characteristics, among which
Mahanthesh et al. [3] presented their study on Cu-H2O nanofluid, [4] on
Carbon nanotube, [5] on Carreau fluid, [2] on Water’s B viscoelastic fluid,
[6], [7] and [8] on Casson fluid. More recently, Kumar and Srinivas [9] high-
lighted that the MHD effect enhances the temperature and depreciates the
velocity owing to the retarding forces opposing the flow direction.

Dated back to Crane [10] investigation of flow past a flat stretching sheet,
who provided an exact solution to the quiescent fluid flow on a stretching
surface, this unfolds different investigations on the flow past a stretching
surface, due to its enormous applications in engineering processes and in-
dustries (glass blowing, cooling of papers, textile industry, etc.) [11]. Rao
et al. [12] experiment with the slip conditions with heat transfer effect over
a stretching surface. Similar studies include, results on Casson fluid are
Refs. [13], [14], [15], MHD flow with a power-law velocity [16], Maxwell
fluid with porous medium [17], and Nanofluid containing motile gyrotac-
tic micro-organisms [11]. Ajayi et al. [18] presented double stratification
and viscous dissipation effect on MHD Casson fluid flow over a surface
with variable thickness. While recent work of Hussanan [19] considered
the nonlinearly stretching sheet, Newtonian heating, and heat transfer on
MHD Casson fluid flow. [20] gave the mathematical model of an isother-
mal sphere in MHD Casson nanofluid flow. They found a rise in Casson
parameter appreciate thermal boundary layer and decline the momentum
boundary layer thickness.

The importance of stratifications in geophysical flows cannot be overlooked,
since it minimizes the temperature and concentration field of dissolved oxy-
gen ([21], [22] and [23]), by negating the ambient heating from gaining ac-
cess into the fluid region. Meanwhile, [24] deduced that rise in stratification
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results in a reduction of velocity, velocity gradient, temperature, and tem-
perature gradient of the fluid. However, in assuming the physical nature
of problems, it is paramount to account for the thermophysical properties
of such problems. Makinde et al. [25] observed that for a temperature-
dependent viscosity, skin friction decreases while Nusselt number is appre-
ciated. Animasaun et al. [14] examine that Casson fluid slows down the
temperature distribution of a variable plastic dynamic viscosity, but con-
sequently, gives rise to the velocity profile. Bearing in mind that the role
of viscosity during the dissipation process cannot be neglected. Viscosity
is the measure of the internal fluid friction that causes resistance to flow
which is due to cohesion and interaction between the fluid particles. Dada
and Adefolaju [26] reported a rise in the velocity of the fluid due to an
increase in dissipation function. However, Zaib et al. [27] concluded that
heat absorption at the surface is enhanced by the viscous dissipation effect.

Marin [28] asserted that Fourier’s law of heat conduction is logically ab-
surd. Since distinct material property exhibits different times necessary for
the transfer of heat from one point to another (thermal relaxation time).
To address this Paradox of Heat Conduction (PHC), several models of
Fourier’s law have been proposed of which the Maxwell-Cattenaeo model
was found suitable [29]. Maxwell-Cattenaeo law was modified by Chris-
tov [29] resulting in a single system of equation for the temperature field
by eliminating the heat flux. The so-called modification is thus useful for
the convective heat transfer analysis. As a result, Refs. [30], [31], [32],
[33], [34], [35], [36], investigated the effect of MHD flow of Casson fluid by
considering the modified model, and they obtained that rise in thermal re-
laxation enhanced the heat transfer rate. Recently, Prasard [37] considered
the theory of the Cattaneo-Christov model on Williamson Nanofluid with
variable thickness. Meanwhile, the theory decelerates both concentration
and temperature profiles. Nandeppanavar and Shakunthala [38], observed
the impact of this model on carbon nanofluid by considering MHD along
with heat transfer effects on a stretching sheet. While Zhah et al. [39] as-
sumed an effective thermal conductivity model using the Cattaneo-Christov
heat flux model in micropolar Casson ferrofluid.

