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1. Introduction

Zadeh [25] introduced the fundamental concept of fuzzy sets in his classi-
cal paper. Chang [4] introduced the concept of fuzzy topological spaces as
a generalization of topological spaces. Since then many topologists have
contributed to the theory of fuzzy topological spaces. Thakur and Singh
[21] introduced the concept of fuzzy semi pre-open sets and fuzzy semi pre-
continuity. Ganguly and Saha [7] introduced the concept of δ-continuity
and δ-connected set in fuzzy set theory. The concept of weakly fuzzy δ-
semi-pre-continuous mappings and pairwise weakly fuzzy δ-semi pre-open
mappings in fuzzy topological spaces were studied by Mukherjee and Dhar
[12, 13]. Dutta and Tripathy [6] introduced fuzzy b-θ-open sets in fuzzy
topological spaces. Also Tripathy and Ray [22, 23] introduced δ-continuity
and weakly continuous functions on mixed fuzzy topological spaces. Dubey,
Panwar and Tiwari [5] introduced weakly pairwise irresolute mappings.
Kandil [8] introduced and studied the notion of fuzzy bitopological spaces
(a system (X, τ1, τ2) consisting of a non-empty set X with two arbitrary
topologies τ1 and τ2 on X is called a fuzzy bitopological space) as a natural
generalization of fuzzy topological spaces. Also D. Sarma and B.C. Tri-
pathy [17] and B.C. Tripathy and S. Debnath [24] introduced and studied
different concepts in bitopological spaces. In this paper, the concept of
weakly fuzzy δ-semi- pre-continuous mappings and pairwise weakly fuzzy
δ-semi pre-open mappings in fuzzy bitopological spaces are to be intro-
duced. Throughout the present study, the spaces X, Y and Z always
represent fuzzy bitopological spaces (X, τ1, τ2), (Y, σ1, σ2) and (Z,Γ1,Γ2)
respectively. As to the notations and terminologies cl(A) and int(A) to be
denote the closure of A and the interior of A, respectively in a fuzzy topo-
logical space (X, τ). Also τi− int(λ) and τj− cl(λ) to be mean respectively
the interior and closure of a fuzzy set λ with respect to the fuzzy topologies
τi and τj in a fuzzy bitopological space (X, τ1, τ2).

2. Preliminaries and Definitions

In this section, some preliminary results and definitions have been procured.

Definition 2.1. [25] LetX be a crisp set and A and B be two fuzzy subsets
of X with membership functions µA and µB respectively. Then
(a) A is equal to B, i.e., A = B if and only if µA(x) = µB(x), for all x ∈ X,
(b) A is called a subset of B if and only if µA(x) ≤ µB(x), for all x ∈ X,
(c) the Union of two fuzzy sets A and B is denoted by A ∨ B and its
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membership function is given by µA∨B = max (µA, µB),
(d) the Intersection of two fuzzy sets A and B is denoted by A∧B and its
membership function is given by µA∧B = min (µA, µB),
(e) the Complement of a fuzzy set A is defined as the negation of the
specified membership function. Symbolically it can be written as µcA =
1− µA.

Definition 2.2. [16] A fuzzy point xp in X is a fuzzy set in X defined by

xp(y) =

(
p (0 < p ≤ 1), for y = x;
0, for y 6= x(y ∈ X).

x and p are respectively the support and the value of xp.

A fuzzy point xp is said to belong to a fuzzy set A of X if and only if
p ≤ A(x). A fuzzy set A in X is the union of all fuzzy points which belong
to A.

Definition 2.3. [3] Let A be a fuzzy subset of a fuzzy topological space
(X, τ). Then A is called fuzzy δ-pre-open if A ≤ int(δcl(A)). The comple-
ment of a fuzzy δ-pre-open set is called fuzzy δ-pre-closed .

Definition 2.4. A fuzzy subset λ in a fuzzy topological space X is called
(a) [1] fuzzy semi-open if λ ≤ cl(int(λ))
(b) [2] fuzzy pre-open if λ ≤ int(cl(int(λ)))
(c) [21] fuzzy semi pre-open if there exists a fuzzy pre-open set µ such that
µ ≤ λ ≤ cl(µ).

Definition 2.5. [18] A fuzzy subset γ in (X, τ) is said to be fuzzy δ-semi
pre-open if there exists a fuzzy δ-pre-open set µ such that µ ≤ γ ≤ δ−cl(µ)
or equivalently γ ≤ δ − cl(int δ − cl(γ)).

