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1. Introduction and preliminaries

Many concepts of the general topology have been extended to ideal topolog-
ical spaces, and it is the case that the same concept has several extensions.
The case of continuity is a good example of this fact. Authors such as
Abd El-Monsef, Kaniewski, Ozkurt and Cobankaya have studied different
versions of weak continuity, modulo an ideal. In this paper we present two
new forms of continuity for ideal topological spaces, which are not related
to the versions presented by those authors.

An ideal 7 in a set X is a subset of P(X), the power set of X, such
that: (1)if ACBC Xand B€Zthen A€Z,and (ii)if AcZand BeZ
then AUB € T.

Some simple and useful ideals in X are: (i)P(A), where A C X,
(#4)Zy (X), the ideal of all finite subsets of X and (4ii) Z. (X), the ideal of
all countable subsets of X. If 7 is an ideal in X and if f : X — Y is a func-
tion, then the set f(Z) = {f(I) : I € Z} is an ideal in Y [7]. Furthermore,
if 7 is anideal in Y and if f : X — Y is an one-one function, then the set
Y ={f1tJ):JeJ} isanideal in X [7]. Anideal Z in X is said
to be admissible if {z} € Z, for each x € X.

If (X,7) is a topological space and Z 1is an ideal in X, then (X,7,7)
is called an ideal space. If (X, 7) is a topological space and A C X then
the closure and the interior of A are denoted by A (or adh,(A), or adh(A))
and A (or int.(A), or int(A)), respectively. The frontier of A is denoted
by Fr(A).

Given an ideal space (X, 7,7) and a set A C X, we denote by A* (Z) =
{xe X:UNAg¢Z, for every U € Twith z € U}, written simply as A* when
there is no chance for confusion. It is clear that A* C A. A Kura-
towski closure operator for a topology 7*(Z), finer than 7, is defined by
Cl*(A) = AU A*, for all A C X. When there is no chance for confu-
sion 7" (Z) is denoted by 7*. The topology 7* has as a base (5 (7,Z) =
{VNA\I:V erand I €Z}[5]. In 1990, D. Jancovic and T. R. Hamlett in-
troduced the notion of Z-open sets. If (X, 7,7) is an ideal space and A C X,
A is said to be Z -open [4] if A C int (A*). A is said to be Z -closed if X'\ A
is Z-open. On the other hand, A is said to be closed- Z [10] if A\A € . If
X\A is closed-Z then A is defined to be open-Z. It is immediate that A is
open-Z if and only if A\ A € Z.

If 7 is an ideal in X, let Z® = P ( U I) be. If (X,7,7) is an ideal
IeT

space, the ideal Z [10] is the set {A CX:ACI, for some I € I}.
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It is observed that if { Fi, } ¢, is a locally finite collection of closed-Z sets,

then | F, is closed-Z%. In fact, since {F,} ¢, is locally finite we have
acl

aEA acA acN acA acA acA

u (E\Fa) € 1°.

that U Fo, = U Fa, andso U F,\ U F :<UF_Q>\<U Fa>g

2. C-continuous functions

In 2014 Ozkurt defines the J-continuous functions, as an extension of the
continuous functions to the ideal topological spaces. Years later, in 2017,
Cobankaya et al. defines the J,-continuous functions, as a generalization
of the concept studied by Ozkurt. In both cases the considered ideal is
defined in the codomain of the function. Under the same hypothesis, in this
section we define a new and natural extension of the continuous functions
to the ideal topological spaces, which turns out to be independent of the
concepts given by these two authors. Various properties and examples will
be presented.

Recall that if (X, 7) and (Y, ) are topological spaces and J is an ideal
in Y, a function f : (X,7) — (Y,5,J) is said to be J -continuous [§] if
for each z € X and each V' € 3, if f(z) € V then there exists U € 7 such
that z € U and f(U)\V € J. A function f : (X,7) — (Y, 3,J) is said to
be Jw—continuous|2] if for each x € X and each V' € 3, if f(x) € V then
thereis a U € 7 such that z € U and f(U)\V € J. Evidently J-continuous
— Jw-continuous.

Definition 2.1 If 7 is an ideal in Y, a function f : (X,7) — (Y,5,J) is

said to be C -continuous if, for each A C X, f (Z) \f(4) eJ.

It is clear that if f is continuous then f is C-continuous, and that f :
(X,7) — (Y, ) is continuous if and only if f : (X,7) — (Y, 3,{0}) is C-
continuous. It is easy to see that if g : (X,7) — (Y,/) is continuous and
h:(Y,8) — (Z,7,J) is C-continuous, then ho g is C-continuous. Also it
is immediate that f: (X,7) — (Y, 5, Ja) is C-continuous, for each a € A,
if and only if f: (X,7) — (Y, 3,J) is C-continuous, where J = ﬂA N/

ac
Example 2.2 (1) If ¢ is the usual topology in R, the identity function f :
(R,U) - (R,P(R),J = P(R)) is C-continuous, but f is not continuous.
(2) If 8 = {0,R,{0}} and J = P ({—1,0,1}), the function f : (R,U) —
(R, 3,J) defined by
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1,ifx>0
fx)y=< 0,ifz=0
—1,ifx <0

is C-continuous but f is not continuous.
(3) The function f : (R,U) — (R,U,J =P ({0})) defined by f(z) = [z],
where [z] denotes the integer part of z, is not C-continuous, because if

A={l—1/n:neZ*} then f (A)\F(A) = {1} ¢ J.

Next we present a characterization of the C-continuity in terms of the
interior operator.

Theorem 2.3 The function f:(X,7) — (Y¥,5,J) is C -continuous if
and only if, for each B C Y , there exists J € J such that f=!(B°\.J) C
int (f~1(B)) or, equivalently, f~1 (]%) Cint (f~1(B))Uf~t(J). Then f

is C -continuous if and only if, forall BC Y, f[f~1(B°)\int (f~1(B))] €
J .

Proof. (—) Suppose that B C Y. There exists J € J with f {f*l (Y\B)} -
FIf P (Y\B)UJ C (Y\B)UJ = [Y\B°]UJ. Then f [X\int (f~*(B))] C
(Y\B°)U J, and so X\int (f~1(B)) C f~L(Y\B°)U f~1(J).
Hence f~1(B°\J) Cint (f~1(B)).

(«) If A C X then there is a J € J with fint (Y\f (A)\J] C
int [~ (Y\f (A))]. Thus /=1 [(V\F(A) \J] € X\FT(F(A) € X\4,
and so A C f! {f( U J] or, equivalently, f ( ) C f(A)U J, and this

implies that f( )\f( )e T

Corollary 2.4 (1) The following propositions are equivalents:

(a) The function f: (X,7) — (Y,3,J) is C -continuous. (b) For each
V € B3, there exists J € J such that f~1 (V\J) Cint (f~1(V)) , this is
FIFEV)\int (71 (V)] € . (c) Foreach BC Y ,thereisa J € J such
that f~1(B) C f! (FU J) or, equivalently, f {f‘l (B)\f1 (F)} eJ.

(d) For cach closed F C V', f [T\ fH(F)| € 7. ()T f: (X,7) —
(Y,8,J) is one-one, then the following statements are equivalents: (a)
f is C -continuous. (b) For each B CY , f~1(B) )\f (_) € ().
(c) For each closed set B CY , f~1(B) is closed-f~1 (7). (d) For each
VY, fHWoNint [f71(V)] € fFH(T). (e) For each V € 8, f~1(V)
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is open-f 1 (7). (3) If T isanidealin X andif f: X — Y is an one-one
function, then f: (X,7) — (Y,8,f(Z)) is C -continuous if and only if
f1(V) is open- T , for each V € 3 .

Now we present a characterization of the C-continuous functions, in
terms of the frontier operator.

Theorem 2.5 The function f : (X,7) — (V,3,J) is C -continuous if
and only if, for each B C Y , there exists J E J such that Fr(f~Y(B)] C

f~Y(Fr(B)UJ) or, equivalently, f [Fr (f~2(B))\f ' (Fr(B))] € J .

Proof. (—) If B C Y, there is a {Ji,Jo} C J such that f~1(B) C
FH(BUL) and FT\B) € £ (VNBU J).

So Fr(f~1(B)) = f~1(B) NX\/ 1 (B) C ! [(Equ) (YWBU )|
= fHFr(B)U(BNa) U (LNY\B)U(ind)| = fHFr(B) U],
where J = (BNJ2) U (A NY\B)U(JNJ) € J.

