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1. Introduction and preliminaries.

Let L(X) be the algebra of all bounded linear operators acting on an in-
finite dimensional complex Banach space X. An operator T ∈ L(X) is
said to verify property (VΠ) if the upper semi-Weyl spectrum of T coin-
cides with the Drazin spectrum of T . Property (VΠ) is a strong variant of
classical Browder’s theorem and their generalized versions, which was re-
cently introduced by Sanabria et al. [20]. There are other strong versions of
Browder’s theorem that are equivalent to property (VΠ), such is the case of
properties (Sb), (Sab), and (VΠa) introduced in [17], [18] and [20], respec-
tively. In this paper we investigated new characterizations of property (VΠ)
using the localized single-valued extension property and some topological
conditions that satisfy the spectral subsets originated from Fredholm The-
ory and B-Fredholm Theory. Also, we study property (VΠ) for operators
T + K defined on a Banach space X, where T + K is a (non necessarily
commuting) compact operator on X. Moreover, we see how property (VΠ)
is transmitted from an operator T to S∗, where S∗ is the dual operator of
the Drazin inverse S of T . In the last part of the paper we give examples of
operator classes to which some of the results obtained can be applied. We
start by explaining the relevant terminology. For T ∈ L(X), we will denote
by α(T ) the dimension of the kernel kerT and by β(T ) the codimension
of the range T (X). Recall that an operator T ∈ L(X) is said to be upper
semi-Fredholm, denoted by T ∈ Φ+(X), if α(T ) < ∞ and T (X) is closed;
while T ∈ L(X) is said to be lower semi-Fredholm, denoted by T ∈ Φ−(X),
if β(T ) < ∞. If T is either upper or lower semi-Fredholm then it is said
to be semi-Fredholm; while if T is both upper and lower semi-Fredholm
then it is said to be Fredholm. If T is semi-Fredholm, then the index of T
is defined by ind (T ) := α(T ) − β(T ). An operator T ∈ L(X) is called a
Weyl operator, denoted by T ∈W (X), if T is a Fredholm operator having
index 0. The classes of upper semi-Weyl and lower semi-Weyl operators
are defined, respectively, by

W+(X) := {T ∈ Φ+(X) : indT ≤ 0}

and
W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.

Clearly, W (X) =W+(X)∩W−(X). TheWeyl spectrum, upper semi-Weyl
spectrum and lower semi-Weyl spectrum are defined, respectively, by

σw(T ) := {λ ∈ C : λI − T /∈W (X)},



Further characterizations of property (VΠ) and some applications 1437
σuw(T ) := {λ ∈ C : λI − T /∈W+(X)}

and

σlw(T ) := {λ ∈ C : λI − T /∈W−(X)}.

Let p(T ) and q(T ) denote the ascent and the descent of T ∈ L(X), respec-
tively. It is well-known that if p(T ) and q(T ) are both finite then p(T ) =
q(T ). Moreover, if λ ∈ C the condition 0 < p(λI − T ) = q(λI − T ) <∞ is
equivalent to saying that λ is a pole of the resolvent, see [13, Prop. 50.2]. An
operator T ∈ L(X) is said to be Browder (resp. upper semi-Browder, lower
semi-Browder) if T is Fredholm and p(T ) = q(T ) < ∞ (resp. T is upper
semi-Fredholm and p(T ) < ∞, T is lower semi-Fredholm and q(T ) < ∞).
Denote by B(X), B+(X) and B−(X) the classes of Browder operators,
upper semi-Browder operators and lower semi-Browder operators, respec-
tively. Clearly, B(X) ⊆ W (X), B+(X) ⊆ W+(X) and B−(X) ⊆ W−(X).
Let

σb(T ) := {λ ∈ C : λI − T is not Browder}

denote the Browder spectrum and σub(T ) denote the upper semi-Browder
spectrum of T , defined as

σub(T ) := {λ ∈ C : λI − T is not upper semi-Browder},

then σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).

The concept of semi-Fredholm operators has been generalized by Berkani
([11], [12]) in the following way: for every T ∈ L(X) and a nonnegative in-
teger n let us denote by T[n] the restriction of T to T

n(X) viewed as a map
from the space Tn(X) into itself (we set T[0] = T ), then T ∈ L(X) is said
to be semi B-Fredholm (resp. B-Fredholm, upper semi B-Fredholm, lower
semi B-Fredholm) if for some integer n ≥ 0, the range Tn(X) is closed
and T[n] is a semi-Fredholm (resp. Fredholm, upper semi-Fredholm, lower
semi-Fredholm) operator. In this case T[m] is a semi-Fredholm operator for
all m ≥ n ([12]). This enables one to define the index of a semi B-Fredholm
operator T as ind (T ) = ind (T[n]). By [12, Proposition 2.5] every semi B-
Fredholm operator on a Banach space is quasi-Fredholm. Note that T is B-
Fredholm if and only if T ∗ is B-Fredholm. In this case ind (T ∗) = −ind (T ).
An operator T ∈ L(X) is said to be B-Weyl (resp. upper semi B-Weyl,
lower semi B-Weyl) if for some integer n ≥ 0, Tn(X) is closed and T[n] is
Weyl (resp. upper semi-Weyl, lower semi-Weyl). Analogously, an operator
T ∈ L(X) is said to be B-Browder (resp. upper semi B-Browder, lower
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semi B-Browder) if for some integer n ≥ 0, Tn(X) is closed and T[n] is Brow-
der (resp. upper semi-Browder, lower semi-Browder). The classes of upper
semi B-Weyl, B-Weyl, upper semi B-Browder and B-Browder operators
are denoted, respectively, by UBW (X), BW (X), UBB(X) and BB(X),
and their respective spectra are defined in the same order, as follows:

σubw(T ) := {λ ∈ C : λI − T /∈ UBW (X)},

σbw(T ) := {λ ∈ C : λI − T /∈ BW (X)},

σubb(T ) := {λ ∈ C : λI − T /∈ UBB(X)},

σbb(T ) := {λ ∈ C : λI − T /∈ BB(X)}.

According to [15, Chap. 3, Theorem 10], an operator T ∈ L(X) is
Drazin invertible (with a finite index) if there exists an operator S ∈ L(X)
and an integer n ≥ 0 such that

TS = ST , STS = S, TnST = Tn.

