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1. Introduction

Graphs in this paper are simple and finite. For undefined terminologies and
notations see [5, 17]. Thus for a graph G, δ(G),∆(G) and χ(G) denote the
minimum degree, maximum degree and chromatic number ofG respectively.
When the context is clear we write, δ,∆ and χ for brevity. For v ∈ V (G),
let N(v) denote the set of vertices adjacent to v in G and d(v) = |N(v)|.
The r-dynamic chromatic number was first introduced by Montgomery [14].

An r-dynamic coloring of a graph G is a map c from V (G) to the set of
colors such that (i) if uv ∈ E(G), then c(u) 6= c(v) and (ii) for each vertex
v ∈ V (G), |c(N(v))| ≥ min {r, d(v)}, where N(v) denotes the set of vertices
adjacent to v and d(v) its degree and r is a positive integer.

The first condition characterizes proper colorings, the adjacency condi-
tion and second condition is double-adjacency condition. The r-dynamic
chromatic number of a graph G, written χr(G), is the minimum k such that
G has an r-dynamic proper k-coloring. The 1-dynamic chromatic number
of a graph G is equal to its chromatic number. The 2-dynamic chromatic
number of a graph has been studied under the name dynamic chromatic
number denoted by χd(G) [1, 2, 3, 4, 8]. By simple observation, we can show
that χr(G) ≤ χr+1(G), however χr+1(G)− χr(G) can be arbitrarily large,
for example χ(Petersen) = 2, χd(Petersen) = 3, but χ3(Petersen) = 10.
Thus, finding an exact values of χr(G) is not trivially easy.

There are many upper bounds and lower bounds for χd(G) in terms of
graph parameters. For example, for a graph G with ∆(G) ≥ 3, Lai et al.[8]
proved that χd(G) ≤ ∆(G)+1. An upper bound for the dynamic chromatic
number of a d-regular graph G in terms of χ(G) and the independence
number of G, α(G), was introduced in [7]. In fact, it was proved that
χd(G) ≤ χ(G) + 2log2α(G) + 3. Taherkhani gave in [15] an upper bound
for χ2(G) in terms of the chromatic number, the maximum degree ∆ and

the minimum degree δ. i.e., χ2(G)− χ(G) ≤
l
(∆e)/δlog

³
2e
³
∆2 + 1

´´m
.

Li et al.proved in [10] that the computational complexity of χd(G) for a
3-regular graph is an NP-complete problem. Furthermore, Li and Zhou [9]
showed that to determine whether there exists a 3-dynamic coloring, for a
claw free graph with the maximum degree 3, is NP-complete.

N.Mohanapriya et al. [11, 12] studied the dynamic chromatic number
for various graph families. Also, it was proven in [13] that the r-dynamic
chromatic number of line graph of a helm graph Hn.

In this paper, we study χr(G), when 1 ≤ r ≤ ∆. We find the r- dynamic
chromatic number of the middle, central and line graphs of the gear graph.
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2. Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). The middle
graph [6] of G, denoted by M(G) is defined as follows. The vertex set of
M(G) is V (G)∪E(G). Two vertices x, y of M(G) are adjacent inM(G) in
case one of the following holds: (i) x, y are in E(G) and x, y are adjacent
in G. (ii) x is in V (G), y is in E(G), and x, y are incident in G.

The central graph [16] C(G) of a graph G is obtained from G by adding
an extra vertex on each edge of G, and then joining each pair of vertices of
the original graph which were previously non-adjacent.

The line graph [13] of G denoted by L(G) is the graph with vertices
are the edges of G with two vertices of L(G) adjacent whenever the corre-
sponding edges of G are adjacent.

The gear graph is a wheel graph with a graph vertex added between
each pair of adjacent graph vertices of the outer cycle. The gear graph Gn

has 2n+ 1 nodes and 3n edges.

Let V (Gn) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n}
and E(Gn) = {vvi : 1 ≤ i ≤ n}∪{uivi : 1 ≤ i ≤ n}∪{uivi+1 : 1 ≤ i ≤ n and
the meaning of mod n is the obvious}.

