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1. Introduction

In this paper, we consider only finite undirected graphs without loops or
multiple edges. Let G = (V (G), E(G)) be a graph with vertex set V (G)
and edge set E(G). In 1994, the concept of total coloring χ00(G) was intro-
duced by Behzad [1] and Vizing [11]. A total coloring of a graph G is an
assignment of colors to both the vertices and edges of G, such that no two
adjacent or incident vertices and edges of G are received the same colors.
They both conjectured that for any graph G the following inequality holds:
∆(G) + 1 ≤ χ00(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G.
It is clear that ∆(G) + 1 is the possible lower bound. In 1994, Fu [5] first
introduced the concept of equitable total coloring and the equitable total
chromatic number of a graph. Gong Kun et.al [3] proved some results on
the equitable total chromatic number of Wn ∨Kn, Fm ∨Kn and Sm ∨Kn.
In 2012, Ma Gang and ma Ming [6] proved some results concerning the
equitable total chromatic number of Pm ∨Sn, Pm ∨Fn and Pm ∨Wn. Tong
et.al [9] proved that the equitable total chromatic number of Cm2Cn. Girija
et.al [2] proved that equitable total chromatic number of Double star graph
and fan graph. Gang et.al [7] proved that on the equitable total coloring
of multiple join graph. Zhang Zhong-fu [13] proved that on the equitable
total coloring of some join graphs. Veninstine vivik et.al [10] proved an
algorithmic approach to equitable total chromatic number of wheel graph,
Gear graph, Helm graph and sunlet graph.

2. Preliminaries

Definition 2.1. The splitting graph[8] of a graph G is obtained from
adding to each vertex v, a new vertex v0 such that v0 is adjacent to ev-
ery vertex that is adjacent to v in G that is N(v) = N(v0). It is denoted
by S0(G).

Definition 2.2. For a simple graph G(V,E), let f be a proper k− total
coloring of G.

||Ti|− |Tj || ≤ 1, i, j = 1, 2, . . . k.

The partition {Ti} = {Vi ∪ Ei : 1 ≤ i ≤ k} is called a k− equitable total
coloring and χet(G)=min {k/ k-equitable total coloring ofG}
is called the equitable total chromatic number of G, where for all x ∈
Ti = Vi ∪Ei, f(x) = i, i = 1, 2, . . . k.
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Conjecture 2.3([5]) For any simple graph G(V,E),

χet(G) ≤ ∆(G) + 2.

Conjecture 2.4([14]) For any simple graph G(V,E),

χet(G) ≥ χ00(G) ≥ ∆(G) + 1.

Conjecture 2.5([12]) For every graph G, G has an equitable total k− col-
oring for each k ≥ max{χ00(G),∆(G) + 2}.

Lemma 2.6([4]) For n ≥ 13, the equitable total chromatic number of
Hypo-Mycielski Graph, χet(HM(Wn)) = n+ 2.

In this paper, we determine an equitable total chromatic number of
splitting graph of Pn, Cn and K1,n.

3. Main Results

Theorem 3.1. For any positive integer n ≥ 3, χet(S0(Pn)) = 5.

Proof. Let V (Pn) = {vi : 1 ≤ i ≤ n} and E(Pn) = {ei : 1 ≤ i ≤ n− 1},
where {ei : 1 ≤ i ≤ n − 1} be the edges vivi+1(1 ≤ i ≤ n − 1). By the
definition of splitting graph, introduce the new vertices {vi0 : 1 ≤ i ≤ n}
corresponding to the vertices {vi : 1 ≤ i ≤ n} of Pn, which are added to
obtain splitting graph of path S0(Pn). In S0(Pn), the vertex set and the
edge set is given by V (S0(Pn)) = {vi : 1 ≤ i ≤ n} ∪ {v0i : 1 ≤ i ≤ n} and
E(S0(Pn)) = {ei : 1 ≤ i ≤ n − 1} ∪ {e0i : 1 ≤ i ≤ n − 1} ∪ {e00i : 1 ≤
i ≤ n − 1}, where ei(1 ≤ i ≤ n − 1) is an edge vivi+1(1 ≤ i ≤ n − 1),
ei
0(1 ≤ i ≤ n− 1) is an edge viv

0
i+1(1 ≤ i ≤ n − 1) and e

00
i (1 ≤ i ≤ n − 1)

is an edge v
0
ivi+1(1 ≤ i ≤ n− 1). Now we partition the vertex set and edge

set of S0(Pn) as follows. We consider the following two cases,
Case(i): When n is odd