In this case the operator S is called Drazin inverse of T . In [15, Chap.
3, Theorem 10], it is shown that T ∈ L(X) is Drazin invertible if and
only if p(T ) = q(T ) < ∞. Also in [15, Chap. 3, Theorem 10] it is shown
that T ∈ L(X) is Drazin invertible if and only if there exist two closed
invariant subspaces Y and Z such that X = Y ⊕ Z and, with respect to
this decomposition,

T = T1 ⊕ T2, with T1 := T |Y nilpotent and T2 := T |Z invertible.

According to this decomposition, the Drazin inverse S of T may be repre-
sented as the directed sum

S := 0⊕ S2 with S2 := T−12 .

The concept of Drazin invertibility for bounded operators may be ex-
tended as follows.

Definition 1.1. An operator T ∈ L(X) is said to be left Drazin invertible
if p := p(T ) <∞ and T p+1(X) is closed, while T ∈ L(X) is said to be right
Drazin invertible if q := q(T ) <∞ and T q(X) is closed.
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Clearly, T ∈ L(X) is both right and left Drazin invertible if and only if

T is Drazin invertible. In fact, if 0 < p := p(T ) = q(T ) <∞ then T p(X) =
T p+1(X) is the kernel of the spectral projection associated with the spectral
set {0}, see [13, Prop. 50.2]. The left Drazin invertible spectrum is defined
as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible}

and the right Drazin invertible spectrum is defined as

σrd(T ) := {λ ∈ C : λI − T is not right Drazin invertible}.

It is known that σld(T ) = σubb(T ), σrd(T ) = σlbb(T ) and σd(T ) = σbb(T ),
see [4]. Let us denote by σa(T ) the classical approximate point spectrum and
by σs(T ) the surjectivity spectrum. It is well known that σa(T

∗) = σs(T ),
and σs(T

∗) = σa(T ). The concepts of Drazin’s invertibility to the left or to
the right lead to concepts of left or right pole, see [7].

Definition 1.2. Let T ∈ L(X). If λI − T is left Drazin invertible and
λ ∈ σa(T ) then λ is said to be a left pole of the resolvent of T . A left pole
λ is said to have finite rank if α(λI − T ) < ∞. If λI − T is right Drazin
invertible and λ ∈ σs(T ) then λ is said to be a right pole of the resolvent
of T . A right pole λ is said to have finite rank if β(λI − T ) <∞.

Evidently, λ is a pole of T if and only if λ is both a left and a right pole
of T . Moreover, λ is a pole of T if and only if λ is a pole of T ∗.

Definition 1.3. An operator T ∈ L(X) is said to be polaroid if every
isolated point of σ(T ) is a pole of the resolvent of T .

The quasi-nilpotent part of T ∈ L(X) is defined as the set

H0(T ) := {x ∈ X : lim
n→∞

kTnxk 1n = 0}.

Clearly, kerTn ⊆ H0(T ) for every n ∈ N .
The following property has relevant role in local spectral theory, see the

recent monographs by Laursen and Neumann [14] and Aiena [1].

Definition 1.4. An operator T ∈ L(X) is said to have the single valued
extension property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open
disc D centered at λ0, the only analytic function f : U → X which satisfies
the equation (λI − T )f(λ) = 0 for all λ ∈ D is the function f ≡ 0.
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An operator T ∈ L(X) is said to have SVEP if T has SVEP at every
point λ ∈ C. Evidently, T ∈ L(X) has SVEP at every point of the resolvent
ρ(T ) = C\σ(T ), and both T and T ∗ have SVEP at the points which belong
to the boundary ∂σ(T ) of the spectrum. Also, both T and T ∗ have SVEP
at every isolated point of the spectrum. We also have

p(λI − T ) <∞⇒ T has SVEP at λ,(1.1)

and dually,

q(λI − T ) <∞⇒ T ∗ has SVEP at λ,(1.2)

see [1, Theorem 3.8]. Furthermore, from definition of localized SVEP it
easily seen that

σa(T ) does not cluster at λ⇒ T has SVEP at λ,(1.3)

and dually,

σs(T ) does not cluster at λ⇒ T ∗ has SVEP at λ.(1.4)

Note that H0(T ) generally is not closed and by [1, Theorem 2.31 ], we
have

H0(λI − T ) closed⇒ T has SVEP at λ.(1.5)

Remark 1.5. All the implications (1.1)-(1.5) are equivalences whenever λI−
T is quasi-Fredholm, see [2]. In particular, theses equivalences hold when-
ever λI − T is a semi B-Fredholm operator.

2. Further characterizations of property (VΠ)

According to [20], an operator T ∈ L(X) verifies property (VΠ) if σ(T ) \
σuw(T ) = Π(T ), where Π(T ) = σ(T ) \ σd(T ), i.e. the set of all poles of
the resolvent of T . In this section we establish new characterizations of
property (VΠ) and investigate some results related to this property. The
following lemma will be used in the sequel.

Lemma 2.1. For every T ∈ L(X) the following equivalences hold:

1. σb(T ) = σub(T ) if and only if σa(T ) = σ(T ).

2. σa(T ) = σ(T ) if and only if σld(T ) = σd(T ).
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3. σb(T ) = σlb(T ) if and only if σs(T ) = σ(T ).

4. σs(T ) = σ(T ) if and only if σrd(T ) = σd(T ).

Proof. We will show only (1). The prof of (2) is similar to the proof of
(1). The proofs of (3) and (4) follows by duality of (1) and (2), respectively.
(1) Suppose that σa(T ) = σ(T ) and let λ /∈ σub(T ). Then λI − T is upper
semi-Fredholm and p(λI − T ) < ∞, so by Remark 1.5, σa(T ) does not
cluster at λ. If λ /∈ σa(T ) = σ(T ), clearly λ /∈ σb(T ). If λ ∈ σa(T ) =
σ(T ) = σ(T ∗) then λ ∈ isoσ(T ∗) and hence, T ∗ has SVEP at λ. Again by
the Remark 1.5, q(λI−T ) <∞. Being both p(λI−T ) and q(λI−T ) finites,
we have p(λI−T ) = q(λI−T ) <∞ and hence β(λI−T ) = α(λI−T ) <∞
(see [1, Theorem 3.4]), it follows that λI − T ∈ B(X), which is λ /∈ σb(T ).
This shows that σb(T ) = σub(T ). The converse is clear, since if λ /∈ σa(T )
then λ /∈ σub(T ) = σb(T ) and consequently λ /∈ σ(T ). 2

Theorem 2.2. For T ∈ L(X), the following statements are equivalent:

1. T verifies property (VΠ).

2. For every λ ∈ σ(T ) \ σubw(T ), there exists ν := ν(λ) ∈ N such that
H0(λI − T ) = ker(λI − T )ν and σubw(T ) = σw(T ).