3. Main Theorem

Theorem 3.1. Let n ≥ 5,M(Gn) be the middle graph of a gear graph Gn

and let
∆ = ∆(M(Gn)). Then

χr(M(Gn)) =

n+ 1, 1 ≤ r ≤ 4
n+ 2, 5 ≤ r ≤ ∆− 2

n+ 4, r = ∆− 1 and n ≡ 0 mod 3
n+ 5, r = ∆− 1 and n ≡ 1 mod 3
n+ 4, r = ∆− 1 and n ≡ 2 mod 3
n+ 5, r = ∆ and n ≡ 0 mod 3
n+ 7, r = ∆ and n ≡ 1 mod 3
n+ 6, r = ∆ and n ≡ 2 mod 3

Proof. By the definition of middle graph,
V (M(Gn)) = V (Gn) ∪E(Gn) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n} ∪
{ei : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ 2n}.

The vertices v and {ei : 1 ≤ i ≤ n} induces a clique of order Kn+1 in
M(Gn).
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Thus, χδ(M(Gn)) ≥ n+ 1.
We divide the proof into some cases.

Case 1 : For 1 ≤ r ≤ 4
The r− dynamic (n+ 1) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui and vi.
|N(ui)| = d(ui) = 2 = δ,
|N(vi)| = d(vi) = 3
|N(v)| = d(v) = n,
|N(ei)| = d(ei) = n+ 3
and |N(si)| = d(si) = 5
For 1 ≤ i ≤ 2n, assign the allowed colors to the vertex si and also it

must satisfies the r− adjacency condition.

• color the vertices s1, s3, s5, s7, · · · s2n−5, s2n−3, s2n−1 with colors
c3, c4, c5, · · · cn, c1, c2(the order of assigned color is important).

• color the vertices s2, s4, s6, s8, · · · s2n−4, s2n−2, s2n with colors
cn, c1, c2, c3, · · · cn−3, cn−2, cn−1(the order of assigned color is impor-
tant).

We know that the |N(v)| = d(v) = n, so we need the color n+ 1.
It is easy to verify that adjacency and r-adjacency conditions are ful-

filled.
Hence, χr(M(Gn)) = n+ 1, for n ≥ 5 and 1 ≤ r ≤ 4.

Case 2 : For 5 ≤ r ≤ ∆− 2
The r− dynamic (n+ 2) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ 2n, if any, assign the vertex si to one of the allowed colors

- such color exists, because |N(si)| = d(si) = 5

• color the vertices s1, s3, s5, s7, · · · s2n−5, s2n−3, s2n−1 with colors
c3, c4, c5, · · · cn, c1, c2(the order of assigned color is important).

• color the vertices s2, s4, s6, s8, · · · s2n−4, s2n−2, s2n with colors
cn, c1, c2, c3, · · · cn−3, cn−2, cn−1(the order of assigned color is impor-
tant).
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• color the vertex vi with the color cn+2.

Now |N(si)| satisfies the r−adjacency condition.
But d(ei) = n+ 3, so N(ei) having n+ 2 colors.
It is easy to verify that the r-adjacency condition is fulfilled.
Hence, χr(M(Gn)) = n+ 2, for n ≥ 5 and 5 ≤ r ≤ ∆− 2.

Case 3 : For r = ∆− 1 and n ≡ 0 mod 3
The r− dynamic (n+ 4) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.
|N(ei)| having n+ 1 colors only. So we assign one new color to si.

• color the vertices s1, s4, s7, s10, · · · s2n−5, s2n−2 with color cn+3.

• color the vertices s2, s5, s8, s11, · · · s2n−4, s2n−1 with colors cn+4.

Now s3, s6, s9, · · · s2n−3, s2n are uncolored. So assign these vertices to
any one of the allowed colors-such color exists.

• color the vertices s3, s6, s9, · · · s2n−3, s2n with colors c5, c7, c9, · · · cn−1, c1, c3
(the order of assigned color is important).

Now neighbours of ei having n+4 colors and an easy check shows that
the r−adjacency condition is fulfilled.