(«) Suppose that FF C Y is closed. There is a J € J such that
Fr(fY() Cf Y (Fr(F)uJ)CfYH(FUI)=fL(F)UfL).

Hence

fHEF )\Zm‘ (f7H) S fH(EF )Uf_1 (), and so f~1(F) Cint (f 1 (F))U
YUt =f1(F )U f~Y(J). Corollary 2.4 implies that f is C-

continuous

The following characterization of C-continuous (and one-one) functions
is expressed completely in terms of closed-Z sets.

Theorem 2.6 If f: (X,7) — (Y,5,J) is one-one, then f is C -
continuous if and only if, for each closed- J set B CY , it is true that

fH(B) is closed- f~1(J) .

Proof. (=) If B C Y is closed-J, we have that F\B € J, and so
S (B)\HB) = £ (B\B) € (7). naddition, T (B)\ [ (B) €
f~1(J), by Corollary 2.4. This implies that f~1(B)\f~*(B) € f~*(J).

(«) It is a consequence of Corollary 2.4, given that if F' C Y is closed then
F' is closed-J.

Corollary 2.7 If 7 isanidealin X andif f: X — Y is an one-one
function, then f: (X,7) — (Y,5,f(Z)) is C -continuous if and only
if f~1(V) is open-T , for each open- f(Z) set VCY .
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Theorem 2.8 Suppose that 7 is an ideal inX and f: X — Y isan one-
one function. If 7 = {B CY : f~1(B)€Z} then f: (X,7) = (V,3,J)
is C -continuous if and only if f~ ( ) is closed- Z , for each closed- J
set BCY .

Proof. (—)If B C Y is closed-7 then B\B € J, andso f~! (B) \f!

(B) €
Z. Since f is C-continuous we have that f=1(B)\f~ ( ) cf1(J)CT.
B

Given that 7T (B)\f~! < yc @)\ e o [T (B),
then f=T(B)\f ™" (B) €

(«) If BCY then f~ ( )\ffl (E) € I, since B is closed-J, and so
FTB\f(B) € Z. There exists I € T with 71 (B)\f ' (B) = I =
F~Y(f (I)). Moreover f(I) € J.

The following two properties of the C-continuity are related with re-
strictions of functions.

Theorem 2.9 If f : (X,7) — (Y,5,J) is C -continuous and A C X,
then the function f4 : (A T4) — (Y, 5,J) is C -continuous, where f4 is
the restriction of f to A .

Proof. If V € 3, there is a J € J such that ffl( ) Cint (f~H (V) U
f7H()- Thus 34 (V) = Anf=H (V) € [Anint (f71 (V)] U[AN f (J)] =
[Anint (71 (V)]Jufat (J). But Anint (F~1 (V) C mtTA [Anf~L(V)] =

intr, (fgl (V)) Hence f;* (V) Cint,, (fgl (V)) Uit ().

Theorem 2.10 Suppose that (X, 7) is a topological space and that X =
UUV ,where {U,V} C7.1If f:(X,7)— (Y,5,J) is a function such that
fo:(U)— (Y,8,J) and fy: (V,7v) — (Y,3,J) are C -continuous,
then f is C -continuous.

Proof. If W € 3, there is a {J1,J2} C J such that f;;* (W) C

intr, (fi" (W) U f" (1) and fy' (W) € intry, (£ (0)) U fi" (2).
Then f~1 (W) = fi (W)Ufy (W) € intry (i (W) Vint, (£ (W)U
ot (W)U £ (J2). Given that U and V are open, int,, (fU (W )) =UnN
int (f~1(W)) and int,, (fv (W)) =Vnint (f~(W)). Thus f~1 (W) C
[Unint (f~1(W))]

UV nint (fE (W)U fH (AU R) =int (fL (W)U fL (LU ).
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Recall that if A C X, the characteristic function, associated with A,
is the function x4 : X — {0,1} defined by: xa(z) = 1, if z € A, and
xa(z)=0,if z ¢ A.

Theorem 2.11 If (X, 7) is a topological space, A C X , J; = {0,{0}}
and Jo ={0,{1}} then:

(1) The function x4 : (X,7) — ({0,1},P ({0,1}),71) is C -continuous if
and only if A is open. (2) The function x4 : (X,7) — ({0,1},P ({0,1}), %)
is C -continuous if and only if A is closed.

Proof. (1) (—) There is a J € J; such that A = x ;' ({1}) € x4* (J) U
int (X;ll ({1})) = A°Ux ' (J) € A° U (X\A). Hence A C A°, and then
A is open. (+) Tt is sufficient to note that: (a) x;* ({0}) € x5 ({0}) U
int (x5 ({0})), and (b) x5 ({1}) = A € x3" (/)uA = x3' ()uint (x5 ({13),
for all J € J1.
(2) It is similar to (1).

Theorem 2.12 Let (Y,3) be a topological space, B a base for 5 and
J anideal in Y . The function f: (X,7) — (V,5,J%) is C -continuous
if and only if, for each B € B , there exists J € J% such that f~!(B) C
int (f~1(B))U f~1(J) or, equivalently, f [f~!(B)\int (f~1(B))] € J® .

Proof. (—) It is clear.
(«) If V € p then there exists {B, :a € A} C B, such that V =
U Ba- If @ € A there is a J, € J® with f~1(B,) C int (f 71 (Ba)) U
acA
FL(Ja). I J = U Jo then J € J°.
acA

Now, f~1(V) = LGJAf‘1 (Ba) C gA [int (f~1 (Ba)) U f71 (Ja)] Cint (f71(V))
uf—t(J).

Theorem 2.13 Let (Y,) be a topological space, S a sub-base for /3
and J an ideal in Y . The function f : (X,7) — (V,58,J%) is C -
continuous if and only if for each S € & there exists J € J% such that

FHS) St (f7H(S) U FH()

Proof. (—) It is clear.
(«) By Theorem 2.12, it is enough to see that if {5y, S2} C S, there
exists J € J® such that f~1 (S NS2) Ciint (f1(S1NS)) U fL(JI). If
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{5’1,5'2} C S, thereisa {J1, Jo} C J® such that f~1(S;) Cint (f~1(S;))U
F7H(Jy), for all i € {1,2}.

Thus f~1(S1NS2) = f~H(S1)NF1(S2) C [int (F71(S
[int (f~1(S2)) U f~H(J)] = [int (f~1(S1)) ﬁ int (f71 (52 )] A U B U
f71(J3), where J3 = J1 N Jo, A = int (f~1(Sy1)) N ft
F7H(J) nint (71 (S2)).

Hence ffl (Sl N 52) C int [ffl (51 N SQ)] Uffl (JQ U Jl), and JHoUJ; €
J®.

Theorem 2.14 If f: (X,7) — (Y,5,J) and g: (Y,5) — (Z,v,L) are C

-continuous, and if g (J) € £ then go f is C -continuous.

F(4) uJandg( ) )(A)UL.Thus(gof)(A)zg(f(Z))g
g (FIA)) ug()) Clgo HA) ><>ULUg<J>,withLUg<J>ec.

Corollary 215 If f : (X,7) — (V,5,J) and g : (Y,5) — (Z,7,9(7))
are C -continuous, then go f is C -continuous.

Proof. If A C X, there are J € J and L € L such that f(A) C

The example that follows shows us that, in general, the composition of
C-continuous functions is not C-continuous.

Example 2.16 If X =Y = Z = {a,b,¢}, 7 = {0, X, {a},{a,b},{a,c}},

B = {(b,Y',{b}’{ch b}7{b7 C}}7 Y= {®7Z7 {6}7{0’7 6}7{b7 C}}7 L= {(2)7{@}}7
J ={0,{a},{b},{a,b}},and if f: X — Y and g: Y — Z are defined by

fla) =e¢, f(b) =a, f(c) =b, g(a) = a = g(c)and g(b) = b, it is easy to see
that f and g are C-continuous. However, since (g o f) ({a}) \(go f) ({a}) =
{a,b} \ {a} = {b} ¢ L, we have that g o f is not C-continuous.