3. H0(λI−T ) is closed for all λ ∈ σ(T )\σubw(T ) and σubw(T ) = σw(T ).

Proof. (1) ⇒ (2). If T verifies property (VΠ), σubw(T ) = σd(T ) by [20,
Theorem 2.27]. Now, if λ ∈ σ(T ) \ σubw(T ) then λ ∈ σ(T ) \ σd(T ) = Π(T ),
so λ is a pole of the resolvent of T , it follows that there exists ν(λ) such
that H0(λI − T ) = ker(λI − T )ν(λ), see [3, Corollary 2.47].
(2) ⇒ (3). It is clear.

(3) ⇒ (1). Let λ ∈ σ(T ) \ σuw(T ), then λ ∈ σ(T ) \ σubw(T ) and since
H0(λI − T ) is closed, by implication (5) it follows that T has SVEP in λ.
Now, since λI − T is Weyl, then by Remark 1.5, we have p(λI − T ) < ∞
and consequently, q(λI − T ) < ∞. Hence, λ ∈ σ(T ) \ σd(T ) = Π(T ) and
so, σ(T ) \ σuw(T ) ⊆ Π(T ).

On the other hand, let λ ∈ Π(T ) = σ(T ) \ σd(T ). Then λ ∈ σ(T ) \
σubw(T ) = σ(T ) \ σw(T ) = σ(T ) \ σuw(T ) and so, Π(T ) ⊆ σ(T ) \ σuw(T ).
Therefore, σ(T ) \ σuw(T ) = Π(T ) and T verifies property (VΠ). 2

In the following theorem we see that property (VΠ) is one of the strongest
variants of a-Browder’s theorem.
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Theorem 2.3. For T ∈ L(X), the following statements are equivalent:

1. T verifies property (VΠ).

2. T verifies a-Browder’s theorem and σw(T ) ∩ (σ(T ) \ σubw(T )) = ∅.

3. T verifies generalized a-Browder’s theorem and σw(T )∩(σ(T )\σubw(T ))
= ∅.

Proof. The proofs of (1) ⇒ (2) ⇒ (3) follows from [20, Theorem 2.27]
and the fact that generalized a-Browder’s theorem and a-Browder’s theorem
are equivalent.
(3) ⇒ (1). By hypothesis, σubw(T ) = σld(T ) and σubw(T ) = σw(T ), which

implies that σubw(T ) = σbw(T ) = σuw(T ) = σw(T ) = σld(T ). We will
show that σld(T ) = σd(T ) and then T will verify property (VΠ). Indeed,
if λ /∈ σld(T ) = σw(T ) then p(λI − T ) < ∞ and α(λI − T ) = β(λI −
T ) < ∞, it follows that p(λI − T ) = q(λI − T ) < ∞ and hence λI − T
is Drazin invertible, so λ /∈ σd(T ). Consequently, σld(T ) = σd(T ) and
σ(T ) \ σuw(T ) = σ(T ) \ σd(T ) = Π(T ). 2

For T ∈ L(X), define p00(T ) = σ(T ) \ σb(T ) (the set of all poles of the
resolvent of T having finite rank), pa00(T ) = σa(T ) \ σub(T ) (the set of all
left poles of T having finite rank), Πa(T ) = σa(T ) \ σld(T ) (the set of all
left poles of T ). The following theorem gives additional characterizations
for property (VΠ).

Theorem 2.4. For T ∈ L(X), the following statements are equivalent:

1. T verifies property (VΠ).

2. T ∗ has SVEP at each λ /∈ σuw(T ) and p00(T ) = Π(T ).

3. T ∗ has SVEP at each λ /∈ σuw(T ) and pa00(T ) = Π(T ).

Proof. The proofs of (1)⇒ (2) and (1)⇒ (3) follows from [20, Theorem
2.27] and Remark 1.5.
(2) ⇒ (1). Let λ ∈ Π(T ) = p00(T ), then λ ∈ σ(T ) \ σb(T ) ⊆ σ(T ) \
σuw(T ) and hence, Π(T ) ⊆ σ(T ) \ σuw(T ). To show the opposite inclusion
σ(T ) \ σuw(T ) ⊆ Π(T ), let λ ∈ σ(T ) \ σuw(T ). Then λI − T ∈ Φ+(X) and
α(λI −T ) ≤ β(λI −T ). Since T ∗ has SVEP in λ, by Remark 1.5 it follows
that q(λI−T ) <∞ and hence β(λI−T ) ≤ α(λI−T ) <∞. Consequently,
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p(λI − T ) = q(λI − T ) < ∞ and so λ ∈ σ(T ) \ σd(T ) = Π(T ). Therefore,
σ(T ) \ σuw(T ) ⊆ Π(T ) and the equality σ(T ) \ σuw(T ) = Π(T ) holds.
(3)⇒ (1). Clearly the inclusion Π(T ) ⊆ σ(T )\σuw(T ) follows from equality
Π(T ) = pa00(T ). The opposite inclusion σ(T ) \ σuw(T ) ⊆ Π(T ) is obtained
similarly to that of (2) ⇒ (1). 2

Corollary 2.5. Let T ∈ L(X). If T ∗ has SVEP at each λ /∈ σuw(T ) and
isoσa(T ) = ∅, then T verifies property (VΠ).

Proof. It is clear since in this case pa00(T ) = Π(T ) = ∅. 2

Theorem 2.6. Let T ∈ L(X). Then the following assertions hold:

1. If T has SVEP at every λ /∈ σlw(T ) and T verifies property (VΠ), then
T ∗ verifies property (VΠ).

2. If T ∗ has SVEP at every λ /∈ σuw(T ) and T ∗ verifies property (VΠ),
then T verifies property (VΠ).

Proof. (1). Suppose that T has SVEP at every λ /∈ σlw(T ) and T
verifies property (VΠ), then we have σlw(T ) = σw(T ) and σw(T ) = σd(T ),
it follows that

σ(T ∗) \ σuw(T ∗) = σ(T ) \ σlw(T ) = σ(T ) \ σw(T )
= σ(T ) \ σd(T ) = σ(T ∗) \ σd(T ∗).