Hence, χr(M(Gn)) = n+ 4, for n ≥ 5, r = ∆− 1 and n ≡ 0 mod 3.

Case 4 : For r = ∆− 1 and n ≡ 1 mod 3
The r− dynamic (n+ 5) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.

N(ei) having n+ 1 colors. So we have to assign one new color to si.

• color the vertices s1, s4, s7, s10, · · · s2n−4 with color cn+3.

• color the vertices s2, s5, s8, s11, · · · s2n−3 with color cn+4



6 T. Deepa, M. Venkatachalam and Dafik

But neighbours of en having n+ 1 colors only. So we have to assign a
new color cn+5 to s2n−2.

Now neighbours of ei having n + 2 colors. But the vertices s2n−1 and
s2n are uncolored.

So we have to assign any one of the allowed colors to s2n−1 and s2n.

• color the vertex s2n−1 with the color c2 and color the vertex s2n with
the color c3.

Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, χr(M(Gn)) = n+5, for n ≥ 5 and r = ∆−1 and n ≡ 1 mod 3.

Case 5 : For r = ∆− 1 and n ≡ 2 mod 3
The r− dynamic (n+ 4) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.

Now N(ei) having n+1 colors.so we have to assign one new color to si.

• color the vertices s1, s4, s7, s10, · · · s2n−3 with color cn+3.

• color the vertices s2, s5, s8, s11, · · · s2n−2 with color cn+4

But the vertices s3, s6, s9, · · · s2n−4, s2n−1 and s2n are uncolored. So
we have to assign any one of the allowed colors to these vertices.

• color the vertices s3, s6, s9, · · · s2n−1, s2n with colors c4, c11, c7, c3, · · · , c2, c8
respectively.(the order of assigned color is important).

Now an easy check shows that the r− adjacency condition is fulfilled.
Hence, χr(M(Gn)) = n+ 4, for n ≥ 5, r = ∆− 1 and n ≡ 2 mod 3.

Case 6 : For r = ∆ and n ≡ 0 mod 3
The r− dynamic (n+ 5) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.
For r = ∆, we have to assign two new colors to neighbours of ei.
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• color the vertices s1, s4, s7, s10, · · · s2n−5, s2n−2 with color cn+3

• color the vertices s2n, s3, s6, s9, · · · s2n−3 with color cn+4

• color the vertices s2, s5, s8, s11, · · · s2n−1 with color cn+5

Now an easy check shows that the r−adjacency condition is fulfilled for
all the vertices.

Hence, χr(M(Gn)) = n+ 5, for n ≥ 5, r = ∆ and n ≡ 0 mod 3.

Case 7 : For r = ∆ and n ≡ 1 mod 3
The r− dynamic (n+ 7) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.
For r = ∆, we have to assign two new colors to neighbours of ei.

• color the vertices s1, s4, s7, s10, · · · s2n−4 with color cn+3.

• color the vertices s2n, s3, s6, s9, · · · s2n−5 with color cn+4.

• color the vertices s2, s5, s8, s11, · · · s2n−3 with color cn+5.

But neighbours of en does not satisfies the r-adjacency condition.
So we have to assign two new colors to the vertices s2n−2 and s2n−1

respectively.

• color the vertex s2n−2 with the color cn+6 and color the vertex s2n−1
with the color cn+7.

So we have to assign any one of the allowed colors to s2n−1 and s2n.
Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, χr(M(Gn)) = n+ 7, for n ≥ 5, r = ∆ and n ≡ 1 mod 3.

Case 8 : For r = ∆ and n ≡ 2 mod 3
The r− dynamic (n+ 6) coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to ei and assign the color cn+1 to v.
For 1 ≤ i ≤ n, assign the color cn+1 to ui.
For 1 ≤ i ≤ n, assign the color cn+2 to vi.
For r = ∆, we have to assign two new colors to neighbours of ei.
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• color the vertices s1, s4, s7, s10, · · · s2n−3 with color cn+3.

• color the vertices s2n, s3, s6, s9, · · · s2n−4 with color cn+4.

• color the vertices s2, s5, s8, s11, · · · s2n−2 with color cn+5.