Chebyshev Spectral Collocation Method (CSCM) have found satisfactorily
good, excellent, and efficient in obtaining an approximate solution of both
linear and non-linear, coupled and non-coupled differential equations due
to its ability to handle varieties of boundary value problems ([40], [41],
[22], [43]). Hence, CSCM is accorded and recommended as a powerful tool
in handling both ODEs and PDEs systems [44]. Recently, [45] employed
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it to solve the unsteady two-dimensional NSE. Elbarbary [46] utilized a
new spectral differentiation matrix to minimize round-off error. Recently,
Babatin [47], embraces this method in the study Casson fluid and heat
transfer model over an unsteady stretching surface.
The literature analysis identified the gap that the combined effects of strat-
ification and applied magnetic field over the flow assumptions on a slen-
derized stretching sheet with variable thermo-physical effects are still far-
fetched in the literature. To the author’s best knowledge, using a modified
heat flux model, no study is reported yet on magnetized and dissipative Cas-
son fluid with chemically reacting fluid and variable temperature-dependent
properties.

2. Formulation of the Problem

This model assumed a Cattaneo-Christov heat flux model in a free convec-
tive, two-dimensional, steady, laminar, and incompressible viscous bound-
ary layer flow of MHD dissipative Casson fluid over a slenderized stretching
sheet. The flow model and physical coordinate system were presented in
Fig. 1, base on which the following flow assumptions were made:

pc
f-1
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1. the flow field is assumed to be MHD conducting with magnetic field
strength B(x) normal to the stretching sheet inx direction;

2. the sheet is assumed to be a linear function of temperature-dependent
and plastic dynamic viscosity κ(T ) = κ∗[i2+ j2(T −T∞)] and µ(T ) =
µ∗[i1 + j1(Tw − T )] (see Refs. [48], [49], [50], [51]), where j2 where
j1are temperature-dependent thermal conductivity and plastic vis-
cous parameter respectively;

3. Catteneo-christov heat flux model is assumed;

4. the rheology of an isotropic Casson fluid is given by

τij =

⎧⎨⎩
³
µb +

Py√
2π

´
2eij ifπ > πc³

µb +
Py√
2πc

´
2eij ifπ < πc

;

5. heat generation/absorption, viscous dissipation, and variations in tem-
perature and concentration (Stratification) were assumed;

6. the velocity of the stretching sheet is Uw = U0(x + b)n, such that

n 6= 1, hence illustrated with the profile y = A (x+ b)
(1−n)
2 · n denote

power index, b a positive constant, U0 the reference velocity, A is
considered small corresponding to the thin of the sheet, the velocity
at the free stream is assumed to be zero (u = 0), and the sheet is not
permeable.

Considering the above assumptions along with Boussinesq approximation,
the governing equation of mass, momentum, energy, and concentration is
thus expressed as:

∂u

∂x
+

∂v

∂y
= 0,(2.1)

u
∂u

∂x
+ v

∂u

∂y
=

µb(T )

ρ

µ
1 +

1

β

¶
∂2u

∂y2
+
1

ρ

µ
1 +

1

β

¶
∂u

∂y

∂µb(T )

∂y
− σB20

ρ
u,

(2.2)

u∂T
∂x + v ∂T∂y = k(T )

ρCp
∂2T
∂y2 +

1
ρCp

∂T
∂y

∂k(T )
∂y

³
1 + 1

β

´
+ µb(T )

ρCp

³
∂u
∂y

´2
± Q0(T−T∞)

ρCp
+

σB2
0

ρCp
u2

−hi
h
u∂u
∂x

∂T
∂x + v ∂v∂y

∂T
∂y + u∂v

∂x
∂T
∂y + v2 ∂

2T
∂y2

+ v ∂u∂y
∂T
∂x + 2uv

∂2T
∂y∂x + u2 ∂

2T
∂x2

i
,

(2.3)
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u
∂C

∂x
+ v

∂C

∂y
= Dp

∂2C

∂y2
−Kr(C − C∞),(2.4)

boundary conditions are:

u = Uw(x) = U0(x+ b)n, v = 0, T = Tw, C = Cw at y=A(x+ b)
(1−n)
2

u→ 0, T → T∞, C → C∞ as y →∞.
(2.5)

Were u, v are dimensionless velocity component in x and dirextion
yrespectively, µb is the plastic dynamic viscosity, β is the Casson parameter,
ρ the fluid density, B0 represent the magnetic field strenght, σ is the fluid
electrical conductivity, T is the fluid temperature, k thermal conductivity,
Cp the specific heat at constant pressure, Q0 heat generation/absorption,
hi material relaxation time C is the fluid concentration, Dp mass diffusivity,
Kr chemical reaction parameter.