Definition 2.6. [1] A fuzzy subset A of a fuzzy topological space (X, τ) is
called
(a) a fuzzy regular open set of (X, τ) if int cl(A) = A and
(b) a fuzzy regular closed set of (X, τ) if cl int(A) = A.

Definition 2.7. [14] A fuzzy subset A of a fuzzy topological space (X, τ)
is said to be fuzzy δ-semi-open if A ≤ clintδ(A).
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724 R. Dhar

Definition 2.8. [11] A mapping f : (X, τ) → (Y, σ) from a fuzzy topo-
logical space (X, τ) to another fuzzy topological space (Y, σ) is said to be
weakly fuzzy δ-semi-pre-continuous mapping if f−1(α) ∈ fδspo(X) for each
α ∈ fpo(Y ), where fδspo(X) (respectively fpo(X)) denotes the family of
all fuzzy δ-semi pre-open (respectively fuzzy pre-open) sets of X.

Definition 2.9. [12] The function f : (X, τ)→ (Y, σ) is said to be weakly
fuzzy δ-semi pre-open if f(λ) ≤ δspint(fpclλ) for each fuzzy open set λ of
X.

Definition 2.10. [12] A function f : (X, τ) → (Y, σ) is said to be weakly
fuzzy δ-semi pre-closed if δspcl(f(pint(λ))) ≤ f(λ) for each fuzzy pre-closed
subset λ of X.

Definition 2.11. [10] Let (X, τ1, τ2) be a fuzzy bitopological space. The
(i, j) - fuzzy semi-closure (denoted by (i, j)-scl(A)) and (i, j)-fuzzy semi-
interior (denoted by (i, j)-sint(A)) of a fuzzy set A in (X, τ1, τ2) are defined
respectively as follows :
(a) (i, j)-scl(A) = inf{B : B ≥ A,B is (i, j)-fuzzy semi-closed },
(b) (i, j)-sint(A) = sup{B : B ≤ A,B is (i, j)-fuzzy semi-open }.

Definition 2.12. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a mapping from a
fuzzy bitopological space (X, τ1, τ2) to another fuzzy bitopological space
(Y, σ1, σ2). Then f is called
(a) [19] pairwise fuzzy continuous (respectively pairwise fuzzy open) if
f : (X, τ1) → (Y, σ1) and f : (X, τ2) → (Y, σ2) are fuzzy continuous (re-
spectively fuzzy open),
(b) [20] pairwise fuzzy irresolute if the inverse image of each (i, j)-fuzzy
semi-open set in Y is (i, j)-fuzzy semi-open set in X, i 6= j, i, j = 1, 2,
(c) [10] pairwise fuzzy semi-continuous if the inverse image of each σi-fuzzy
open set in Y is (i, j)-fuzzy semi-open set in X, i 6= j,i, j = 1, 2,
(d) [10] pairwise fuzzy semi-open if the image of every τi-fuzzy open set in
X is (i, j)-fuzzy semi-open set in Y , i 6= j, i, j = 1, 2,
(e) [9] pairwise fuzzy pre-continuous if the inverse image of each σi-fuzzy
open set in Y is (i, j)-fuzzy pre-open set in X, i 6= j, i, j = 1, 2,
(f) [9] pairwise fuzzy pre-open if the image of every τi-fuzzy open set in X
is (i, j)-fuzzy pre-open set in Y , i 6= j,i, j = 1, 2,
(g) [15] pairwise fuzzy semi-pre-continuous if the inverse image of each σi-
fuzzy open set in Y is (i, j)-fuzzy semi pre-open set in X, i 6= j,i, j = 1, 2,
(h) [15] pairwise fuzzy semi pre-open if the image of every τi-fuzzy open
set in X is (i, j)-fuzzy semi pre-open set in Y , i 6= j,i, j = 1, 2.
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Definition 2.13. [13] A subset A of a fuzzy bitopological space (X, τ1, τ2)
is said to be (i, j)-fuzzy δ-semi-open if A ≤ τj − cl(τi− intδ(A)). The com-
plement of (i, j)-fuzzy δ-semi-open set is called (i, j)-fuzzy δ-semi-closed.