T1 = {v1, v3, . . . vn} ∪ {e
00
2 , e

00
4 , . . . e

00
n−1}

T2 = {v2, v4, . . . vn−1} ∪ {e
00
1 , e

00
3 , . . . e

00
n−2}

T3 = {e1, e3, . . . en−2} ∪ {v
0
i : 1 ≤ i ≤

¹
n

2

º
}

T4 = {e2, e4, . . . en−1} ∪ {v
0
i :

»
n

2

¼
≤ i ≤ n− 1}
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T5 = {e
0
i : 1 ≤ i ≤ n− 1} ∪ {vn0}

Clearly T1, T2, T3, T4 and T5 are independent sets of S
0(Pn). Its satisfies the

inequality ||Ti|− |Tj || ≤ 1 for i 6= j. Therefore the graph S0(Pn) is equitably
total colored with 5 colors. This implies that χet(S

0(Pn)) ≤ 5. Further,
since ∆ = 4, we have χet(S

0(Pn)) ≥ χ00((S0(Pn)) ≥ ∆ + 1 ≥ 4 + 1 ≥ 5.
Hence χet(S

0(Pn)) = 5.
Case(ii): When n is even

T1 = {v1, v3, . . . vn−1} ∪ {e
00
2 , e

00
4 , . . . e

00
n−2}

T2 = {v2, v4, . . . vn} ∪ {e
00
1 , e

00
3 , . . . e

00
n−1}

T3 = {e1, e3, . . . en−1} ∪ {v
0
i : 1 ≤ i ≤ n

2
}

T4 = {e2, e4, . . . en−2} ∪ {v
0
i :

n

2
+ 1 ≤ i ≤ n}

T5 = {e
0
i : 1 ≤ i ≤ n− 1}

Clearly T1, T2, T3, T4 and T5 are independent sets of S
0(Pn). Its satisfies the

inequality ||Ti|− |Tj || ≤ 1 for i 6= j. Therefore the graph S0(Pn) is equitably
total colored with 5 colors. This implies that χet(S

0(Pn)) ≤ 5. Further,
since ∆ = 4, we have χet(S

0(Pn)) ≥ χ00(S0(Pn)) ≥ ∆+1 ≥ 4+1 ≥ 5. Hence
χet(S

0(Pn)) = 5. 2

Theorem 3.2. For any positive integer n ≥ 4, χet(S0(Cn)) = 5.

Proof. Let V (Cn) = {vi : 1 ≤ i ≤ n} and E(Cn) = {ei : 1 ≤ i ≤
n− 1}∪ {en}, where {ei : 1 ≤ i ≤ n− 1} be the edges vivi+1(1 ≤ i ≤ n− 1)
and en is an edge vnv1. By the definition of splitting graph, introduce the
new vertices {vi0 : 1 ≤ i ≤ n} corresponding to the vertices {vi : 1 ≤ i ≤ n}
of Cn, which are added to obtain splitting graph of cycle S

0(Cn). In S
0(Cn),

the vertex set and the edge set is given by
V (S0(Cn)) = {vi : 1 ≤ i ≤ n} ∪ {v0i : 1 ≤ i ≤ n} and
E(S0(Cn)) = {ei : 1 ≤ i ≤ n − 1} ∪ {e0i : 1 ≤ i ≤ n − 1} ∪ {e00i : 1 ≤
i ≤ n − 1} ∪ {en} ∪ {e

0
n} ∪ {e

00
n}, where ei(1 ≤ i ≤ n − 1) is an edge

vivi+1(1 ≤ i ≤ n − 1), en is an edge vnv1, ei0(1 ≤ i ≤ n − 1) is an edge
viv

0
i+1(1 ≤ i ≤ n − 1), e0n is an edge vnv

0
1, e

00
i (1 ≤ i ≤ n − 1) is an edge

v
0
ivi+1(1 ≤ i ≤ n− 1) and e

00
n is an edge v

0
nv1. Now we partition the vertex

set and edge set of S0(Cn) as follows. we consider the following two cases,
Case(i): When n is odd

T1 = {v1, v3, . . . vn−2} ∪ {e
00
1 , e

00
3 , . . . e

00
n−2} ∪ {e

00
n−1}
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T2 = {v2, v4, . . . vn−1} ∪ {e
00
2 , e

00
4 , . . . e

00
n−3} ∪ {e

0
n} ∪ {e

00
n}

T3 = {e1, e3, . . . en−2} ∪ {v
0
i : 2 ≤ i ≤

¹
n

2

º
+ 1} ∪ {vn}

T4 = {e2, e4, . . . en−1} ∪ {v
0
i :

»
n

2

¼
+ 1 ≤ i ≤ n} ∪ {e01}

T5 = {e
0
i : 2 ≤ i ≤ n− 1} ∪ {en} ∪ {v

0
1}

Clearly T1, T2, T3, T4 and T5 are independent sets of S
0(Cn). Its satisfies the

inequality ||Ti|− |Tj || ≤ 1 for i 6= j. Therefore the graph S0(Cn) is equitably
total colored with 5 colors. This implies that χet(S