Hence, T ∗ verifies property (VΠ).

(2). Suppose that T ∗ has SVEP at every λ /∈ σuw(T ) and T ∗ verifies
property (VΠ), then σuw(T ) = σw(T ) and σw(T

∗) = σd(T
∗), which implies

that

σ(T ) \ σuw(T ) = σ(T ) \ σw(T ) = σ(T ∗) \ σw(T ∗)
= σ(T ∗) \ σd(T ∗) = σ(T ) \ σd(T ).

Thus, T verifies property (VΠ). 2
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3. Topological conditions

Throughout this section we will write∆+(T ) = σ(T )\σuw(T ) and∆g
+(T ) =

σ(T ) \ σubw(T ). It is well known that the following equalities are satisfied
in any metric space: Cl(A) = A ∪ accA, Cl(A) = Int(A) ∪ ∂(A), Cl(A) =
isoA ∪ accA and ∂(A) = Cl(A) \ Int(A), for any A ⊆ X. In the case
that A ⊆ C, we have Int(Π(T )) = ∅, which implies that Π(T ) ⊆ Π(T ) ∪
accΠ(T ) = Cl(Π(T )) = ∂(Π(T )). Also, Π(T ) ∩ acc∆+(T ) ⊆ isoσ(T ) ∩
accσ(T ) = ∅, so Π(T ) ∩ acc∆+(T ) = ∅.

Lemma 3.1. Let T ∈ L(X). If Int(∆g
+(T )) = ∅, then σ(T ) = σa(T ).

Proof. Suppose that Int(∆g
+(T )) = ∅ and let λ0 /∈ σa(T ) such that λ0 ∈

σ(T ). Then, λ0 ∈ ρa(T ) and as ρa(T ) is open, there exists an open discDλ0

centered at λ0 such that Dλ0 ⊆ ρa(T ) and Dλ0 ∩ σ(T ) = ∅. We assert that
Dλ0∩ρ(T ) = ∅. Otherwise, if Dλ0∩ρ(T ) = ∅, then Dλ0∩∂σ(T ) = ∅ and as
∂σ(T ) ⊆ σa(T ), it follows that Dλ0 ∩ σa(T ) = ∅, which is a contradiction.
Hence, Dλ0 ∩ ρ(T ) = ∅ and so Dλ0 ⊆ σ(T ). Since Dλ0 ⊆ ρa(T ) ⊆ C \
σubw(T ), it follows that Dλ0 ⊆ σ(T ) ∩ (C \ σubw(T )) = ∆g

+(T ) and so
λ0 ∈ Int(∆g

+(T )), which contradicts the hypothesis Int(∆
g
+(T )) = ∅. Thus,

we conclude that σ(T ) = σa(T ) whenever Int(∆
g
+(T )) = ∅. 2

Theorem 3.2. For T ∈ L(X), the following statements are equivalent:

1. T verifies property (VΠ).

2. Cl(∆+(T )) = ∂(Π(T )) and ∆+(T ) ∩ accΠ(T ) = ∅.

3. Int(∆g
+(T )) = ∅ and ∂(Π(T )) ⊆ ∂(∆+(T )).

4. Int(∆g
+(T )) = ∅ and Π(T ) = p00(T ).

5. ∆+(T ) ⊆ isoσ(T ) and ∂(Π(T )) ⊆ Cl(∆+(T )).

6. ∆+(T ) ⊆ ∂σ(T ) and ∂(Π(T )) ⊆ Cl(∆+(T )).

Proof. The implications (1)⇒ (2), (1)⇒ (3), (1)⇒ (4), (1)⇒ (5) and
(1) ⇒ (6) are clear, because ∆g

+(T ) = ∆+(T ) = Π(T ) = p00(T ) by [20,
Theorem 2.27].
(2)⇒ (1). Suppose that Cl(∆+(T )) = ∂(Π(T )) and ∆+(T )∩accΠ(T ) = ∅.
Then, ∆+(T ) ⊆ ∂(Π(T )) = Π(T ) ∪ accΠ(T ) and so ∆+(T ) ⊆ Π(T ). On
the other hand, Π(T ) ⊆ ∂(Π(T )) = Cl(∆+(T )) = ∆+(T ) ∪ acc∆+(T ) and
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hence, Π(T ) ⊆ ∆+(T ).
(3) ⇒ (1). Suppose that Int(∆g

+(T )) = ∅ and ∂(Π(T )) ⊆ ∂(∆+(T )). By

Lemma 3.1, we have σ(T ) = σa(T ) and then by Lemma 2.1, σld(T ) =
σd(T ). Since Int(σa(T )\σubw(T )) = ∅, by [3, Theorem 5.40] it follows that
σld(T ) = σubw(T ). Thus, ∆+(T ) ⊆ σ(T )\σubw(T ) = σ(T )\σld(T ) = Π(T ).
On the other hand, we have Π(T ) ⊆ ∂(Π(T )) ⊆ ∂(∆+(T )) ⊆ Cl(∆+(T )),
which implies that Π(T ) ⊆ ∆+(T ).
(4) ⇒ (1). The proof is similar to the proof of (3) ⇒ (1). Just use the fact

that if Π(T ) = p00(T ) ⊆ ∆+(T ).
(5) ⇒ (1). Suppose that ∂(Π(T )) ⊆ Cl(∆+(T )) and ∆+(T ) ⊆ isoσ(T ).
Then, Π(T ) ⊆ ∂(Π(T )) ⊆ Cl(∆+(T )) = ∆+(T ) ∪ acc∆+(T ) and hence,
Π(T ) ⊆ ∆+(T ). On the other hand, if λ ∈ ∆+(T ) then by hypothesis,
λ ∈ isoσ(T ) and so both T and T ∗ have SVEP at λ. Since λ ∈ ∆+(T ), by
Remark 1.5 it follows that 0 < p(λI − T ) = q(λI − T ) < ∞. Therefore,
λ ∈ Π(T ) and so ∆+(T ) ⊆ Π(T ).
(6) ⇒ (1). The proof is similar to the proof of (5) ⇒ (1). Just use the fact

that if λ ∈ ∂σ(T ) then both T and T ∗ have SVEP at λ. 2

Let ρa(T ) = C\σa(T ), ρuw(T ) = C\σuw(T ) and ρsf(T ) = C\σsf(T ), where
σsf(T ) is the semi-Fredholm spectrum of T . It is proved in [9, Theorem 3.4]
that ρuw(T ) is connected if and only if ρa(T ) is connected and T verifies
a-Browder’s theorem, i.e. σuw(T ) = σub(T ) (or equivalently generalized
a-Browder’s theorem, i.e. σubw(T ) = σld(T )). Now, the fact that ρa(T ) is
connected implies that σa(T ) = σ(T ). Indeed, if ρa(T ) is connected then it
has an unique component, says Ω; since ρ(T ) ⊆ ρa(T ), we have ρ(T ) ⊆ Ω
and as ρa(T ) ⊆ ρsf(T ), there exists a component Ω