Theorem 2.17 If f : (X,7) — (Y, ) is a function, {Xs},cp is a locally
finite collection of closed subsets of X whose union is X , and if J is
an ideal on Y | then f: (X,7) — (Y, ,J%) is C -continuous if and only
if each restriction fx, : (Xa,7a) — (V,3,J®) is C -continuous. Here

Ta = TX,-

Proof. (<) For each a € A, we will denote the function fx, simply
by f.. Suppose that F' C Y is closed. Since f~'(F) = U f,'(F)
aEN

and {f3! (F)},ca is locally finite, we have that f~1 (F) = U fal(F) =
a€A
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U fa'(F). Now, for each o € A, thereis a J, € J® such that adh., () C
acA

foY(FUJ,). Given that each X, is closed, adh., (f;'(F)) = fa* ( ).
Hence f~1(F) € U f,' (F)Uf1<U Ja) fHE)uf- 1<U Ja>=
aEA acA a€cl

acA a€A
(—) It is a consequence of Theorem 2.9.

f1 (FU U Ja>,with U Ja € T%.

Notation 2.18 If 7 is an ideal in X and J is an ideal in Y, then 7 ® J
[10] is the set of all D C X x Y such that thereexist I € Z, AC X, J e J
and B CY, with D C (A x J)U (I x B).

It is shown in [10] that Z ® J is an ideal in X x Y, and that if A is
open-Z in (X, 7,7) and B is open-J in (Y, 5, J) then Ax B is open-(Z ® J).

It is possible to build new C-continuous functions from some previously
known ones, as we will show in the two theorems that follow.

Theorem 2.19 If f : (X,7) — (YV,5,J) and g : (X,7) — (Z,7,L) are
C -continuous, then h : (X,7) — (Y X Z,B3 %, (j®£)®) , defined by
h(z)=(f(z),g(x)) forall x € X |is C -continuous.

Proof. If U € § and V' € v then there are J € J and L € L, such that
F7HU) Cnt (471 (U) LS (7) and g7 (V) Cint (g (V) Ug™ (L)
Now 10103 1)< 1 @) 0 (0 e () 074
it (V) Ug 2 (1)) =it 10161 ()]0l (7 @) (D)
[ ﬂmt (g7t (V)U[f () Ng L(L)] Cint [h (U x V)]Jur™L (J x L)U
hl(UxL)Uh (JxV)=int[h"L(Ux V)JURT[(J x L)U (U )
(JxV)]. Moreover J x L € J® L and (UxL)U (JxV) € J®
LC(T® £)®. Theorem 2.12 implies that A is C-continuous.

Theorem 2.20 If f : (X,7) — (Y,5,7) is C -continuous and if J, =
{W CX xY: there are U € 7 and J € Jsuch that W C U x J}, then J,
is an ideal in X x Y and the function g : (X,7) — (X XY, T x 3, (j7)®>

, defined by ¢ (z) = (z, f (x)) , is C -continuous.

Proof. It is easy to be established that [J is an ideal in X x Y. Sup-
pose that U € 7 and V € B. There is a J € J such that f~1 (V) C
int (f~L(V)Uf=t(J). Now, g1 (U x V) =Unf~1 (V) CUN[int (fL(V)) U f1(J)] =
Unint (fFLV)UUNfH (D] =int(UnfLV)Ugt(UxJ)=
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int (7P (U x V) Ug ™ (UxJ),and U x J € J, C (J,)®. Theorem 2.12
implies that ¢ is C-continuous.

Recall that, if 7 and J are ideals in X, then the ideal Z Vv J is the set
{IUuJ:I1€Zand JeJ}.

Lemma 2.21 If 7 and J areidealsin X , A C X isopen-Z in (X,7,7)
and B C X isopen- J in (X,7,7) , then ANB isopen- (ZVJ) .

Proof. Since A\A°e 7 and B\B° € J, we have that (AN B) \int (AN B) C
(A\A°)U (B\B°) €ZV J,andso (ANB)\int(ANB)eZVJ.

If (X, 7,7) is an ideal space, the set 7 UZ is a base for a topology 7 ® 7 in
X. It is observed that T @ Z={V UI:V €7 and I € I°} = 7 & Z%®[10].
If J is an ideal in Y and if f : X — Y is a function, we denote the set
{ACX:AC f71(J) for some J € J} by Zj 7. It is noted that Zy 7 is
an ideal in X and that {f~1(J):J € J} CZ; 7.

The following theorem shows some properties of the C-continuous func-
tions, in the case where the codomain is a Hausdorff space.

Theorem 2.22 (1) If f: (X,7) — (V,5,J) and g: (X,7) — (Y,3,T) are
C -continuous functions and if (Y, §) is Ts, theset A={x € X : f (z) = g (z)}
is closed in the space (X, 7 ® (Zy, 7V Z,7)) -

2 Iff:(X,7) — (Y,8,J) is a C -continuous function and if (Y, [)
is Ty, the set A = {(u,v) € X x X : f(u) = f(v)} is closed in the space
(X xX,(tx1)® (Zr.g7 ®If,j)) .

Proof. (1) Suppose that v € X\A. There is a {U,V} C 7 such that
f(u) € U, gu) € Vand UNV = 0. Then u € f~1(U)Ng1(V),
L U)YNg H (V)N A= 0 and, by hypothesis, Lemma 2.21 and Corollary
24, fFHU)Ng 1 (V) is open-(Zy 7 VZy7). Thus f7L({U)Ng (V) €
T®(Zpg Vi)

(2) Suppose that (u,v) € (X x X)\A. There exists {U,V} C Bsuch that
f(w) €U, fv) € Vand UNV = 0. Thus (u,v) € f~H(U) x f~1(V),
AN O) % £ (V)] = Band FL () x £ (V) is open-(Ty.7 @ T 7).
and so fH(U) x f7H(V) e (rx7)® Tty ®ZLs).

In our last property for this new type of weak continuity, we present
the smallest ideal J in Y for which a given function f : (X,7) — (Y, /)
is C-continuous.
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Theorem 2.23 If f:(X,7) — (Y,) is a function and if

Jr= {B C Y : there is a finite Agp C P(X) with B C U [f (Z) \m}
AeAp

then J; is the smallest ideal J in Y such that f:(X,7) — (Y,5,7)

is C -continuous.

Proof. It is evident that J; is an ideal in Y. Given that f (Z) \f(4) € Jy,

for each A C X, then f: (X,7) — (Y,5,Jf) is a C-continuous function.

Now, suppose that f : (X,7) — (Y,3,J) is C-continuous. If B € Jy

then there is a finite Ap C P(X) with B C AeUA [f (Z) \M} Since
B

f (Z) \f(A) € J, for each A € Ap, we can conclude that B € J. In this
way Jr € J.

The example that follows shows us that C-continuous and J-continuous
are independent concepts.

Example 2.24 Let X =Y = {a,b}, 7 = {0,X}, 8 = {0,{a},Y} and
f: X — Y the function defined by f(a) = b and f(b) = a. Then:

(1) If 7 = {0,{a}}, it is not a problem to prove that f is C-continuous.
However f (b) = a € {a}, {a} € 5, but f(X)\{a} = {b} ¢ J. Hence f is
not J-continuous.

(2) It 7 = {0,{b}}, it is easy to see that f is J-continuous. Now, since
f (@) \f ({a}) = f(XO\{b} = {a} ¢ J, we conclude that f is not C-

continuous.

Next we show that C-continuous and J,-continuous are independent
concepts.

Example 2.25 (1) Suppose that X =Y = {a,b,c}, 8 = {0,Y,{a},{b},
{a,b}}, 7 = {0, X, {a,b},{b,c},{b}}, T = {0,{a}} and that f: X — Y
is defined by: f(a) = a, f(b) = b = f(c). It is easy to see that f is C-
continuous. Given that f (a) = a € {a}, {a} € B, f ({a,b})\{a} = {b} ¢ T
and f(X)\{a} = {b}, then f is not J,-continuous.

(2) Let X, Y, 7, g and J be as in part (1). If f: X — Y is defined by:
f(a)=b=f(c), and f (b) = ¢, it is not a problem to prove that f is J,-
continuous. However, given that f (@) \f({b}) = {b, e} \{c} = {b} ¢ T,
we have that f is not C-continuous.

|



1232 N. R. Pachon R.

3. C-closed and C-open functions

Through the Z-open sets, Abd El Monsef et al. defines the [J-open func-
tions. The authors consider the case in which an ideal is defined in the
codomain of the function. Under the same requirement, in this section we
define the C-open functions, and we show that this new concept is inde-
pendent of the concept introduced by them. Recall that if 7 is an ideal in
Y, a function f: (X,7) — (Y, 3,J) is said to be J -open (resp. J -closed)
[1] if, for each U € 7 (resp. U is closed), we have that f(U) is J-open
(resp. J-closed).