Definition 2.14. [13] Let A be a subset of a fuzzy bitopological space
(X, τ1, τ2). Then
(a) the intersection of all (i, j)-fuzzy δ-semi-closed sets containing A is
called the (i, j)-fuzzy δ-semi-closure of A and is denoted by (i, j)-sclδ(A),
(b) the union of all (i, j)-fuzzy δ-semi-open sets contained in A is called the
(i, j)-fuzzy δ-semi-interior of A and is denoted by (i, j)-sintδ(A).

Definition 2.15. [13] A subset A of a fuzzy bitopological space (X, τ1, τ2)
is said to be (i, j)-fuzzy δ-semi pre-open if A ≤ ((i, j) -spintδ(i, j)-spclδ(A)).
The complement of (i, j)-fuzzy δ-semi pre-open set is called (i, j)-fuzzy δ-
semi pre-closed.

Definition 2.16. [13] Let A be a subset of a fuzzy bitopological space
(X, τ1, τ2). Then
(a) the intersection of all (i, j)-fuzzy δ-semi pre-closed sets containing A
is called the (i, j)-fuzzy δ-semi pre-closure of A and is denoted by (i, j)-
spclδ(A),
(b) the union of all (i, j)-fuzzy δ-semi pre-open sets contained in A is called
the (i, j)-fuzzy δ-semi pre-interior of A and is denoted by (i, j)-spintδ(A).

3. Pairwise weakly fuzzy δ - semi precontinuous mappings

In this section the concept of weakly fuzzy δ-semi-pre-continuous mapping
is introduced. Some characterization theorems and its basic properties are
studied.

Definition 3.1. For any two fuzzy bitopological spaces (X, τ1, τ2) and
(Y, σ1, σ2), a mapping f : X → Y is said to be pairwise weakly fuzzy
δ-semi-pre-continuous if for each xp in X and each (i, j)-fuzzy-δ-semi pre-
open set V containing f(xp), there is an (i, j)-fuzzy pre-open set U in X
such that xp ∈ U and f(U) ≤ (i, j)-spclδ(V ), i 6= j and i, j = 1, 2.

Theorem 3.2. For any mapping f : (X, τ1, τ2)→ (Y, σ1, σ2), the following
conditions are equivalent:
(i) For any subset A of Y , (i, j)-spclδ(f

−1(i, j)-spintδ(i, j)spclδ(A)))) ≤
f−1((i, j)-spclδ(A)).
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726 R. Dhar

(ii) For any (i, j) - fuzzy pre-open set G in Y , (i, j)-spclδ(f
−1(G)) ≤

f−1((i, j)-spclδ(G)).
(iii) For any (i, j) - fuzzy pre-open set H in G in Y , (i, j)-spclδ(f

−1(i, j))-
spintδ(H)) ≤ f−1(H), where i 6= j and i, j = 1, 2.

Proof. (i)⇒(ii). Let G be any (i, j)-fuzzy pre-open set in Y . Then,
by (i), (i, j)-spclδ(f

−1(i, j)−spintδ(i, j)-spclδ(G)))) ≤ f−1((i, j)-spclδ(G)).
SinceG is (i, j)-fuzzy pre-open, G ≤ ((i, j)-spintδ(i, j)-spclδ(G)).Consequently,
(i, j)-spclδ(f

−1(G)) ≤ f−1 ((i, j)-spclδ(G)).
(ii) ⇒ (iii). For any (i, j)-fuzzy δ-semi pre-closed set H in Y , (i, j)-
spintδ(H) is (i, j)-fuzzy δ- semi pre-open set in Y . Therefore, by (ii), (i, j)-
spclδ(f

−1(i, j)-spintδ(H)) ≤ f−1((i, j)-spclδ(i, j)-spintδ(H))). Since H is
(i, j)-fuzzy δ-semi pre-closed, (i, j)-spclδ((i, j)-spintδ(H)) ≤ H. Therefore,
(i, j)-spclδ(f

−1(i, j))-spintδ(H)) ≤ f−1(H).
(iii) ⇒ (i). Let A be any fuzzy subset of Y . Let H = (i, j)-spclδ(A). Then
for the (i, j)-fuzzy δ-semi pre-closed set H, by (iii), (i, j)-spclδ(f

−1(i, j)-
spintδ(i, j)-spclδ(A)))) ≤ f−1((i, j)-spclδ(A)). 2

Theorem 3.3. A mapping f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise weakly
fuzzy δ- semi-pre -continuous if and only if for any (i, j)-fuzzy pre-open set
V in Y , f−1(V ) ≤ (i, j)-spintδ(f−1((i, j)-spclδ(V )), i 6= j and i, j = 1, 2.