0 of ρsf(T ) which contains
Ω and hence, ρa(T ) ⊆ Ω0. It is clear that Ω0 contains ρ(T ). Since both T
and T ∗ have SVEP at every point of ρ(T ), by [9, Theorem 2.4] it follows
that both T and T ∗ have SVEP at every point of Ω0; in particular, they
have SVEP at every point of Ω. If λ /∈ σa(T ) then λ ∈ Ω, so both T and
T ∗ have SVEP at λ and as λI−T is a semi-Fredholm operator, by Remark
1.5 it follows that p(λI − T ) = q(λI − T ) = 0 and hence, λ /∈ σ(T ). This
shows what we had said before.

Theorem 3.3. Let T ∈ L(X). If ρuw(T ) is connected and p00(T ) = Π(T ),
then T verifies property (VΠ).

Proof. Suppose that ρuw(T ) is connected. From the previous discussion
we have σuw(T ) = σub(T ) and σa(T ) = σ(T ). By Lemma 2.1, we conclude
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that σuw(T ) = σb(T ) and hence, σ(T ) \ σuw(T ) ⊆ σ(T ) \ σd(T ) = Π(T ).
On the other hand, let λ ∈ Π(T ) = p00(T ). Then λ ∈ σ(T ) \ σb(T ) =
σ(T )\σuw(T ) and so, Π(T ) ⊆ σ(T )\σuw(T ). Therefore, T verifies property
(VΠ). 2

Theorem 3.4. Let T ∈ L(X). If ρuw(T ) is connected and σubw(T ) =
σw(T ) then, T verifies property (VΠ).

Proof. The hypotheses ρuw(T ) is connected and σubw(T ) = σw(T ) im-
plies that σa(T ) = σ(T ) and σuw(T ) = σubw(T ) = σld(T ), respectively.
Then, by Lemma 2.1, the conclusion follows easily. 2

Let H(σ(T )) be the set of all analytic functions defined over an open
neighborhood of σ(T ).

Theorem 3.5. Let T ∈ L(X) and f ∈ H(σ(T )). If f(T ) verifies property
(VΠ) then σuw(f(T )) = f(σuw(T )).

Proof. Suppose that f(T ) verifies property (VΠ). Then by [20, The-
orem 2.27], σuw(f(T )) = σb(f(T )), and as σb(T ) is a regularity (see [3,
Theorem 3.109]), we have f(σuw(T )) ⊆ f(σb(T )) = σuw(f(T )). By [3,
Theorem 3.115], we have σuw(f(T )) ⊆ f(σuw(T )) and hence, σuw(f(T )) =
f(σuw(T )). 2

Let Hnc(σ(T )) be the set of all analytic functions defined on an open neigh-
borhood of σ(T ), such that f is non-constant on each of the components
of its domain of definition. Applying the same techniques in the proof of
[3, Theorem 5.8], we obtain the following result.

Theorem 3.6. Suppose that T ∈ L(X) verifies property (VΠ) and f ∈
Hnc(σ(T )). Then f(T ) verifies property (VΠ).

Proof. Suppose that f ∈ Hnc(σ(T )) and f(λ0) ∈ σ(f(T )) \ σuw(f(T )).
There is a v ∈ N and two polynomials h and g in Hnc(σ(T )) with no zero
in σ(T ), such that

f(λ)− f(λ0) = (λ0 − λ)vh(λ)g(λ),

with h(λ0) = 0 and h(λ0) /∈ g(σ(T )), which implies that

f(T )− f(λ0I) = (λ0I − T )vh(T )g(T ) ∈W+(X),
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with 0 /∈ σ(h(T )g(T )) and so, λ0 /∈ σuw(T ). By Theorem 2.4, we have
T ∗ has SVEP at λ0 and p00(T ) = Π(T ). Now, by [3, Theorem 2.88],
f(T ∗) = f(T )∗ has SVEP at f(λ0) and, on the other hand, as σb(T )
and σd(T ) are regularities, then by [3, Theorem 3.109] it follows that
Π(f(T ))∪σd(f(T )) = σ(f(T )) = f(σ(T )) = f(Π(T )∪σd(T )) = f(Π(T ))∪
f(σd(T )) = f(Π(T )) ∪ σd(f(T )), which implies that Π(f(T )) = f(Π((T ))
and p00(f(T )) ∪ σb(f(T )) = σ(f(T )) = f(σ(T )) = f(p00(T ) ∪ σb(T )) =
f(p00(T ))∪f(σb(T )) = f(p00(T ))∪σb(f(T )), which implies that p00(f(T )) =
f(p00((T )). By [20, Theorem 2.27] it follows that Π(f(T )) = p00(f(T )) and
again, by Theorem 2.4, we conclude that f(T ) verifies property (VΠ). 2

Lemma 3.7. Let T ∈ L(X) and suppose that λI − T is injective for all
λ ∈ σ(T ). Then, σuw(T

∗) = σd(T
∗) or equivalently, σlw(T ) = σd(T ).

Proof. Let λ /∈ σd(T
∗) = σd(T ). Then, λI − T is a Drazin invertible

operator and as λI − T is injective, then 0 = p(λI − T ) = q(λI − T ) <
∞, which implies that ind(λI − T ) = 0 and λI − T ∈ W (X). Thus,
λI − T ∈ W−(X) and λ /∈ σlw(T ) = σuw(T

∗). This shows the inclusion
σuw(T

∗) ⊆ σd(T
∗).