Following the work presented by [24], the double stratification of thermal

and solutal (Tw, Cw) at the wall (y = A (x+ b)
(1−n)
2 ) and the free stream

(T∞, C∞) are respectively defined as:

Tw − T0 = z1(x+ b)
1−n
2 , T∞ − T0 = z2(x+ b)

1−n
2 ,

Cw − C0 = z3(x+ b)
1−n
2 , C∞ − C0 = z4(x+ b)

1−n
2 .

(2.6)

Hence, these relations hold:

j1(Tw − T0) = j1z1(x+ b)
1−n
2 , j1(T∞ − T0) = j1z2(x+ b)

1−n
2 .(2.7)

T0 been the reference temperature, there exist two differences in tem-
perature: first due to stratification which occurs for all x at a fixed point

of y = A(x + b)
1−n
2 and the latter occurs for all x as y → ∞. Hence,

temperature-dependent thermal conductivity γ, and the plastic dynamic
viscosity δare defined as: γ = j2(T∞ − T0) and δ = j1(T∞ − T0) respec-
tively, along with the relation γϕ = j2(Tw−T0) and δϕ = j1(Tw−T0). The
ratio of Eq. EQ7 thus produces the dimensionless stratification parameters,
thermal and solutal ϕ = Tw−T0

T∞−T0 =
z1
z2
and ( = Cw−C0

C∞−C0 =
z3
z4
respectively.

Transforming the governing PDEs in Eqns. EQ1-EQ4 together with EQ5
into an ODEs, using similarity transformations below as utilized in ([7],
[8]).
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u = ∂ψ
∂y , v = −∂ψ

∂x ψ =
³
2νU◦(x+b)n+1

n+1

´ 1
2
f(η),

η =
³
(n+1)U◦(x+b)n−1

2v

´ 1
2
y, θ(η) = T−T∞

Tw−T∞ , φ(η) = C−C∞
Cw−C∞ .

(2.8)

Where ψ is the stream function, ν represent the kinematic viscosity,
f(η) is the dimensionless velocity, θ(η) is the dimensionless temperature, φ
is the dimensionless concentration, and η is the dimensionless distance.

Utilizing the stream function u = ∂ψ
∂y , v = −

∂ψ
∂x given in Eq. EQ8, then

equation EQ1 is automatically satisfied, also invoking EQ8 in Eqs. EQ2-
EQ5 we have;

µ
1 +

1

β

¶ £
Q1f

000(η)− δθ0(η)f 00(η)
¤
+f(η)f 00(η)−

µ
2

n+ 1

¶h
n
¡
f 0(η)

¢2
+M2f 0(η)

i
= 0

(2.9)

Q2θ
00(η) + γ (θ0(η))2 − Pr

³
1−n
n+1

´
θ(η)f 0(η)− Prϕ

³
1−n
n+1

´
f 0(η) +Ec PrHaM2 (f 0(η))2 ,

−Prho
h³

n+1
2

´
f(η)θ0(η)f 0(η)−

³
(n−1)2
2(n+1)

´
(f(η))2 θ(η) − ϕ

³
(n−1)2
2(n+1)

´
(f 0(η))2+

³
n−1
2

´
f(η)θ(η)f 00(η) + ϕ

³
n−1
2

´
f(η)f 00(η) +

³
n+1
2

´
f2(η)θ00(η)

i
+ Prθ

0(η)f(η)

+EcPrQ1
³
1 + 1

β

´
(f 00(η))2 + PrH0

³
2

n+1

´
θ(η) = 0,

(2.10)

φ00(η)+Scf(η)φ
0(η)+

µ
n− 1
n+ 1

¶ £
Scf

0(η)φ(η) + Sc(f
0(η)

¤
−Scλ

µ
2

n+ 1

¶
φ(η) = 0,

(2.11)

For simplicity, we let Q1 = [i1 + δ − δθ(η)− δϕ] and Q2 = [i2 + γθ(η)].