Proof. Let f be pairwise weakly fuzzy δ- semi-pre-continuous mapping
and let V be any (i, j)-fuzzy pre-open set in Y . Then for any xp ∈ X
with xp ∈ f−1(V ), there exists some (i, j)-fuzzy δ- semi pre-open set U
in X such that xp ∈ U and f(U) ≤ ((i, j)-spclδ(V ). Hence xp ∈ U ≤
f−1((i, j)-spclδ(V )). Consequently, xp ∈ (i, j)-spintδ(f−1(i, j)-spclδ(V ))
and f−1(V ) ≤ (i, j)-spintδ(f−1((i, j)-spclδ(V )).

Conversely, let xp ∈ X and V be any (i, j) - fuzzy pre-open set in Y
with f(xp) ∈ V . Then by hypothesis f−1(V ) ≤ (i, j)-spintδ(f

−1((i, j)-
spclδ(V )). Put U = (i, j)-spintδ(f

−1((i, j)-spclδ(V )). Then (i, j)-fuzzy δ
-semi pre-open subset U is such that xp ∈ U ≤ f−1((i, j) − spclδ(V )).
Therefore, f(U) ≤ (i, j)− spclδ(V ). 2

Theorem 3.4. A mapping f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise weakly
fuzzy δ- semi-pre-continuous if and only if for any fuzzy subset A of Y ,
(i, j)-spclδ(f

−1(i, j)-spintδ(((i, j)-spclδ(A)))) ≤ f−1((i, j)-spclδ(A)), i 6= j
and i, j = 1, 2.
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Proof. Sufficiency. Let A be any subset of Y and xp ∈ X be such
that xp 6∈ f−1((i, j)-spclδ(A)). Then f(xp) 6∈ f−1((i, j)-spclδ(A)) and so
there exists some (i, j)-fuzzy pre-open set W in Y such that f(xp) ∈ W
and W ∩A = 0X . Since f is pairwise weakly fuzzy δ-semi-pre -continuous,
there exists some (i, j) - fuzzy δ- semi pre-open set U in X such that
xp ∈ U and f(U) ≤ (i, j)-spclδ(W ). Further, W ∩ (i, j)-spclδ(A) = 0X
and (i, j)-spclδ(Y − (i, j)-spclδ(A)) = (Y − (i, j)-spintδ(((i, j)-spclδ(A)).
Therefore, f(U) ≤ (Y − (i, j)-spintδ((i, j)-spclδ(A)) and hence, f(U) ∩
(i, j)-spintδ(i, j)-spclδ(A) = 0X . Consequently, U ∩ f−1((i, j)-spintδ(i, j)-
spclδ(A)) = 0X . It follows that xp 6∈ (i, j)-spclδ(f

−1(i, j)-spintδ(i, j)-
spclδ(A))). Hence (i, j)-spclδ(f

−1(i, j)-spintδ(((i, j)-spclδ(A)))) ≤ f−1((i, j)-
spclδ(A)).

Necessity. Let xp ∈ X and V be any (i, j)-fuzzy pre-open set in Y
with f(xp) ∈ V . Then V ∩(Y −(i, j)-spcl−δ(V )) = 0X . Therefore, f(xp) 6∈
(i, j)-spclδ(Y − (i, j)-spclδ(V )) and hence xp 6∈ f−1((i, j)-spclδ(Y − (i, j)-
spclδ(V ))). Now, (Y −(i, j)-spcl−δ(V )) ≤ (i, j)-spintδ(i, j)-spclδ(Y −(i, j)-
spclδ(V ))) and by hypothesis, (i, j)-spclδ(f

−1((i, j)-spintδ((i, j)-spclδ(Y −
(i, j)-spclδ(V )))) ≤ f−1(i, j)-spclδ(Y − (i, j)-spclδ(V )). Therefore, xp 6∈
((i, j)-spclδ(f

−1(Y − (i, j)-spclδ(V )))). Therefore, there exists some (i, j)-
fuzzy-δ-semi pre-open set U in X such that xp ∈ U and U ∩ f−1((i, j)-
spclδ(V )) = 0X . Consequently, U ≤ X−f−1(Y -(i, j)-spclδ(V )) = f−1((i, j)-
spclδ(V )). Therefore, it follows that f(U) ≤ (i, j)-spclδ(V ). 2