Now neighbours of en does not satisfies the r- adjacency condition.

• color the vertex s2n−1 with the new color cn+6

Now an easy check shows that the r− adjacency condition is fulfilled.
Hence, χr(M(Gn)) = n+ 6, for n ≥ 5, r = ∆ and n ≡ 2 mod 3. 2

Theorem 3.2. Let n ≥ 5, C(Gn) be the central graph of a Gear graph Gn

and let
∆ = ∆(C(Gn)). Then

χr(C(Gn)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 1, r = 1
2n+ 1, δ ≤ r ≤ ∆− 2
2n+ 2, r = ∆− 1
3n+ 3, r = ∆

Proof. By the definition of central graph, subdividing each edge of
Gn exactly once and then joining each pair of vertices of Gn which were
non-adjacent.

Let V (C(Gn)) = V (Gn)∪E(Gn) = {v}∪{vi : 1 ≤ i ≤ n}∪{ui : 1 ≤ i ≤ n}∪
{ei : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ 2n}

We divide the proof into some cases.

Case 1 : For r = 1
The r- dynamic (n+ 1)− coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to vi and ui.
For 1 ≤ i ≤ n− 1, assign the color ci to ei+1 and assign the color cn to

e1.
|N(ui)| = d(ui) = 2n
|N(vi)| = d(vi) = 2n
|N(v)| = d(v) = 2n,
|N(ei)| = d(ei) = 2
and |N(si)| = d(si) = 2
For 1 ≤ i ≤ 2n, assign the color cn+1 to the vertex si and assign the

color cn+1 to v.
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Now an easy check shows that the r− adjacency condition is fulfilled.
Hence, χr(C(Gn)) = n+ 1, for r = 1.

Case 2 : For δ ≤ r ≤ ∆− 2
The r- dynamic (2n+ 1)− coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to vi.
For 1 ≤ i ≤ 2n, assign the color cn+1 to si.
For 1 ≤ i ≤ n− 1, assign the color ci to ei+1 and assign the color cn to

e1 and also assign the color cn+1 to v.

• Color the vertices u1, u2, u3, · · ·un−1, un with colors cn+2, cn+3, · · · c2n, c2n+1
(the order of assigned color is important).

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(C(Gn)) = 2n+ 1, for δ ≤ r ≤ ∆− 2

Case 3 : For r = ∆− 1
The r- dynamic (2n+ 2)− coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to vi and assign the color cn+1 to v.
For 1 ≤ i ≤ n− 1, assign the color ci to ei+1 and assign the color cn to

e1.

• Color the vertices u1, u2, u3, · · ·un−1, un with colors cn+2, cn+3, · · · c2n, c2n+1
(the order of assigned color is important).

• Color the vertices s2, s4, s6, · · · s2n−2, s2n with color cn+1.

• Color the vertices s1, s3, s5, · · · s2n−3, s2n−1 with colors c2n+2.

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(C(Gn)) = 2n+ 2, for r = ∆− 1

Case 4 : For r = ∆
The r- dynamic (3n+ 3)− coloring is as follows:
For 1 ≤ i ≤ n, assign the color ci to vi and assign the color cn+1 to v.

• Color the vertices u1, u2, u3, · · ·un−1, un with colors cn+2, cn+3, · · · c2n, c2n+1
(the order of assigned color is important).



10 T. Deepa, M. Venkatachalam and Dafik

• Color the vertices s1, s3, s5, · · · s2n−3, s2n−1 with colors c2n+2 and color
the vertices s2, s4, s6, · · · s2n−2, s2n with color c2n+3.

• Color the vertices e1, e2, e3, · · · en−1, en with colors c2n+4, c2n+5, c2n+6 · · · c3n+2, c3n+3
respectively.(the order of assigned color is important).

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(C(Gn)) = 3n+ 3, for r = ∆ 2

Result:
Let us consider the line graphs built on the base of Gear graph.
By the definition of line graph
V (L(Gn)) = E(Gn) = {ei : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ 2n}.
Note that d(ei) = n+ 1, d(si) = 3. Hence δ(L(Gn)) = 3.
Next, observe that the vertices {e1, e2, e3, .., en} induces a clique Kn in

L(Gn). Thus,

χδ(L(Gn)) ≥ n(3.1)

for any r. Let us start with r = δ.