Since the sheet is stretching, hence, η = A
³
(n+1)U0
2ν

´ 1
2 is assumed as the

least similarity variable. Then, the boundary condition becomes;

f(χ) = χ
³
1−n
1+n

´
, f 0(χ) = θ(χ) = φ(χ) = 1 for η = χ,

f 0(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0 for η → 0.
(2.12)
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where χ = A
³
(n+1)U0
2ν

´ 1
2 represent the plate surface. Equations EQ9 -

EQ11 along with EQ12 are in the domain [χ,∞). Dimensionalizing into
[0,∞) we set g(τ) = g(η − χ) = f(η), h(τ) = h(η − χ) = θ(η) and Φ(τ) =
Φ(η − χ) = φ(η) then we have:

µ
1 +

1

β

¶ £
Q3g

000(τ)− δh0(τ)g00(τ)
¤
+g(τ)g00(τ)−

µ
2

n+ 1

¶h
n
¡
g0(τ)

¢2
+M2g0(τ)

i
= 0,

(2.13)

Q4h
00(τ) + γ (h0(τ))2 − Pr

³
1−n
n+1

´
h(τ)g0(τ)− Prϕ

³
1−n
n+1

´
g0(τ) + Ec PrHaM2 (g0(τ))2−

Prho
h³

n+1
2

´
g(τ)h0(τ)g0(τ) −

³
(n−1)2
2(n+1)

´
(g(τ))2 h(τ)− ϕ

³
(n−1)2
2(n+1)

´
(g0(τ))2+

³
n−1
2

´
g(τ)h(τ)g00(τ) +ϕ

³
n−1
2

´
g(τ)g00(τ) +

³
n+1
2

´
g2(τ)h00(τ) + Prh

0(τ)g(τ)
i
+

EcPrQ3
³
1 + 1

β

´
(g00(τ))2 + PrH0

³
2

n+1

´
h(τ) = 0,

(2.14)

Φ00(τ)+Scg(τ)Φ
0(τ)+

µ
n− 1
n+ 1

¶ £
Scg

0(τ)Φ(τ) + Sc(g
0(τ)

¤
−Scλ

µ
2

n+ 1

¶
Φ(τ) = 0,

(2.15)
and the boundary conditions give;

g(0) = χ (1−n)1+n , g0(0) = h(0) = Φ(0) = 1,

g0(∞)→ 0, h(∞)→ 0, Φ(∞)→ 0.
(2.16)

Where Q3 = [i1 + δ − δh(τ)− δϕ] and Q4 = [i2 + γh(τ)], M =
σB2

0
ρUo
,

Pr =
Cpµ
k∗ , ho = hiUo(x + b)n−1, δ = j1 (T∞ − T0), γ = j2 (T∞ − T0),

H0 =
Q0
ρCp
, Sc =

ν
Dp
, λ = Kr

ρCpU0
, ϕ = z1

z2
, ( = z3

z4
, χ = A

³
(n+1)U0
2ν

´ 1
2 ,

Ec =
U20 (x+b)

2n

Cpz2(x+b)
1−n
2

and i1, i2 are taken to be unity.
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where β, γ, ϕ, (, H0, δ, Ec, n, Sc, M , χ, λ, Pr, ho are Casson parameter,
temperature-dependent thermal conductivity, thermal stratification param-
eter, solutal stratification parameter, heat generation/absorption parame-
ter, temperature-dependent plastic dynamic viscosity, Eckert number, ve-
locity power index parameter, Schmidt number, magnetic field parameter,
wall thickness parameter, chemical reaction parameter, Prandtl number,
and thermal relaxation parameter respectively.

3. Method of Solution

The Chebyshev Spectral Collocation Method (CSCM) known for its ef-
ficiency and accuracy in handling highly nonlinear systems of equations
([41], [42],[52]) is utilized in this study. In the implementation of CSCM,
we employed the domain truncation approach to approximate the problem
domain [0,∞)into [0,L]. L being the scaling parameter is used to indicate
the convergence at infinity (see, [41], [42], [49]). CSCM assumes an un-
known trial functions g(τ), h(τ) and Φ(τ) which are then approximated by
the sum of basis function Tk(τ)with the unknown constants ak, bk and ck
to be determined.

g(τ) ≈ gN (τ) =
PN

k=0 akTk(τ), h(τ) ≈ hN (τ) =
PN

k=0 bkTk(τ),

Φ(τ) ≈ ΦN (τ) =
PN

k=0 ckTk(τ),
(3.1)

By substituting Eq.EQ17 into boundary condition EQ16, we as well
substitute into the governing Eqs. (13 − 15) then the non-zero residue is
obtained. To minimize error, residues are equated to zero at N collocation
points. However, minimization of the expected residue depends on the
coefficient ak, bk, and ck assumed. Chebyshev collocation points used are
defined by [52].