To show the opposite inclusion σd(T
∗) ⊆ σuw(T

∗), let λ /∈ σuw(T
∗) =

σlw(T ). Then, λI−T is a lower semi-Weyl operator and so ind(λI−T ) ≥ 0.
By the injectivity of λI − T it follows that 0 = p(λI − T ) <∞ and hence
β(λI − T ) ≤ α(λI − T ) = 0. Thus, 0 = α(λI − T ) = β(λI − T ) < ∞ and
consequently, 0 = p(λI − T ) = q(λI − T ) < ∞. Therefore, λI − T is a
Drazin invertible operator and so λ /∈ σd(T ) = σd(T

∗). 2

For an operator T ∈ L(X), the analytic core of T is the set K(T ) of all
x ∈ X such that there exists a constant c > 0 and a sequence (un) ⊂ X,
such that x = u0, Tun+1 = un, and kunk < cnkxk for all n ∈ N. Note that
inclusion ker(λI − T ) ⊆ K(λI − T ) is obvious for every λ ∈ C. We denote
by σp(T ) the point spectrum of T .

Theorem 3.8. Let T ∈ L(X). If there exists λ0 ∈ C such that K(λ0I −
T ) = {0} and ker(λ0I − T ) = {0}, then f(T ∗) = f(T )∗ verifies property
(VΠ) for each f ∈ H(σ(T )).

Proof. Since ker(λI − T ) ⊆ K(λ0I − T ) for each λ = λ0, it follows that
ker(λI − T ) = {0} for all λ ∈ C, which implies that σp(T ) = ∅. First we
will show that σp(f(T )) = ∅. Suppose that there exists a µ ∈ σp(f(T )),
then
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µ− f(λ) = p(λ)g(λ),

where g is an analytical function on an open set U containing σ(T ) and
without zeros in σ(T ), and p is a polynomial of the form p(λ) =

Qn
k=1(λk−

λ)vk with different roots λ1, · · · , λk in σ(T ). Clearly, µ− f(T ) = p(T )g(T )
and g(T ) is invertible. As σp(T ) = ∅, it then follows that ker(λI − f(T )) =
{0} for all λ ∈ C, and hence σp(f(T )) = ∅. Consequently, λI − f(T ) is
injective for all λ ∈ C and by Lemma 4.14, we conclude that σuw(f(T )∗) =
σd(f(T )

∗). Since the spectral mapping theorem holds for T , the proof
follows. 2

4. Property (VΠ) for Drazin invertible and polaroid operators

It is shown in [8] that the nonzero points of some other spectra of a Drazin
invertible operator T ∈ L(X) and its Drazin inverse S, that originated from
Fredholm theory, satisfy a relationship of reciprocity. The details for the
proof of the following lemma are obtained from [8].

Lemma 4.1. Suppose that T ∈ L(X) is Drazin invertible with Drazin
inverse S. Then we have:

1. 0 ∈ σ(T ) if and only if 0 ∈ σ(S).

2. 0 ∈ isoσ(T ) if and only if 0 ∈ isoσ(S).

3. α(T ) <∞ if and only if α(S) <∞.

4. σuw(S) \ {0} =
½
1

λ
: λ ∈ σuw(T ) \ {0}

¾
.

5. σub(S) \ {0} =
½
1

λ
: λ ∈ σub(T ) \ {0}

¾
.

6. ker (λI − S)k = ker

µ
1

λ
I − T

¶k
for all k ∈ N.

7. (λI − S)k(X) =

µ
1

λ
I − T

¶k
(X) for all k ∈ N.

8. p(λI − T ) = p

µ
1

λ
I − S

¶
and q(λI − T ) = q

µ
1

λ
I − S

¶
.

9. λ ∈ σ(T ) if and only if
1

λ
∈ σ(S).
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Now, we make some considerations for the special case where λ = 0 .

Theorem 4.2. Suppose that T ∈ L(X) is Drazin invertible with Drazin
inverse S. Then we have:

1. 0 ∈ σ(S) \ σuw(S) if and only if 0 ∈ σ(T ) \ σuw(T ).

2. 0 ∈ σ(S) \ σub(S) if and only if 0 ∈ σ(T ) \ σub(T ).

Proof. (1). If 0 ∈ σ(T ) \ σuw(T ) then 0 ∈ σ(T ) and 0 /∈ σuw(T ). It
follows that α(T ) < ∞ and hence α(S) < ∞ by Lemma 4.1. Now, as
p(S) = q(S) < ∞ then α(S) = β(S) < ∞ and S ∈ W (X); in particular,
S ∈W+(X) and so 0 /∈ σuw(S). Also by Lemma 4.1, we have 0 ∈ σ(S) and
hence 0 ∈ σ(S) \ σuw(S). The converse may be proved in a similar way.
(2) The proof is similar to part (1). 2

The next result show that property (VΠ) is transmitted from a Drazin
invertible operator to its Drazin inverse.

Theorem 4.3. Suppose that T ∈ L(X) is Drazin invertible with Drazin
inverse S. Then, T verifies property (VΠ) if and only if S verifies property
(VΠ).

Proof. Suppose that T verifies property (VΠ). Let λ ∈ σ(S) \ σuw(S).
If λ = 0 then from Theorem 4.2 it follows that 0 ∈ σ(S) \ σuw(S) if and
only if 0 ∈ σ(S) \ σd(S). Suppose that λ = 0. By Lemma 4.1, we have the
following equivalences:

λ ∈ σ(S) \ σuw(S) ⇔
1

λ
∈ σ(T ) \ σuw(T )

⇔ 1

λ
∈ σ(T ) \ σd(T )

⇔ λ ∈ σ(S) \ σd(S).

Therefore, S verifies property (VΠ). The converse may be proved by using
similar arguments. 2

Observe that if T ∈ L(X) is Drazin invertible with Drazin inverse S,
then T ∗ is Drazin invertible and its Drazin inverse is S∗, since (T ∗)n =
T ∗S∗(Tn)∗ = T ∗S∗T ∗(Tn−1)∗ = T ∗T ∗S∗(Tn−1)∗ = (T ∗)2S∗(Tn−1)∗ =
· · · = (T ∗)nS∗T ∗. Property (VΠ) is also transmitted from a Drazin in-
vertible operator T to the dual of its Drazin inverse under assumption that
T has SVEP at every λ /∈ σlw(T ).
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Theorem 4.4. Suppose that T ∈ L(X) is Drazin invertible with Drazin
inverse S and T has SVEP at every λ /∈ σlw(T ). If T verifies property (VΠ),
then S∗ verifies property (VΠ).