Proposition 3.3. Let n ≥ 5.Let L(Gn) be the line graph of a Gear graph
Gn.Then χδ(L(Gn)) = n.

Proof. Due to (1), we have χδ(L(Gn)) ≥ n.
So, we need to fix only appropriate coloring.
For 1 ≤ i ≤ n, assign the color i to ei. Next,assign the colors to si such

that partial coloring is proper and the r- adjacency condition for r = δ is
also fulfilled.

That is we should assign one of the allowed colors from {1, 2, · · ·n} to
vertex si of degree 3, 1 ≤ i ≤ n.

The coloring we obtained is δ− dynamic coloring of L(Gn).
The result from proposition can be extended to r- dynamic coloring for

line graph of Gear graph for all r, where 1 ≤ r ≤ ∆. 2

Theorem 3.4. Let n ≥ 6, L(Gn) be the line graph of a Gear graph Gn

and
let ∆ = ∆(L(Gn)). Then
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χr(L(Gn)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n, 1 ≤ r ≤ n− 1
n+ 2, r = n and n 6≡ 1 mod 3
n+ 3, r = n and n ≡ 1 mod 3
n+ 3, r = n+ 1 = ∆, n ≥ 5 and 2n ≡ 0 mod 3
n+ 4, r = n+ 1 = ∆, n ≥ 5 and 2n ≡ 1 mod 3
n+ 5, r = n+ 1 = ∆, n ≥ 5 and 2n ≡ 2 mod 3

Proof. We divide the proof into some cases.

Case 1 : For 1 ≤ r ≤ n− 1
The r- dynamic (n)− coloring is as follows:
|N(ei)| = d(ei) = n− 1,
|N(si)| = d(si) = 3 = δ.

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n, for 1 ≤ r ≤ n− 1

Case 2 : For r = n and n 6≡ 1 mod 3

The r- dynamic (n+ 2)− coloring is as follows:

• Color vertex ei with color i, 1 ≤ i ≤ n.

Let us notice that vertices adjacent to each vertex ei mustbe colored
with r = n different colors. After this step each vertex ei has n − 1
neighbours in different colors and exactly its two neighbours are uncolored:
si−1, si.

We have to color them with atleast one new color to vertex si to fulfill
r adjacenct condition for vertex si. so χr (L(Gn)) ≥ n+ 2.

To color vertices si, 1 ≤ i ≤ n.

Now the number of vertices si, forming a cycle C2n, is not divisibly by
3, so color the vertices s1, s4, s7, s10, · · · s2n−2 with color n+ 1.

Now another neighbour of e1 has uncolored. So we have to assign one
of the allowed colors c1, c2, c3, · · · , cn to vertex s2n.

Next, the two neighbours of e2 are uncolored. We have to color them
with atleast one new color to vertex s2 to fulfill r- adjacent condition for
vertex ei.

• color the vertices s2, s5, s8, · · · s2n−1 with color n+ 2.
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Now the neighbours of ei has atleast n colors.
Now s3, s6, s9, s12, · · · s2n vertices get any one of the allowed colors c1, c2, c3, · · · cn.
Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n+ 2, for r = n and n 6≡ 1 mod 3

Case 3 : For r = n and n ≡ 1 mod 3
The r- dynamic (n+ 3)− coloring is as follows:

• Color vertex ei with color i, 1 ≤ i ≤ n.

Let us notice that vertices adjacent to each vertex ei mustbe colored
with r = n different colors. After this step each vertex ei has n − 1
neighbours in different colors and exactly its two neighbours are uncolored:
si−1, si.

We have to color them with atleast one new color to vertex si to fulfill
r adjacenct condition for vertex si. so χr (L(Gn)) ≥ n+ 2.