0(Cn)) ≤ 5. Further,
since ∆ = 4, we have χet(S

0(Cn)) ≥ χ00((S0(Cn)) ≥ ∆ + 1 ≥ 4 + 1 ≥ 5.
Hence χet(S

0(Cn)) = 5.
Case(ii): When n is even

T1 = {v1, v3, . . . vn−1} ∪ {e
00
1 , e

00
3 , . . . e

00
n−1}

T2 = {v2, v4, . . . vn} ∪ {e
00
2 , e

00
4 , . . . e

00
n}

T3 = {e1, e3, . . . en−1} ∪ {v
0
i : 1 ≤ i ≤ n

2
}

T4 = {e2, e4, . . . en} ∪ {v
0
i :

n

2
+ 1 ≤ i ≤ n}

T5 = {e
0
i : 1 ≤ i ≤ n}

Clearly T1, T2, T3, T4 and T5 are independent sets of S
0(Cn). Its satisfies the

inequality ||Ti|− |Tj || ≤ 1 for i 6= j. Therefore the graph S0(Cn) is equitably
total colored with 5 colors. This implies that χet(S

0(Cn)) ≤ 5. Further,
since ∆ = 4, we have χet(S

0(Cn)) ≥ χ00((S0(Cn)) ≥ ∆ + 1 ≥ 4 + 1 ≥ 5.
Hence χet(S

0(Cn)) = 5. 2

Theorem 3.3. For any positive integer n, χet(S
0(K1,n)) = 2n+ 1, n ≥ 2.

Proof. Let V (K1,n) = {v} ∪ {vi : 1 ≤ i ≤ n}, where {vi : 1 ≤ i ≤ n}
be the pendent vertices and {v} be the root vertex of K1,n and E(K1,n) =
{ei : 1 ≤ i ≤ n}, where ei is an edge vvi(1 ≤ i ≤ n). Now construct the
splitting graph of star, introduce the new vertices {v0} and {v0i : 1 ≤ i ≤ n}
corresponding to the vertices {v} and {vi : 1 ≤ i ≤ n} of K1,n, which are
added to obtain splitting graph of star S0(K1,n). In S0(K1,n), the vertex
set and the edge sets are given by V (S0(K1,n)) = {vi : 1 ≤ i ≤ n} ∪ {vi0 :
1 ≤ i ≤ n} ∪ {v} ∪ {v0} and E(S0(K1,n)) = {ei : 1 ≤ i ≤ n} ∪ {e0i : 1 ≤
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i ≤ n} ∪ {e00i : 1 ≤ i ≤ n}, where ei(1 ≤ i ≤ n) is an edge vvi(1 ≤ i ≤ n),
e
0
i(1 ≤ i ≤ n) is an edge vv

0
i(1 ≤ i ≤ n) and e

00
i (1 ≤ i ≤ n) is an edge

v0vi(1 ≤ i ≤ n). Now we partition the vertex set and edge set of S0(K1,n)
as follows.

T1 = {v, v0}

T2 = {e
0
1, e

00
1 , vn}

T3 = {e
0
2, e

00
2 , v

0
1}

T4 = {e
0
3, e

00
3 , v

0
2}

T5 = {e
0
4, e

00
4 , v

0
3}

.........................

.........................

Tn−1 = {e
0
n−2, e

00
n−2, v

0
n−3}

Tn = {e
0
n−1, e

00
n−1, v

0
n−2}

Tn+1 = {e
0
n, e

00
n, v

0
n−1}

Tn+2 = {e1, v
0
n}

Tn+3 = {e2, v1}

Tn+4 = {e3, v2}

.........................

.........................

T2n−1 = {en−2, vn−3}

T2n = {en−1, vn−2}

T2n+1 = {en, vn−1}

Clearly T1, T2, T3, T4. . . T2n+1 are independent sets of S
0(K1,n). Also |T2| =

|T3| = |T4| = ..... = |Tn+1| = 3 and |T1| = |Tn+2| = |Tn+3| = . . . =
|T2n| = |T2n+1| = 2. Its satisfies the inequality ||Ti| − |Tj || ≤ 1 for i 6= j.
Therefore the graph S0(K1,n) is equitably total colored with 2n+1 colors.
This implies that χet(S

0(K1,n)) ≤ 2n+ 1. Further, since ∆ = 2n, we have
χet(S

0(K1,n)) ≥ χ00((S0(K1,n)) ≥ ∆ + 1 ≥ 2n + 1. Hence χet(S0(K1,n)) =
2n+ 1. 2
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