Proof. Follows from Theorems 2.6 and 4.3. 2

For T ∈ L(X), define π00(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T ) < ∞} (the
set if all eigenvalues of T which are isolated points of the spectrum and
have finite multiplicity) and E(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T )} (the
set of all eigenvalues of T which are isolated points of the spectrum).

According to [16] (resp. [10]), we say that an operator T ∈ L(X)
verifies property (w) (resp. property (gw)), if σa(T ) \ σuw(T ) = π00(T )
(resp. σa(T )\σubw(T ) = E(T )). It is shown in [10, Theorem 2.3] that (gw)
implies (w) but not conversely. According to [5], we say that T ∈ L(X)
verifies property (R) if pa00(T ) = π00(T ). It is shown in [5, Theorem 2.4]
that property (w) implies property (R) but the converse in general does
not hold. Following [6], we say that T ∈ L(X) verifies property (gR), if
Πa(T ) = E(T ). In [6, Theorem 2.2], it is shown that property (gR) implies
property (R), but the converse is not true in general. The following results
shows that under the condition that T is polaroid, property (VΠ) implies
properties (gR) and (gw). According to [19], we say that T ∈ L(X) verifies
property (VE) if σ(T ) \ σuw(T ) = E(T ). It is shown in [20, Theorem 2.3]
that property (VE) implies property (VΠ) but the converse in general does
not hold.

Theorem 4.5. Let T ∈ L(X) polaroid. Then, T verifies property (VE) if
and only if T verifies property (VΠ).

Proof. It is clear, because if T is polaroid then E(T ) = Π(T ). 2

Theorem 4.6. If T ∈ L(X) verifies property (VE), then T verifies prop-
erty (gR).

Proof. Property (VE) implies by [19, Theorem 2.27] that generalized a-
Browder’s theorem and property (gw) are equivalent, and T verifies these
properties. Consequently, Πa(T ) = E(T ) and T verifies property (gR). 2

The following example shows that, in general, property (gR) does not imply
property (VE).
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Example 4.7. Consider the operator T = I ⊕ S that is defined on the
Banach space X = 2(N)⊕ 2(N) where I is the identify operator on 2(N)
and S is an injective quasinilpotent operator on 2(N) which is not nilpo-
tent. Then σ(T ) = {0, 1}, σuw(T ) = {0, 1},

Q
a(T ) = {1} and E(T ) = {1}.

Thus, σ(T ) \ σuw(T ) = E(T ) and
Q

a(T ) = E(T ), which implies that T
verifies property (gR) but not verifies property (VE).

Corollary 4.8. Let T ∈ L(X) polaroid. If T verifies property (VΠ), then
T verifies property (gR).

Proof. Follows from Theorems 4.5 and 4.6. 2

Corollary 4.9. Let T ∈ L(X) polaroid. If T verifies property (VΠ), then
T verifies property (gw).

Proof. Follows from Theorem 4.5 and [19, Theorem 2.7]. 2

Corollary 4.10. Let T ∈ L(X) polaroid. If T verifies property (VΠ), then
T verifies property (R).

Proof. It is clear, since property (gR) implies property (R). 2

Corollary 4.11. Let T ∈ L(X) polaroid. If T verifies property (VΠ), then
T verifies property (w).

Proof. It is clear, since property (gw) implies property (w). 2

Theorem 4.12. Let T ∈ L(X) polaroid. Then, T verifies property (VΠ)
if and only if T verifies property (w) and σld(T ) = σb(T ).

Proof. Sufficiency: Follows from Corollary 4.11 and [20, Theorem 2.27].
Necessity: The equality σld(T ) = σb(T ) implies that σd(T ) = σb(T ) =

σub(T ) and the last equality implies by Lemma 2.1 that σ(T ) = σa(T ).
Then, σ(T ) \ σuw(T ) = σa(T ) \ σuw(T ) = π00(T ) and as T is polaroid,
π00(T ) ⊆ Π(T ). Hence, σ(T )\σuw(T ) ⊆ Π(T ). On the other hand, Π(T ) =
σ(T ) \ σd(T ) = σ(T ) \ σb(T ) ⊆ σ(T ) \ σuw(T ). Thus, T verifies property
(VΠ). 2

In the classical Fredholm theory, it is well known that given an operator
T ∈ L(X) and a compact operator K ∈ L(X), then σw(T ) = σw(T +K)
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and σuw(T ) = σuw(T +K), where commutativity between T and K is not
required. The following theorem was motivated by the results of Aiena and
Triolo [9].

Theorem 4.13. Let T ∈ L(X) and suppose that K ∈ L(X) is a compact
operator such that p00(T +K) = Π(T +K). If ρuw(T ) is connected, then
T +K verifies property (VΠ). In addition, if isoσuw(T ) = ∅, then T +K
verifies properties (gR) and (gw).

Proof. Let S := T +K where K is a compact operator on L(X) such
that p00(T +K) = Π(T +K) and suppose that ρuw(T ) is connected. Note
that

ρuw(S) = ρuw(T +K) = C \ σuw(T +K) = C \ σuw(T ) = ρuw(T ),

which implies that ρuw(S) is connected. Since p00(S) = Π(S), by Theorem
2.6 it follows that S : T +K verifies property (VΠ).

In addition, assuming that isoσuw(T ) = ∅, we have isoσuw(S) = ∅ and
hence S := T + K is polaroid, see [9, Lemma 3.15]. Now by Corollaries
4.8 and 4.9, we obtain that S := T +K verifies properties (gR) and (gw),
respectively. 2

Recall that an operator T ∈ L(X) is called finite-polaroid if every isolated
point of the spectrum σ(T ) is a pole a finite rank, i.e. isoσ(T ) ⊆ p00(T ).
Clearly, if T is finite-polaroid, then T is polaroid and p00(T ) = Π(T ) =
E(T ).

Lemma 4.14. If T ∈ L(X) is such that isoσb(T ) = ∅, then T is finite-
polaroid and hence polaroid.