To color vertices si, 1 ≤ i ≤ n.
Now the number of vertices si, forming a cycle C2n, is not divisibly by

3, so color the vertices s1, s4, s7, s10, · · · s2n−4 with color n+ 1.
Now another neighbour of e1 has uncolored. So we have to assign one

of the allowed colors 1, 2, 3, · · ·n to vertex s2n.
Next, the two neighbours of e2 are uncolored. We have to color them

with atleast one new color to vertex s2 to fulfill r- adjacent condition for
vertex ei.

• color the vertices s2, s5, s8, · · · s2n−3 with color n+ 2.

But the neighbours of en having only n−1 colors. So we have to assign
any one of the new color to the vertices s2n−1, s2n−2.

Suppose to assign color n+3 to s2n−2, next assign the uncolored vertices
to the any one of the allowed colors 1, 2 · · ·n to fulfill r- adjacent condition
for vertex ei.

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n+ 3, for r = n and n ≡ 1 mod 3

Case 4 : r = n+ 1 = ∆ and 2n ≡ 0 mod 3
The r dynamic (n+ 3)-coloring is as follows:

• color the vertex ei with color i, 1 ≤ i ≤ n.
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It is clear that to color 2n remaining vertices: si we have to use colors
n, · · ·χr.

we have to still take care of the r- adjacency condition for all vertices.
The r- adjacency condition for vertices si, 1 ≤ i ≤ n, we must use atleast
two new colors to vertex si. So χr(L(Gn)) ≥ n+ 3.

• Color the vertices s1, s4, s7, s10, · · · s2n−2 with color n+ 1.

• color the vertices s3, s6, s9, s12, · · · s2n with new color n+ 2.

Now the vertex s2 is uncolored. So we have to assign the new color
n+ 3 to the vertices s2, s5, s8, · · · s2n−1.

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n+ 3, for r = n+ 1 = ∆ and 2n ≡ 0 mod 3.

Case 5 : r = n+ 1 = ∆ and 2n ≡ 1 mod 3
The r dynamic (n+ 4)-coloring is as follows:

• color the vertex ei with color i, 1 ≤ i ≤ n.

It is clear that to color 2n remaining vertices: si we have to use colors
n, · · ·χr.

we have to still take care of the r- adjacency condition for all vertices.
The r- adjacency condition for vertices si, 1 ≤ i ≤ n, we must use atleast
two new colors to vertex si.

• Color the vertices s1, s4, s7, s10, · · · s2n−3 with color n+ 1.

• color the vertices s2n, s3, s6, s9, s12, · · · s2n−4 with new color n+ 2.

Now the vertices s2, s5, s8, · · · s2n−2, s2n−1 are uncolored.

• color the vertices s2, s5, s8, · · · s2n−1 with the color n+ 3.

Now s2n−2 is uncolored. So we have to assign the new color n + 4 to
s2n−2.

Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n+ 4, for r = n+ 1 = ∆ and 2n ≡ 1 mod 3.

Case 6 : r = n+ 1 = ∆ and 2n ≡ 2 mod 3
The r dynamic (n+ 5)-coloring is as follows:
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• color the vertex ei with color i, 1 ≤ i ≤ n.

It is clear that to color 2n remaining vertices: si we have to use colors
n, · · ·χr.

we have to still take care of the r- adjacency condition for all vertices.
The r- adjacency condition for vertices si, 1 ≤ i ≤ n, we must use atleast
two new colors to vertex si.

• Color the vertices s1, s4, s7, s10, · · · s2n−4 with color n+ 1.

• color the vertices s2n, s3, s6, s9, s12, · · · s2n−5 with new color n+ 2.

• color the vertices s2, s5, s8, · · · s2n−3 with the color n+ 3.

Now s2n−2, s2n−1 are uncolored.
So we have to assign the new color n+4 to s2n−2 and to assign the new

color n+ 5 to s2n−1.
Now an easy check shows that the r−adjacency condition is fulfilled.
Hence, χr(L(Gn)) = n+ 5, for r = n+ 1 = ∆ and 2n ≡ 2 mod 3.

In all cases the order of the assigned colors is important. One can verify
that the adjacency and r-adjacency conditions are fulfilled.

2
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