Definition 3.1 If 7 is an ideal in Y, a function f : (X,7) — (Y, 3,J) is
said to be:

(1) C -closed if, for each A C X, we have that f (A)\f (Z) eJ.

(2) C -open if, for each A C X, we have that f (A°) \int (f(A)) € J.

It is clear that if f is closed (or open) then f is C-closed (or C-open)
and that f: (X,7) — (Y, ) is closed (or open) if and only if f: (X,7) —
(Y, 3,{0}) is C-closed (or C-open). It is immediate to see that f: (X,7) —
(Y,8,J) is: (1) C-open if and only if, for each U € 7, f(U) is open-J,
and (2) C-closed if and only if, for all closed set F' C X, f (F) is closed-
J. Moreover, if f is C-open then f : (X,7) — (Y,8® J) is open, and
f:(X,7) = (V,3,J%) is C-open if and only if f: (X,7) — (Y, J) is
open.

Examples 3.2

(1) Each function f : (X,7) — (Y,
(2) If B = {0,R,{0}} and J =
(R,U) — (R, 3,J) defined by

B,J =P(Y)) is C-closed and C-open.
P ({-1,0,1}) then the function f :

1,ifx >0
f(x)= 0,ifz=0
—1,if z <0,

is C-open, but f is not open. Moreover f is not C-closed, because f(R)\ f (ﬁ)
=R\ {-1,0,1} ¢ J.

) It s ={0,R}U{(r,00) : r € R} and J = P ((—00, 1]), then the function
f:RU) — (R,5,T), defined as in example (2), is not closed, but f is
C-closed since if F C R then f (F) C (—o0, 1], and so f (F)\f (F) eJ.

(4) Consider the function f : (R,U) — (R,U,TJ =P ({0})) defined by
f(z) = [z], where [z] denotes the integer part of x.
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Since f (int ([1,2])) \int (f ([1,2])) = {1} ¢ J, we conclude that f is
not C-open.

Since that open — C-open, and that J-open and open are independent
concepts [1], we have that C-open /4 J-open. The next example shows
that J-open /4 C-open.

Example 3.3 Suppose that X =Y = {a,b,¢,d} and that f : X — YV
is defined by f(z) = ¢, for each z € X. Let 7 = {0, X, {a},{b},{a,b}},
B=1{0,Y,{a,d},{b,c}} and J = {0, {b},{d},{b,d}}. Given that {a} € T
and f ({a}) \int (f ({a})) = {c} ¢ J, we have that f is not C-open. Since,
for each U € 7\ {0}, f (U) = {c} C {b,c} = int[(f (U))*], we conclude that
f is J-open.

Theorem 3.4 Suppose that (X,7) and (Y,5) are topological spaces,
B is a base for 7 and that J is an ideal in Y . Then the function
f:(X,7) = (Y,3,7%) is C -open if and only f(B) is open- J® , for
each BelB.

Proof. (—) It is clear.

(«) If V € 7, there exists {V, : « € A} C B such that V = |J V,. For
acl

each a € A there exists J, € J® such that f (V) = int (f (Va))UJs. Then
fV) = LEJAf(V) U int (f (Va)) U U Jo Cint(f(V)) U LGJAJa- Hence

a€A

FN\int(f(V)) € T¢.

Theorem 3.5 (1) Suppose that f: (X,7) — (V,5,7) and g : (V,8) —
(Z,7v,L) are C -open and that g(J) C £ . Then go f is C -open.

(2)If f:(X,7) — (Y,B) isopenandif g: (Y,5) — (Z,7,L) is C -open,
then go f is C -open.

Proof. (1) If U € 7 then there is a J € J such that f(U)\int (f(U)) = J.
Then f(U) = int (f(U)) U J. There exists L € L with g (int (f(U))) =
int (g (int (f(U)))) U L.

Hence g (f () = g (int (f(U))) U g (J) = int (g (int (f()))) U L U
g(J) Sint (g (f(U))ULUg(J), and LUQ(J) cL.

This implies that (go f) (U) \int ((go f) (U)) € L.

(2) It is a consequence of (1).

The following example shows that the composition of C-open functions
may not be a C-open function.
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Example 3.6 Suppose that X =Y =7 = {a,b,¢,d} and that f: X - Y
and g : Y — Z are functions defined by f(a) = b= f(b), f(c) = ¢ = f(d)
and g(a) = a, g(b) = ¢, g(c) = b, g(d) = d.

It 8 ={0,Y,{b},{a,d},{a,b,d}}, T = {0, X,{a,b,c},{a,c,d},{a,c}},
v={0,Z,{c}}, T =1{0,{c}}, L ={0,{a},{d},{a,d}}, we have that go f
is not C-open, because (go f) ({a,b,c})\int[(go f) ({a,b,c})] = {b} ¢ L.
However f and g are C-open.

Theorem 3.7 If 7 is an ideal in X then the function f : (X,7) —
(Y,B,f(Z)) is C -closed if and only if, for each closed-Z set A C X , it is
true that f(A) is closed-f(Z) .

Proof. (—) Suppose that A C X is closed-Z. Since A\A € Z and
F(A)\f(A) € f(A\A) € f(T), then f (A)\f(A) € f(Z). Now, given
that f is C-closed, we have that f ( )\f( ) f(Z). Moreover, f (A)\f (A) C

( )\ () € [7 (A (A)|olr (7) 7 ()] € F@),and 50 TS (4) €
@)

(«) It is clear.

4. Some applications of C-continuous, C-closed and C-open
functions

In this section we present some applications of these three new type of
functions, mainly related to compactness and separability, which constitute
generalizations of well-known results of the general topology. If (X, 7,7) is

an ideal space, the set 7 = {A CX:ACTI, for some I € I} is an ideal in
X. Moreover, it is clear that if J € Z then J € T.

Recall that a topological space (X,7) is said to be quasi-H-closed, or
simply QHC [11], if for each open cover {V,},cn of X, there exists a finite
Ao C A with X = |J Va. An ideal space (X,7,Z) is defined to be: (1) Z-

aElNg
compact [7] if for all open cover {V,},ca of X, there exists a finite Ag C A
such that X\ U Vi, € Z, (2) Z-QHC [3] if for all open cover {V,},cp of
aclNg

X, there exists a finite Ag C A such that X\ | V, € Z, and (3) Z-normal
aENg
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[12] if, for each pair of disjoint closed sets F' and G, there are disjoint
open sets U and V such that F\U € 7 and G\V € 7.

Theorem 4.1 If f: (X, 7) — (Y, 3,J) is sobreyective and C -continuous
and if (X,7®Zs7) is compact, then (Y,3,J) is J -compact.

Proof. If {V,},c, is an open cover of Y then X = |J f~!(V4). For each

acA
a € A, there exists J, E J such that f Y (Vo) Cint Ef (Vo) U £ (o).
Thus X = U {int [f71 (Va)] U f1(Ja)}, withint [f 71 (Vo)]UfL (Ja) €
acA

T ® Iy, g7, for each o € A. There exists a finite Ag C A such that X =
U {int [f~1(Va)] U f~1(Ja)}. This implies that X = ( U 4 (Va)> U

a€lhg acho

U 1 (Ja). HenceY—( U Va>U U Ja,andso Y\ U V€ J.

a€lp a€lg a€clp a€lp

Theorem 4.2 If f: (X, 7) — (Y, 3,J) is sobreyective and C -continuous
and if (X, 7 ®ZI;7) is QHC, then (Y, B,7> is 7— QHC.

Proof. Let A\ = 7 @© Iy 7 be. Suppose that {Va},ca is an open cover of

Y. For each o € A there exists J, E J such that f=1(V,) C f~1(Jo) U

int; (71 (Va)). Hence X = U [f! (Jo) Uint, (f71 (Va))]. Given that
a€cA

(X, ) is QHC, we have that X = |J [adhy (f~1 (Ja)) Uadhy (int; (f~1 (Va)))],
aclg

for some finite Ag C A. But adh) (4) C adh, (A), for each A C X. This
allows us to conclude that X = J [adh, (f~!(Ja)) Uadh, (71 (Va))].

aElNg

Thus YV = g& [f (adhs (f71(Ja))) U f (adhr (f71 (Va)))]. For each a €

Ag there exist { Lo, My} C J such that f (adh, (f71(Va))) C adhg [f (71 (Va))]U
Lo = adhg(Va) ULy and f (adh: (f71(Ja))) C adhg [f (f71 (Ja))] UM, =
adhg(Jo)UM,. In consequence, Y = |J adhg(Vy)U U ladhg(Jo) U Lo U M,

aEly aElg

and so Y\ U adhg(V,) € J.
aENg

Theorem 4.3 If f: (X,7) — (Y,5,J) is C -continuous then:

1) If {z,}°°, is a succession in X , a € X and z, — a , then either
n=1

{f(a)} e T or f(zn) — fla) .
(2)If F isafilterin X ,a€ X and F — a then either {f (a)} € J or

f(F) = f(a).
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Proof.