Proof. Let λ ∈ isoσ(T ). Then, either λ ∈ σb(T ) or λ /∈ σb(T ). If
λ ∈ σb(T ), we have λ ∈ isoσb(T ), which is impossible. Hence, λ /∈ σb(T )
and so λ ∈ σ(T ) \ σb(T ) = p00(T ), that is, λ is a pole of finite rank. 2

Theorem 4.15. Let T ∈ L(X) be such that ρw(T ) is connected and
isoσw(T ) = ∅. If K ∈ L(X) is a compact operator, then T +K is finite-
polaroid.
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Proof. Let S := T +K where K is a compact operator on L(X). Since
ρw(T ) is connected, by [9, Theorem 3.6] it follows that S := T +K verifies
a-Browder’s theorem and so σb(S) = σw(S) = σw(T ), which implies that
isoσb(S) = isoσw(T ) = ∅, and hence, by Lemma 4.14, S := T + K is
finite-polaroid. 2

Corollary 4.16. Let T ∈ L(X) be such that ρw(T ) is connected and
isoσw(T ) = ∅. Then T +K verifies property (VΠ) for every compact oper-
ator K ∈ L(X).

Recall that given a compact subset σ of C, we say that a hole of σ is any
bounded component of the complement C\σ. If σ has no holes, then C\σ
is connected, since C \ σ has always an unbounded component. Next, we
give some applications of the previous results obtained.

(1) Let ASC denote the class of Banach space operators T ∈ L(X) which
satisfy the abstract shift condition T∞(X) = {0}, where T∞(X) is the
hyper-range of T defined as T∞(X) :=

T∞
n=1 T

n(X). An interesting sub-
class of the class ASC is that of weighted right shift operators T , denoted
by T ∈ WRS, in L( p(N)), 1 ≤ p < ∞. For an operator T ∈ ASC the
following properties are well known. (See [1, Sections 2.5 and 3.10] and [14,
Section 1.6] for more details.)
(i) For an operator T ∈ L(X), the lower bound of T is defined by

k(T ) = inf{kTxk : x ∈ X, kxk = 1}.

Now, let

i(T ) = lim
n→∞

k(Tn)1/n = sup
n∈N

k(Tn)1/n.

If r(T ) denotes the spectral radius of T then i(T ) ≤ r(T ). Moreover,
if T ∈WRS and D(0, r(T )) denotes the closed disc centered at 0 of radius
r(T ), then σ(T ) = D(0, r(T )) and σa(T ) = {λ ∈ C : i(T ) ≤ |λ| ≤ r(T )} =
σsf(T ) = σf(T ), where σf(T ) is the Fredholm spectrum of T .
(ii) If T ∈ ASC and i(T ) = r(T ), then σ(T ) = D(0, r(T )) and σa(T ) =

∂D(0, r(T )).
(iii) Put ASCI = {T ∈ ASC : i(T ) = r(T )}. If either T ∈ WRS or

T ∈ ASCI, then σw(T ) has no holes, ρw(T ) = C \D(0, r(T )) is connected
and isoσw(T ) = ∅, which implies by Theorem 4.15 that T +K is finitely
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polaroid for every compact operator K. Also, T +K verifies property (VΠ)
by Corollary 4.16.
(2) Consider an operator T ∈ L(X) such that T ∗ has SVEP, σ(T ) has no

holes and isoσ(T ) = ∅. Then, T verifies Browder’s theorem, σ(T ) = σa(T ),
ρ(T ) = ρa(T ) and isoσ(T ) = isoσa(T ) = ∅. Thus, we have σ(T ) \ σw(T ) =
p00(T ) ⊆ isoσ(T ) = ∅ and σa(T ) \ σuw(T ) ⊆ pa00(T ) ⊆ isoσa(T ) = ∅, which
implies that σ(T ) = σa(T ) = σw(T ) = σuw(T ) and hence isoσuw(T ) =
isoσw(T ) = ∅ and ρ(T ) = ρa(T ) = ρuw(T ) = ρw(T ) is a connected subset
of C. In view of Theorem 4.15 and Corollary 4.16, for every compact oper-
ator K ∈ L(X) we have T +K is finite polaroid and verifies property (VΠ),
respectively. An example of this type of operators are the normal operators
on Hilbert spaces for which the resolvent is connected and the spectrum
has no isolated points. A more general example, are the generalized scalar
operators, since these operators are decomposable, and hence, their ad-
joint operators are also decomposable and have SVEP, see [14]. This class
of operators contains the invertible isometries on Banach spaces (see [14,
Theorem 1.5.13]), and the composition operator Tγ : C(Ω) → C(Ω), de-
fined by Tγf = f ◦ γ, where C(Ω) is the Banach space of all continuous
complex-valued functions on a compact Hausdorff space Ω and γ is an ar-
bitrary homomorphism.
(3) Let H2(T) denote the Hardy space of the unit circle T in the com-

plex plane. Given φ ∈ L∞(T), the Toeplitz operator with symbol φ is the
operator on H2(T) defined by

Tφ : f −→ P (φf),

where f ∈ H2(T) and P is the orthogonal projection of L∞(T) ontoH2(T).
We denote by C(T) the algebra of all complex-valued continuous functions
on T. Consider T ∈ C(T) and denote Γ = φ(T). Recall that the winding
number of a curve in the plane around a given point is an integer represent-
ing the total number of times that curve travels counterclockwise around
the point. Given λ /∈ Γ, denotes by wn(φ, λ) the winding number of Γ
determined by φ with respect λ. It is shown in [3, Corollary 4.98] that
σ(Tφ) = σw(Tφ) = σb(Tφ) = Γ ∪ {λ ∈ C : wn(φ, λ) = 0}, Therefore, ρw(T )
is connected if and only if the winding number of φ with respect to each
hole of Γ is nonzero. By [3, Theorem 4.99], φ is non-constant if and only
if isoσw(T ) = ∅. Thus, Theorem 4.15 and Corollary 4.16 apply in the case
of Toeplitz operators with continuous symbol φ non-constant.

According to Rashid and Prasad [17], we say that an operator T ∈ L(X)
verifies property (Sb) if σ(T )\σubw(T ) = p00(T ). Following Sanabria et al.
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[18], we say that T verifies property (Sab) if σ(T ) \ σubw(T ) = pa00(T ). In
[18, Corollary 2.9], it is shown that property (Sab) is equivalent to property
(Sb). Recall [20] that an operator T ∈ L(X) verifies property (VΠa) if
σ(T ) \ σuw(T ) = Πa(T ). In [20, Corollary 2.21], it is shown that property
(VΠ) is equivalent to properties (VΠa), (Sb) and (Sab). Consequently, all
the results of this work are also valid if we replace property (VΠ) by any of
the properties (VΠa), (Sb) and (Sab).
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