Theorem 3.5. Let (X, τ1, τ2) and (Y, σ1, σ2) be any two fuzzy bitoplogical
spaces and let f : (X, τ1, τ2)→ (Y, σ1, σ2) be a mapping. Then the follow-
ing statements are equivalent:
(i) The mapping f is pairwise weakly fuzzy δ-semi-pre-continuous.
(ii) For eachA ≤ Y ,(i, j)-spclδ(f

−1(i, j)-spintδ(i, j)-spclδ(A)))) ≤ f−1((i, j)-
spclδ(A)).
(iii) For each (i, j)-fuzzy pre-open set G in Y , (i, j)-spclδ(f

−1(G)) ≤
f−1((i, j)-spclδ(G)).
(iv) For each (i, j)-fuzzy pre-open setG in Y , (i, j)-spclδ(f

−1((i.j)-spintδ(H))) ≤
f−1(H).
(v) For each (i, j)-fuzzy pre-open setG in Y , f−1(G) ≤ ((i.j)-spintδ(f−1((i, j)-
spclδ(G))) where i 6= j and i, j = 1, 2.

Proof. The proof follows from the Theorem 3.2., Theorem 3.3. and
Theorem 3.4. and hence omitted. 2
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Theorem 3.6. For any three fuzzy bitopological spaces (X, τ1, τ2), (Y, σ1, σ2)
and (Z,Γ1,Γ2), if the mapping f : (X, τ1, τ2)→ (Y, σ1, σ2) and g : (Y, σ1, σ2)→
(Z,Γ1,Γ2) are pairwise weakly fuzzy δ-semi-pre-continuous, then g ◦ f :
(X, τ1, τ2)→ (Z,Γ1,Γ2) is pairwise weakly fuzzy δ-semi-pre-continuous.

Proof. Let xp ∈ X and W be any (i, j)-fuzzy pre-open subset of Z
such that (g ◦ f)(xp) ∈ W . Since g is pairwise weakly fuzzy δ-semi-pre-
continuous, there exists an (i, j)-fuzzy pre-open set V in Y containing f(xp)
such that V ≤ g−1((i, j)-spclδ(W )). Further f being pairwise weakly fuzzy
δ-semi-pre-continuous, there exists an (i, j)-fuzzy - semi pre-open set U in
X such that xp ∈ U ≤ f−1((i, j)-spclδ(V )). Thus, xp ∈ U ≤ f−1((i, j)-
spclδ(g

−1((i, j)-spclδ(W )))). But g being pairwise weakly fuzzy δ-semi-pre-
continuous, (i, j)-spclδ(g

−1(W )) ≤ g−1((i, j)-spclδ(W )). Therefore, xp ∈
U ≤ (g ◦f)−1((i, j)-spclδ(W )). Consequently, g ◦f is pairwise weakly fuzzy
δ-semi- pre-continuous. 2

Theorem 3.7. Let f : (X, τ1, τ2)→ (Y, σ1, σ2) be a mapping and g : X →
X×Y be the graph mapping of f , given by g(xp) = (xp, f(xp)) for xp ∈ X.
If g : X → X × Y is pairwise weakly fuzzy δ-semi-pre-continuous, then f
is pairwise weakly fuzzy δ-semi-pre-continuous.

Proof. Let xp ∈ X and V be an (i, j) - fuzzy pre-open set containing
f(xp) in Y . Then X × Y is (i, j) - fuzzy pre-open set in X × Y containing
g(xp). Since g is pairwise weakly fuzzy δ-semi-pre-continuous, there exists
an (i, j)-fuzzy δ-semi pre-open set U containing xp in X such that g(U) ≤
(i, j)-spclδ(X × Y ) ≤ X ≤ (i, j)-spclδ(V ). Since g is the graph mapping of
f , we have f(U) ≤ (i, j)-spclδ(V ). This shows that f is pairwise weakly
fuzzy δ-semi-pre-continuous. 2

4. Pairwise weakly fuzzy δ-semi pre-open mappings

In this section, the concept of pairwise weakly fuzzy δ-semi pre-open (pre-
closed) mapping is to be introduced. Some characterization theorems and
basic properties of them are also to be studied.

Definition 4.1. A mapping f : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be pair-
wise weakly fuzzy-δ-semi pre-open if f(λ) ≤ (i, j)-spintδ(f(pclλ)), for each
(i, j)-fuzzy open set λ of X.
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