(1) Suppose that {f (a)} ¢ J. If W € 8 and f (a) € W, there exists J € J
such that a € f~1 (W) C f~1(J) Uint (f~1 (W)). Since {f (a)} ¢ J then
a € int (f~1(W)), and so there is a N € ZT such that, if n > N then
x, € int (f~1(W)). Thus, if n > N we have that f (z,) € W.

(2) Suppose that {f (a)} ¢ J. If W € B and f (a) € W, there exists J € J
such that a € f~1(W) C f~1(J)Uint (f~1 (W)). Since {f(a)} ¢ J
then a € int (f~1(W)), and so int (f~1(W)) € F. This implies that
f(nt (f~Y(W))) € f(F). Given that f (int (f~1(W))) € W, we have
that W e f(F).

Theorem 4.4 If f: (X,7) — (Y, 3,J) is continuous, sobreyective and C
-closed , and if (X, 7) is normal, then (Y,3,J) is J -normal.

Proof. Suppose that F' and G are disjoint closed subsets of Y. There
exist disjoint U € 7 and V € 7, with f~'(F) C U and f~'(G) C
V. Then f(X\U) C Y\F and f(X\V) € Y\G. Now, |[Y\f(X\0)| n
(V\FXV)| = Y\FIX\([@ N V)] = 0. Moreover

P\ [Y\FE\D)] = TN (V\F) € TR\ (X\U) € T, because
is C-closed. Hence F\ [Y\F(X\U)| € J. Similarly G\ [Y\F (X\V)] € J.

Definition 4.5 The ideal space (X, 7,7) is said to be separable- Z if there
exists a countable D C X such that X\D € Z.

It is noted that separable — separable-Z and that (X, 7) is separable if
and only if (X, 7,{0}) is separable-{(}.

Example 4.6

(1) The space (R,P(R),Z = P(R)) is separable-Z, but (R, P(R)) is not
separable. (2) Let ( be the topology in R given by: V € g if and
only if, for each » € R, if r € V N Q then there exists ¢ > 0 such
that (r —e,r+¢) C V. We have that the space (R,5,Z =P(R\Q)) is
separable-Z since R\Q = R\Q € Z. Besides (R, ) is not separable. (3)
If ( = {0} U{ACR:R\Ais countable} then (R,(,Z =7Z.(R)) is not
separable-Z, because if A C R is countable we have that A = A and so
R\A ¢ .

Theorem 4.7
(1) If f:(X,7) — (Y,5,J) is sobreyective and C -continuous, and if
(X, 7) is separable then (Y, 3,J) is separable- J .
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(2) If ZTisanidealin X | f:(X,7) — (Y, 8, f(Z)) is sobreyective and C
-continuous, and if (X, 7,7) is separable-Z , then (Y, 3, f (Z)) is separable-
(@) .

(3) If (X, 7,7) is separable-Z and V € 7, then (V,7y,Zy) is separable-
Ty.

(4) If (X, 7,7) isseparable-Z and (Y, 3, J) is separable-J then the space
(X XY, 7xB,T®J) isseparable-(Z® J) .

Proof.
(1) There exists D C X, countable, with D = X. Hence Y\f (D) =

f (ﬁ) \f (D) € J, because f is C-continuous. Moreover f(D) is countable.
(2) There is a countable D C X with X\D € Z. Given that
Y\f (D) € f(X\D) € () and (D) \F(D) € f(Z), then Y\F(D) €
%) B
(3) There exists a countable D C X such that X\D € 7.

Since V\adhy, (VN D) =V\[VADNV| =V (X\D) and X\D €
7, we have that V\adh,, (VN D) € Iy.
(4) There are countable sets D C X and E C Y such that X\D € 7 and
Y\FE € J.
Given that (X x V)\Dx E = (X x ¥)\ (D x ) = [(X\D) x Y| U
[X x (Y\E)|, we have that (X x Y)\Dx E€Z®J.

Definition 4.8 The space (X, 7,7) is said to be regular-Z if for each U € 7
and z € U, it is true that either {x} € Z or there is a V' € 7 such that
ze€Vand V CU.

It is clear that regular — regular-Z and that (X,7) is regular if and
only if (X, 7,{0}) is regular-{0}.

Example 4.9

(1) Let X be the topology in R in which the nboods of any nonzero point
being as in the usual topology, while nboods of 0 will have the form
U\{1,1/2,1/3,...} where U is a nbood of 0 in that usual topology. It
is known that {1,1/2,1/3,...} is a closed set and that (R, A) is not regular.
However (R, \,Z =P ({0})) is regular-Z. Indeed, suppose that U € X and
acU.

(7) If a =0 then {a} € 7.

(i) If a # 0, there is r € (0, |a|) such that (a —r,a+r) C U. It is very
easy to see that adhy ((a —r/2,a+71/2)) =[la—1/2,a+71/2] CU.
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(2) The space (R,\,Z =P ({1})) is not regular-Z, because we have that
0ec R\{1,1/2,1/3,...}, {0} ¢ Z and thereisno V € A with0 € V CV C

R\ {1,1/2,1/3,...}.
(3) If 7 is an admissible ideal in X, then each space (X, 7,7) is regular-Z.

Theorem 4.10

(1) It f: (X,7) — (Y,5,J) is sobreyective, open, closed and C -
continuous, and if (X, 7) is regular then (Y,3,J) is regular- J .

(2)If 7 isanidealin X , f: (X,7) — (Y,5, f(Z)) is sobreyective, open,
closed and C -continuous, and if (X, 7,7) is regular- Z then (Y, 0, f (Z))
is regular-f (7) .

(3) If (X,7,Z) is regular-Z and (Y,(,J) is regular-J then the space
(X xY,7xpB,IT®J) isregular-(Z® J) .

Proof.

(1) If W € B and yo € W, there is a g € X such that f(z9) = yo.
There exists J € J with zg € f~1 (W) C int (f1 (W)U f1(J). If
zo € f71(J) then {yo} € J. If zp € int (f~1(W)), there is a U € 7
such that zg € U and U C 4nt (f~1(W)). In this case yo € f(U) and

F@) € £ (T) S f(int (F7 (W) S £ (£ (W) = W, with £ (U) € 5.
(2) Suppose that W € ﬁ and f (x0) E W. There exists I € Z such that
o € fL(W) Cnt (72 (W)) U f~1(f (1)), since f is C-continuous. If
zo € f7H(f(I)) then {f (z0)} € f(Z). If zo € int(f~1(W)) then ei-
ther {zo} € Z, and so {f(z0)} € f(Z), or there exists U € 7 such that
zo € U CTU Cint (f~1 (W)), and so f(z) € f(U) C f(U) C f(U) -
f(int (f~1(W))) C W, with f(U) € B.

(3) Suppose that W € 7 x 8 and (x,y) € W. There are U € 7 and V € 3
such that (z,y) € U x V.C W. We have that either {x} € Z or there is a
Uy € 7 with 2 € Uy and Uy C U. Moreover, either {y} € J or there is a
VieBwithyeVyand V; CV.

(a) If {z} € Z or {y} € J, it is clear that {(z,y)} = {z} x {y} €T ® J.
(b) If there are U; € 7 and V; € 3, such that x € Uy, Uy C U, y € V4 and
VlgV, then (ZL‘,y) cUy xViand Uy x Vp zﬁlxvlgUxVQW.

Theorem 4.11 If (X,7) is Ty and if f: (X,7) — (YV,5,J) is biyective
and C -open, then (Y,5® J) is Ts .

Proof. Suppose that {u,v} CY and u # v. There exists {a,b} C X with
f(a) =wand f(b) =v. Now, thereis a {U,V} C 7 suchthat a e U, be V
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and UNV =0. Thus u € f(U),v e f(V), f(U)Nf(V)=0, with f(U)
and f(V) open-J. So that {f(U),f(V)} C g J.