τj = cos

µ
πj

N

¶
, j = 0, 1, 2, ..., N(3.2)

Owing to this, a system of 3N + 3 algebraic equations with 3N + 3
unknown coefficient expansion ak, bk and ck is obtained. And Newton
iteration method (Finlayson [53]) is thus employed to solve the derived
algebraic equations. The Mathematical symbolic package used is MATHE-
MATICA. The obtained values of constants ak, bk, and ck are substituted
into equation Eq. EQ17 to get the required approximate result.
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4. Numerical Computations and Discussion of Results

In this section, we considered the pertinent parameters as n = H0 = λ =
h0 = ( = ϕ = χ = 0.1 Pr = 0.72, Ec = δ = γ = 0.5, β = 0.2, M = 1,
Sc = 0.62. These values are kept constant throughout the experiment else
stated otherwise.
To authenticate the method used in this study, new terms added were set
to zero and the following corresponding results were obtained by Cheby-
shev Spectral Collocation Method (CSCM). Table 1 compared the present
result with that of Nadeem et al. [54] where ADM along with Pade ap-
proximation was used. And different values of Prandtl number as stated
in Pramanik [55]. Table 2 compared the result of skin friction and heat
transfer coefficient with that of Ref. [7] who adopted the shooting method
along with classical Runge-Kutta.

Table 4.1: Comparison of the Skin friction coefficient [g00(0)] (Nadeem et
al. [51]) and heat transfer coefficient [−h0(0)] (Pramanik [52]). Where

Γ =
³
1 + 1

β

´

For n = 2, β = 1 and varying χ & M For n = 1, β →∞ varying Pr

χ M Present study Nadeem et al. [47] Pr Present study Pramanik [48]
Γg00(0) Γg00(0) −h0(0) −h0(0)

-3 22 1.366679 1.36668 1 0.955216 0.9547
-3 32 2.184183 2.184183 2 1.471361 1.4714
−32 22 1.215503 1.215503 3 1.868998 1.8691

5 2.500074 2.5001
10 3.660627 3.6603
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Table 4.2: Comparison, Skin friction coefficient [g00(0)] and heat transfer
coefficient [−h0(0)] for different values of n and χ when Pr = 0.7, β → ∞
and Ec = δ = γ = Sc = H0 = λ = h0 = ( = ϕ = 0.

Present study Nadeem et al. [51]
n χ [g00(0)] [−h0(0)] [g00(0)] [−h0(0)]
-0.5 0.5 -1.16666855 1.90452127 -1.16668224 1.90459332
-0.5 0.25 -0.08338680 1.73607330 -0.08365155 1.73611251
−13 0.25 -0.50009300 1.34269600 -0.50041742 1.34290940

Table 4.1 displays the numerical computations depicting the effect of pa-
rameters on the flow, bearing in mind that other pertinent parameters
remain the same as stated earlier in this section. It was observed that a
rise in parameter β, n, and γ increases the Skin friction and leads to a
decrease in the energy and mass gradient at the wall. But β tend to attain
the maximum value of temperature gradient within the range of 0.2− 1.0
and declined afterward. Meanwhile, the addition M, h0 and δ eventually
decreases the Sherwood number Skin friction and Nusselt number. Also, in-
crease χ and Pr reduces skin friction and thus accelerates the temperature
and concentration gradient.
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Table 3: Computed effects of β, M, δ, γ, n, h0, Pr and χ on Skin friction
[Γg00(0)], heat transfer −h0(0) and mass transfer coefficients −Φ0(0). where
Γ =

³
1 + 1

β

´

The figure 2 represents the behavior of h0the on energy profile, and it was
found to decrease in temperature field as thermal relaxation parameter in-
creases, i.e. material particle needed extra time for heat transfer to its
surrounding particle due to thermal relaxation enhancement in tempera-
ture of the Casson fluid. Physically, thermal diffusion with an increasing
function of Prandtl number decreases which amounts to boundary layer
thickness, hence, a decrease in temperature field is seen perceived in Fig.3.

pc
table-3
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The figure 7 displays the variations in velocity profile for the various value
of the Magnetic parameter (M). Increasing M results in a decrease of the
profile g0(τ), this amount to the transverse magnetic field creating a Lorentz
force corresponding to drag force which act as a retarding force, and hence
provide resistance to the momentum boundary layer. Consequently, the
rise in (M) produce a significant temperature rise field as displayed in Fig.
8. The figure 9 − 11 presents the effects of βon energy and mass transfer
respectively.