5. D-Continuous functions

Other forms of continuity via ideals were defined and studied by Abd El
Monsef et al. and by Kaniewski et al. In both cases the considered ideal is
defined in the domain of the function. Under the same hypothesis, in this
section we define the D-continuous functions, a new and natural general-
ization of the concept of continuity, which turns out to be independent of
the concepts introduced by these authors.

Recall that if 7 is an ideal in X then a function f : (X,7,Z) — (Y,5)
is said to be Z-continuous [1] [El-Monsef form] if, for each V € 3, f~1(V)
is Z-open, that is, f~1 (V) C int [(ffl (V))*} On the other hand, f is
defined to be Z-continuous [6] [Kaniewski form] if, for each V' € 3, there
are U € 7 and I € T, such that f~1 (V) = U\I.

Definition 5.1 If 7 is an ideal in X, a function f : (X,7,Z) — (Y,f) is
said to be D -continuous if, for each V € 3, we have that f~! (V) is open-Z,
that is, f~1 (V) \int (f~1(V)) € T.

It is observed that if f is continuous then f is D-continuous, and that
f:(X,7) — (Y,p) is continuous if and only if f : (X, 7,{0}) — (V,f) is
‘D-continuous.

The following theorem establishes a relationship between C-continuity
and D-continuity.

Theorem 5.2

(1) The function f : (X,7,Z) — (Y,3) is D -continuous if and only f~! (F)
is closed-Z , for each closed set F'CY .

(2)If f:(X,7,7) — (Y,B) isa D -continuous function, then the function
f:(X,7) = (Y,B, f(ZT)) is C -continuous.

Proof.
(1) It is clear.
(2) If V € B there is a I € T such that f~1 (V) = int (f (V) UI
Climt (£~ (V) U £=1 (£ (1)), with £ (I) € / (Z).
Corollary 2.4 implies that f:(X,7) — (Y, 8, f(Z)) is C-continuous.
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Example 5.3
(1) If U is the usual topology in R, the identity function f : (R,U,Z = P(R)) —
(R,P(R)) is D-continuous, but f is not continuous.

(2) The function f : (R,U,Z7="P(Z)) — (R,U) given by f(z) = [z],
where [z] is the integer part of z, is D-continuous, because if B C R then
fY(B)= U [nn+1), and given that {[n,n+1):n € BNZ} is lo-

neBNZ
cally finite in (R,U), we have that | [n,n+1)= U [n,n+1) =
neBNZ neBNZ
U n+1],andso fFIB\(B)= U [n+1\ U [pn+1)C
neBNZ n€BNZ neBNZ
U (n,n+1\[n,n+1)={n+1:neBNZ}ecl.

EL?T)B%Zhe function f: (R,U,Z =P({—-1,1})) — (R,U) given by f(z) = —1
if x <0, and f(x) = 1if x > 0, is not D-continuous since if A = {—1}
then A = A and f~1(A)\f* (A) = {0} ¢ Z. However, f : (R,U) —
(R,U, f(Z)) is C-continuous given that f(Z) = Z and if A C R then

f (Z) \m C{-1,1} and so f (Z) \m € f(2).

In the three next theorems we present other characterizations of D-
continuity in terms of interior, adherence and frontier operators.

Theorem 5.4 The following propositions are equivalents:
(1) The function f: (X,7,Z) — (Y,3) is D -continuous.
(2) For each BCY , f~1(B°) \mt( f1(B)) eT

(3) Foreach BCY , f~1(B)\f! ( )EI

Proof. It is easy to be established.

Theorem 5.5 The function f:(X,7,7) — (Y,) is D -continuous if and
only if Fr (f~*(B))\f ' (Fr(B)) €I, foreach BCY .

Proof. (—) If B C Y, there exists {I,I2} C Z such that f~1(B) C
F1 (B) U T and f T(Y\B) C f! (Y\B) U I», by Theorem 5.4. Then

Fr(f~(B)) =T TBNFTN\B) C [ (B)un|n[f ("\B)ub| =
o (Fr (B))UI where [ = [f—l (B)nL|ulnn 1t (Y\B)|u(hnk) e
Z. Hence Fr (f~(B))\f* (Fr(B)) € L.

( JIEF CYis Closed there is a I € 7 such that Fr(f~Y(F)) C
fHEr (F)UIC fH(F)UT, and so f~H(F)\int (f~1 (F)) € [~ (F)UI
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Thus f~1(F) Cint (f1(F) U f Y (F)ul = f~1(F)Ul. This implies
that f~1(F)\f~'(F) € Z. By Theorem 5.2 f is D-continuous.

Theorem 5.6 The function f: (X,7,Z) — (Y,3) is D -continuous if and
only if, for each A C X | there is a I € Z such that f (Z\I) C f(A) .

Proof. (—)If A C X, thereisa I € Z such that -1 (f (A))\f ! ( I (A)) =
I, by Theorem 5.4. Hence A\I C f~! (f (A)), and so f (Z\I) C f(A).
(<) It B C Y then there exists I € Z with f (7T (B)\I) C f(f 7 (B)) C

B. This allows us to conclude that f~1(B)\f~! (E) € Z. By Theorem
5.4, f is D-continuous.

Corollary 5.7 If the function f : (X,7,Z) — (Y, 3) is D -continuous then
F(T) <T@ .

Proof. Let J € T be. There exists I € Z such that J C I. There is a

I, € 7 with f (T\Il> C f(I), by Theorem 5.6. Since we also have that
F(TIV)\F (1) € f (TN, then £ (J) € £ (T) € T(DUf (h) CFIUT) €

f@).

Theorem 5.8
(1) If {Zo}pep is a collection of ideals in X and if T = () Z, , then

acl
f:(X,7,7) = (Y,B) is D -continuous if and only if
f:(X,7,Z,) — (Y,B) is D -continuous, for each a € A .
2)If f:(X,7,7) — (Y,B) is D -continuous and g : (Y,3) — (Z,7) is
continuous, then go f is D -continuous.
(3) If A C X then the function x4 : (X,7,Z) — ({0,1},P ({0,1})) is
D -continuous if and only if Fr(A) €T .
(4) If A and B are open sets in (X,7) , X = AUB and if f:(X,7,7) —
(Y, 3) is a function such that the restrictions fa : (A,74,Z4) — (Y, ) and
fB:(B,78,Ig) — (Y,B) are D -continuous, then f is D -continuous.
5) If AC X andif f: (X,7,7) — (Y,8) is D -continuous, then
fa:(A,74,Z4) — (Y,B) is D -continuous.

Proof. (3) (—) Given that x;* {0} and x ;' {1} are open-Z, then Fr(A) =
A\A° = (A\A) U (A\A°) € T. (<) If Fr(4) € T then A\A € T and
A\A° € T or, equivalently, x;* {0} and x ' {1} are open-Z.
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(4) Suppose that V' € 3. Given that {A,B} C 7, int,, (f;l (V)) =
Afint (f~1(V)) and intr,, (f5" (V) = Brint (f~1(V)).

Since f~1 (V) = f31' (V)Ufg! (V), we have that £~ (V) \int (f~1 (V)
2t W)Nintr, (£21 (V) U [£5" (V) Nintr, (£ (V)] € TaUT5 C T,

The other parts of the theorem are obtained without any problem.

N

Theorem 5.9 If f: (X, 7,Z) — (Y,5) and g: (Y,3,L£) — (Z,7) are D
-continuous and if {f~'(L): L€ L} CT ,then gof is D -continuous.

Proof. If W € v there exists L € £ such that g~ (W) = int (g~ (W))UL
Now, thereisa I € Z with f~1 [int (g* (W))] = int {f* [mt( “L(W))
L. So f™1 (g71 (W) = S~ (int (g~ (W)))UF " (L) = int {7 [int (g
Tuf=H(L) Cant {f~ (gt (W) }UTU (L )

Hence (go )~ (W) \int [(go /)" (W) CTU (L) € T.

}u
—1 (W

Corollary 5.10 If f : X — Y is one-one and if g : (Y,5,£) — (Z,7)
and f : (X,7,f1(L)) — (Y,B8) are D -continuous, then go f is D
-continuous.

The composition of D-continuous functions may not be a D-continuous
function, as we show in the following example.

Example 5.11 Suppose that X =Y = Z = {a,b,c}, 7 = {0, {a,b}, X},
B ={0,{a,c}, Y}, v=1{0,{c},Z}, T =T =P ({b,c}) and that f: X —
Y, g9:Y — Z are defined by: f(a) = b, f(b) = a, f(c) = ¢, g(a) = b,
g(b) = cand g(c) = a. It is not a problem to prove that f and g are
D-continuous. Given that (go )~ ({¢}) \int [(g of)7! ({c})} = {a} ¢ 7,

we conclude that g o f is not D-continuous.

Theorem 5.12 If 7 is an ideal in X , then f: (X,7,Z%) — (Y,5) is D
-continuous if and only if f: (X, 7®Z) — (Y, ) is continuous.

Proof. (—) If V € 3, thereis a J € Z% such that f~1 (V) \int (f~1 (V)) =
J. So that f~1 (V) =int (fL(V))uJeraT

(«) If W € B3, there are U € 7 and J € Z® such that f~1 (W) =UUJ.
Then U Cint, (f~1 (W)) and so f~1 (W) Cint, (f~*(W)) U J. This im-
plies that =1 (W) \int, (f~1 (W)) C J. Thus f~1 (W) \int, (f~1(W)) €
JT®.

NS



Other forms of continuity modulo an ideal 1243

It is possible to build new D-continuous functions from some previously
known ones, as we will show now.

Theorem 5.13

(HIff:(X,,7)— (YV,B) and g: (X,7,Z) — (Z,7) are D -continuous,
then the function h : (X,7,Z%) — (Y x Z,8 x ) , defined by h(z) =
(f(x),g(z)) ,is D -continuous.

(2) If f:(X,7,7) — (Y,B) is D -continuous then the function g :
(X, 7®7I) - (X xY,(1®7Z) x B) defined by g(z) = (z, f (x)), is contin-
uous. Moreover, if g is continuous then f : (X,7,Z%) — (Y,5) is D
-continuous.

Proof.
(1) If W € B x~, there are {U; : j € A} C g and {V;:j € A} C v such
that W= |J (U; x V). Hence h™* (W) = U L1 (U; x V) =

JEA JeEA

U ) ng=(v)).
JEA

For each j € A there exists {I;, J;} C T such that f~1(U;) = int [f~1(U;)]U
I and g~ Y (V}) = int [g71(V})] U J;.
Thus i () = U fin (77107 U L]fimt (g~ (V) U 5] € imt (01 (W)
Jj€
I, where I = UA [int (f_l(Uj)) N Jj] U [int (g_l(V})) N Ij] U(Ij N Jj) € I%.
JE

Hence h=1 (W) \int [h=1 (W)] € Z%.
QIfUerand Ve, gt (UxV)=UNf1(V)er®Z. Now,if [ €T
and Ve B, g t(IxV)=INf1(V)eZCrdI Thisimplies that g is
continuous.

Finally, if V € B then f1 (V) =g 1 (X xV)er®Z, and so f~1(V)
is open-Z°.

Theorem 5.14

(D) Iff:(X,7,Z7) — (Y,5) is one-one then f is D -continuous if and only
if f:(X,7)— (Y,B,f(Z)) is C -continuous.

(2)If f: X =Y isone-one, then f:(X,7) — (Y,3,J) is C -continuous
if and only if f: (X, 7, f~1(J)) — (Y, B) is D -continuous.

Proof. It is easy to be established.

In our final property for this new type of weak continuity, we present
the smallest ideal Z in X for which a given function f: (X,7) — (Y, ) is
D-continuous.
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Theorem 5.15 If f:(X,7) — (Y,) is a function and if

VeBa

Iy = {A C X : there is a finite 84 C 8 with A C U {fﬁl (V) \int (ffl (V))} } ,

then Z; is the smallest ideal Z in X such that f:(X,7,7) — (Y,0)
is D -continuous.

Proof. It is clear that Z; is an ideal in X. Given that f~1 (V) \int (f~1 (V)) €

Iy, for each V € B, then f : (X,7,Zy) — (Y, ) is D-continuous. Now,

suppose that f : (X,7,7) — (Y,3) is D-continuous. If A € Iy then

there is a finite 84 C B with A € U [f~1(V)\int (f~1(V))]. Since
VeBa

(V) \int (f~1(V)) € Z, for each V € B4, we can conclude that A € Z.
In this way Zy C 7.

In the next example we show that D-continuous and Z-continuous
(Kaniewski form) are independent concepts.

Example 5.16
(1) Consider the function f : (R,U,Z = P(Z)) — (R, L) defined by f (z) =
[z]. Here £ is the Sorgenfrey topology in R. If V € £ then f~1 (V) =
U [nyn+1)and U (n,n+1) Cint(f~1(V)). Therefore
neVnz neVnZ
(V) \int (f~1(V)) C Z. Hence f~1 (V) is open-Z, and f is D-continuous.
On the other hand, if V' = [0,1), we have that [0,1) € £ but there are
no U € U and I € T such that f~1 (V) = U\I, because f~1 (V) =1[0,1). In
effect, if U e U, I € Tand f~ (V) = U\I, we have that U = [0, 1)U(U N 1),
and so there exists € € (0,1) such that (—¢,0) C U NI C Z, absurd. In
conclusion, f is not Z-continuous (Kaniewski form).
(2) Let 8 = {0,R} U{(a,0):a € R} and g : (R,U,Z=P(R\Z)) —
(R, 8), defined by g (z) = [z]. If r € Rthen g~ ((r, +00)) = [[r] + 1, +00) =
(r,4+00)\I, where I = (r,[r] + 1) € Z. This implies that g is Z-continuous
(Kaniewski form).
Now, since g~ ! ((%, +oo)) \int (g_l ((%, +oo>)) =1[1,400)\ (1,+00) =
{1} ¢ Z, we conclude that g is not D-continuous.

Finally, we show that D-continuous and Z-continuous (El Monsef form)
are independent concepts.

Example 5.17
(1) The function f of Example 5.16-(1) is not Z-continuous (El Monsef
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form) because (f~1([0,1)))" = [0,1)* = [0,1] and

int [(£7([0,1)))"] = (0,1), and so £~ ([0, 1)) int [ (£~ ([0,1)))"]
(2)IfA={0}U{A C R:R\A is finite} and 5 = {0, R}U{(a,0) : a € R},
the function f : (R,\,Z =Z¢(R)) — (R, f) defined by f(z) = [z] is Z-
continuous (El Monsef form) because

fH(R) =R = int (R*), f* 0)=0=1in
[la] +1,400) Cint [(f (a,+00))) }
However f is not D-continuous because

(b o) e (7 (7)) = 1400 7

6. D-open functions

In this section we introduce an extension of the open functions to the ideal
spaces, in the case in which the considered ideal is defined in the domain
of the function.

Definition 6.1 The function f : (X,7,Z) — (Y, ) is said to be D -open
if, for each U € 7, there exists I € Z such that f(U\I) Cint (f (U)).

It is noted that if f : (X,7) — (Y,[) is open then f : (X,7,7) —
(Y, B) D-open, and that if f : (X, 7,Z) — (Y, 3) is D-open then f : (X,7) —
(Y, B, f(Z)) C-open. The reciprocal implications, in general, are false, as
we can see in the following examples.

Examples 6.2

1) The function [ : (R,U,Z = P(R)) — (R,{0,R}), given by f(z) = z, is
D-open but f is not open.

2) Suppose that X =Y = {a,b,c}, 7 = {0,{a,b},{b,c},{b},X}, B =
{0,{a},{b},{a,b},Y} and T = {0,{b}}. Let f: X — Y be the function
defined by f(a) = b, f(b) = c and f(c¢) = a. It is not a problem to prove
that f is D-open. Now, given that f ({a,b}) = {b,c} ¢ [ then f is not
open.

3) Suppose that X, Y, 7 and 3 are as in example 2, that Z = {0, {a}},
and that f : X — Y is defined by f(a) = f(b) = c and f(c) = a. It
is observed that f(Z) = {0,{c}} and that f : (X,7) — (Y,5,f(2)) is
C-open. However f is not D-open since there is no a I € Z such that

J{b,c}\I) Cint (f ({b,c})).

((Z)*) and, ifa € R, f~! ((a, +0)) =
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Theorem 6.3

() If f: (X, 7,2) — (Y,B) is D -open and g¢g: (Y,5) — (Z,7) is open,
then go f is D -open.

2 f:(X,n,7)— (v,8) and g: (V,8,J) — (Z,v) are D -open,
go fis one-one and J C f(Z) , then go f is D -open.