pc
f-2-3-4-5
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The effect of temperature-dependent plastic dynamic viscosity (δ) on the
flow and energy transfer are presented in Fig. 4 and 5. Rise in pertinent
values δ reduces the fluid velocity near the stretching surface at τ ≤ 2 but it
increases as it moves away from the surface, while an increase in δ enhancing
the energy field, the thermal boundary layer, however, reduces heat transfer
while it gives no significant effect on the concentration profile. The figure 6
presents an increment in the energy profile of the Casson fluid and reduces
it into the free stream region with an increasing value of temperature-
dependent thermal conductivity parameter (γ), this affects the boundary
layer to generate heat and assist temperature profiles. Meanwhile, (γ)
shows no significant effect on flow and mass transfer profiles.

pc
f-6-7


pc
f-8-9




The paradox of heat conduction, influence of variable viscosity, ...1671

The figure 7 displays the variations in velocity profile for the various value
of the Magnetic parameter (M). Increasing M results in a decrease of the
profile g0(τ), this amount to the transverse magnetic field creating a Lorentz
force corresponding to drag force which act as a retarding force, and hence
provide resistance to the momentum boundary layer. Consequently, the
rise in (M) produce a significant temperature rise field as displayed in Fig.
8. The figure 9 − 11 presents the effects of βon energy and mass transfer
respectively.

In Fig. 9, the velocity field decreases with a rise in βparameter, while in Fig.
10 β gives rise to the temperature profile across the flow field. Practically,
increasing β gives rise to the plastic dynamic viscosity, meaning an increase
in β reduced yield stress of Casson fluid (resistivity force), contrary to
the result obtained in Fig. 10, this is viewed as a result of a decrease in
fluid temperature which is overpowered by the high amount of temperature
injected. And a decrease in the mass transfer of Casson fluid is observed
as we increase β as depicted in Figure 11.

pc
f-10-11




1672M. T. Akolade, A. S. Idowu, B. O. Falodun and J. U. Abubakar

pc
f-12-13


pc
f-14-15-16-17




The paradox of heat conduction, influence of variable viscosity, ...1673

Ec gave rise to the temperature profile due to heat energy stored in the liq-
uid because of frictional heating. While a rise in Ec decreases the velocity
distribution as pictured in Fig. 19. Figure 20 indicates the behavior of heat
generation/absorption parameter H0 on temperature distribution. In both
cases of heat generation (H0 > 0) and absorption (H0 < 0) more heat is
produced which results in the enhancement of the temperature field. The
figure 21 displayed that the larger value of the chemical reaction parameter
(λ) decelerates the fluid concentration along with boundary layer thickness.
Moreover, the concentration of the fluid is observed to reduce significantly
with an increasing value of Sc as presented in Fig. 22. Thermal strati-
fication (ϕ) give a declined behavior towards the temperature field owing
to the reduction in effective temperature difference, as shown in Fig. 23.
Similarly Fig. 24 presents the reduction in the concentration of the Casson
fluid as Solutal stratification increases.
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5. Conclusion

A study on boundary layer flow of dissipative and magnetized Casson fluid
was formulated by incorporating the paradox of heat conduction, variable
viscosity, thermal conductivity, and stratification influence over a slender-
ized stretching sheet. The governing nonlinear coupled ordinary differential
equations responsible for the flow model were solved using Chebyshev Spec-
tral Collocation Method (CSCM). From these investigations, the findings
based on the study were as follows:

1. existence of thermal relaxation time brings down the temperature
distribution.

2. the introduction of the magnetic field effect reduces the velocity field
across the boundary layer and appreciates in the temperature profile.
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3. increase in Prandtl’s number reduces the velocity profile.

4. reduction in velocity and concentration profiles were noticed by higher
Casson parameters while appreciating the temperature profile.

5. temperature-dependent plastic dynamic viscosity gives rise to ris-
ing velocity and temperature profiles, but it initially decreases the
velocity and increases as it goes into the free stream. Moreover,
temperature-dependent thermal conductivity appreciates the temper-
ature profile.

6. introduction of wall thickness parameter brings down the fluid flow,
energy, and mass transfer of the Casson fluid, while these profiles
were appreciated in the variations of the velocity power index.

7. rise Schmidt’s number, chemical reaction, and solutal stratification
reduce the fluid concentration.

8. heat generation/absorption increases the velocity while thermal ther-
mal stratification declined the temperature field.

9. Eckert number increases the temperature decreases the velocity and
towards the wall but decreases along the free stream.
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