Proof.
1) If U € 7 then there exists I € Z such that f (U\I) C int (f (U)). Hence

FU) Cint(fU)U f(I)and (go f)(U) C g(int(f(U)))U(go f)I) <
int[(go f)(U)U(go f) ).

2) If U € 7 then there exists I € Z such that f (U\I) Cint (f (U)). Hence
f(U) Cint(f (U)) U f(I) and (go f)(U) C g(int (f(U))) U (go [f) ().
Now, there exists J € J with g[int(f (U)) \J] C antlg (int (f (U)))].
There is a I; € Z such that J = f (I1). Thus g (int (f (U))) U (go f)(I) C
int [g (int (f (U)))U(go f)(TU L) Sint[(go f)(U)JU(go f)(IUIL). Since
g o f is inyective,

(go f)(UN(UUL)) = (g0 f)(U)\(go f)(TUL) Cint{(go f) V)]

The composition of D-open functions may not be a D-open function, as
we show in the next example.

Example 6.4 Let X =Y = Z = {a,b,c}, 7 = {0, X, {a,b},{b,c}, {b}},
B = {®7Y7 {a}a{b}7{a7b}}7 v = {0727{6}}7 1= {®7{b}} and J = {@,{(I} )
{b},{a,b}}. Consider the functions f: X — Y and g : Y — Z defined by:
fla) =0, f(b) =¢, f(c) = a, and g(a) = b, g(b) = a, g(c) = c. It is not a
problem to verify that f and g are D-open. However, since there is no a
I € 7 such that (go f) [{a,b} \I] Cint[(go f) ({a,b})], we have that go f
is not D-open.

7. Some applications of D-continuous, D-closed and D-open
functions

In this final section we present some properties of D-continuous and D-open
functions, mainly related to compactness and separability. This results also
are generalizations of well-known results in general topology.

Recall that an ideal space (X, 7,7) is: (1) pZ -compact [9] if, for each

collection {Uq},cp of open sets, if X\ |J Uy, € Z, there exists a finite
a€cA
Ao C A such that X\ U U, € Z, and (2) 0Z -compact [9] if, for each
aElNg
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non-empty collection {Us},cp of non-empty open sets, if X\ U U, € Z,
acN
there exists a finite Ag C A such that X = |J U,.
aclg

Theorem 7.1 Suppose that f: (X,7,Z) — (Y, ) is sobreyective and D
-continuous and that (X,7 @ Z) is compact. Then (Y,8, f(Z)) is f(Z)
-compact.

Proof. If {V,},c, is an open cover of Y, then X = (U f~!(V,). For
ach

each o € Athere exists I, € Z such that f~1 (Vy) = int, (f71 (Va)) U La.
Then X = U (int; (f7' (Vo)) Ul,). Given that (X,7 @ 7) is compact,
acA

there is a finite Ag C A such that X = {J (int, (f~1(V4)) Ul,). Thus

aclg
X= U (f'(Va)Ul,),and thisimpliesY = |J VoU U f(Is). Hence
aEAo aer 016/\0
Y\ U VaC U flla)€f(@).
a€lg achg

Theorem 7.2 Suppose that f: (X,7,Z) — (Y,) is sobreyective and D
-continuous. Then:

(1) If (X,7,Z%) is 0Z® -compact then (Y, 3) is compact.

(2) If (X,7,Z%) is pZ® -compact then (Y, 3, f (Z%®)) is f(Z®) -compact.
(3) If (X, 7 T) is QHC then (Y, B, f (T)) is f (T) ~QHC.

Proof.

(1) If {Vo},cn is an open cover of Y, then X = (J f~1(V,). For each
a€gl

« € A there exists a I, € Z such that f~1 (V) = int (f ! (Va)) Ul,. Then
X\ U int(f1 (Vo) € U I, € Z®. Since (X, 7,Z%) is 0Z®-compact,
ach ach

there exists a finite Ag C A such that X = (J nt(f~!(Va)). Then

aclNg
X= U f*(Va),andsoY = | V.
a€lp a€lp
(2) If {Vo},cn is an open cover of Y, then X = (J f~1(V,). For each
a€cl

« € A there exists I, € Z such that f=! (V) = int (f~! (Va)) U L. Then
X\ U int(f1 (Vo) € U I, € Z®. Since (X,7,Z%) is pZ®-compact,
agl acl

there exists Ag C A, finite, such that X\ U int (f~1(V,)) € Z%.
aElNg

Then X\ U f1(Va) € Z®. Giventhat Y\ U Va§f<X\ U f* (Va)> €
a€lg a€lg a€Ng
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f(Z%), we have that Y\ U V, € f (Z%).
aElNg

(3) Let A = 7 ®Z be. We will denote adh, (A) by A, for all A C X. If

{Va},ca is an open cover of Y, then X = J f~'(V,). For each o € A
a€cl

there exists a I, € Z such that f~*(V,) = int, (f 71 (Va)) U l,. Then
X = U [int: (f (Vo)) U]
acA
Since (X, 7 @ 7) is a QHC space, there exists a finite Ag C A such that
X = U [adhy (int. (f~1(Vh))) Uadhy(1,)] C LJX ladhy (f~1 (Vo)) Uadhy (1,)].
aco

a€lg o
But adhy (A) C A, for each A C X.

Then X = U [FTVa) U] andsoy = U F[FT0Ju U £(T).

aclg CYGAO a€lg

For each a € Ag there exists J, € Z with f~1(Vo)\f~! (adhg(Va)) =
Joo Hence V = U f(T)U U f[f*(adhs(Va))] U U f(Ja) =

ac€lg aclg a€lg
U f( )u y adhz(Va)U U f (Ja). Consecuently Y\ U adhs(Vy) €
a€hg a€hg a€lg a€lg

f (7)

Now we present some properties of the D-continuous functions, in the
case in which the codomain is a Hausdorf space.

Theorem 7.3
(HIff:(X,7,2)— (V,B) and g: (X,7,Z) — (Y,) are D -continuous
functions, and if (Y,3) is Tq , then A = {x € X : f(z) = g(z)} is closed
in(X,707).
(2)If f:(X,7,Z7) — (Y,5) is D -continuous and (Y, ) is Ty, then A =
{(u,v) e X x X : f(u)=f(v)} isclosedin (X x X, (t®Z)x (187I)) .

Proof.

(1) Suppose that uw € X\ A. Thereis a {U,V} C g with f(u) € U, g(u) € V
and UNV =0. Thenu e f~L{U)Ng 1 (V), An[fHU)Ng L (V)] =0
and f~H({U)Ng 1 (V) eTdI, because f~1(U)Ng~t(V) is open-T.

(2) Suppose that (u,v) € (X x X)\A. There is a {U,V} C 8 with f(u) €
U, fv) € Vand UNV = @. Then (u,v) € f~1(U) x f~H(V), AN
[FFHU)x g Y (V)] =0and f~HU)x f1(V) € (1 ®T)x (1 ®T), because
f1(U) and f~1(V) are open-Z. This allows us to conclude that A is
closed in the space (X x X,(1®Z) x (1 & 1)).

Recall that an ideal space (X, 7,7) is said to be J -Hausdorff [13] if for
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each {a,b} C X with a = b, there exists {U,V} C 7 suchthata € U, be V
and UNV €.

Theorem 7.4 If f: (X,7,Z) — (Y,[) is biyective and D -open, and if
(X,7,7) is J -Hausdorff, then (Y, ® f(Z),f(Z)) is J -Hausdorff.

Proof. Suppose that {a,b} C X and that f(a) = f(b). There exists
{U,V} Crsuchthata e U,beVand UNV € Z. Given that int (f(U))N
nt (f(V) C fUONFV)=f(UNV) e f(Z), we have that int (f(U)) N
int (f(V)) € f(Z). On the other hand, there exists {I1, Iz} C Z such that
SU\IL) Cint (f(U)) and f(V\I2) € int (f(V)).
Hence:
() f(a) € int (f(U)) U f (11), f(b) € int( (V) u ( 2),
(id) {int (f(U)) U f (1) ;int (f(V)) U f (I2)} € B&f (T) and (iii) [int (f(U)) U f (1)]N
[int (f(V) U f (I2)] = [int (f(U)) Nvint (f (V)OS (1) Nint (f(V)]Ulint (f(U)) O f (I2)]U
[f ()N f(I2)] € (D).
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