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1. Introduction

In the history of coding theory, earlier the study was revolving around the
detection and correction of random and burst errors. If we want to detect
the error, relatively shorter length code can do the job. If we want to do
error correction, the code length needs to be lengthened, but it results in
low data rate of transmission. In order to sort out this problem or to make
a compromise between short and long code length, Wolf and Elpas [13]
in 1963 gave a new middle technique/concept. In this concept, the whole
code length is divided in some mutually exclusive smaller sub-blocks and
the errors are assumed to be occurred within sub-block(s). This helps to
make a balance in the efficiency of the channel. Many papers are written
in this direction, e.g., [2,3,4,8,12].

In paper [2], Das obtains bounds for linear code which can locate burst
errors affecting more than one sub-block, whereas the paper [3] presents
random error detecting, locating and correcting codes where errors are af-
fecting multiple sub-blocks. In continuation with this direction of work, we
plan to work for repeated burst error affecting multiple sub-blocks. Block-
wise correction of errors is very useful specially in the study of convolutional
codes [14, 10], where the codewords consist of some smaller sub-blocks. Re-
peated burst error was introduced by Berardi, Dass and Verma in [1] and
its general form was introduced by Dass and Verma in [5]. Repeated burst
error affecting only single sub-block is studied by Dass and Madan in [7, 8]
where they obtain bounds for linear code correcting and locating such er-
rors. In this correspondence, we study the situation when repeated burst
errors are occurred in multiple sub-blocks and present bounds for linear
codes which can detect, locate, also correct such errors, a parallel to the
work done in [3].

Now, we take the definitions of different types of errors that we are
going to study in this paper. First, take the definition of a burst of length
b, due to Fire [9], as follows.

Definition 1.1. [9] A burst of length b is an n-tuple whose only nonzero
components are confined to some b successive positions, the first and the
last of which is nonzero.

Definition 1.2. [1] An 2-repeated burst of length b is an n-tuple whose
only nonzero components are confined to 2 distinct sets of b successive
positions, the first and the last component of each set being nonzero.
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Definition 1.3. [6] An m-repeated burst of length b is an n-tuple whose
only nonzero components are confined to m distinct sets of b successive
positions, the first and the last component of each set being nonzero.

An example of 2-repeated burst of length 4 over GF(3) is
(00000010120001101000).

The number of check digits gives the information about the efficiency
of a code. The efficiency of a code is inversely proportional to the number
of check digits, i.e., the check digits are lesser, the code efficiency is higher.

Let us consider the number n = ft and an (n, k) linear code over GF (q)
with f mutually exclusive sub-blocks of length t. Let H be its parity check
matrix and Em,b,l be the set of all m-repeated burst errors of length b or
less occurring in l (≤ f) or less sub-blocks. Now, we state three conditions
as follows.

(i) eHT 6= 0 ∀ e ∈ Em,b,l.

(ii) eiH
T 6= ejH

T ∀ ei, ej ∈ Em,b,l such that ei and ej lie in the different
s (≤ l) sub-blocks.

(iii) eiH
T 6= ejH

T ∀ ei, ej ∈ Em,b,l such that ei and ej lie in the same
s (≤ l) sub-blocks.

An (n = ft, k) linear code capable of detecting any error from the set
Em,b,l prevailing in at most l(≤ f) corrupted sub-blocks must satisfy the
condition (i). We denote such type of codes by (n = ft, k) Em,b,lD-codes.
An (n = ft, k) linear code for locating any error from Em,b,l must satisfy
the conditions (i) and (ii). Let us denote such type of codes by (n = ft, k)
Em,b,lL-codes. An (n = ft, k) linear code which is capable of correcting all
errors from Em,b,l needs to meet all the three conditions (i) − (iii) and it
is denoted by an (n = ft, k) Em,b,lC-code.

This paper is divided into four sections. Section 1 presents the introduc-
tion and preliminaries of the paper. Section 2 derives the lower and upper
bounds on the number of check digits for an (n = ft, k) Em,b,lD-code.
Section 3 presents such bounds for an (n = ft, k) Em,b,lL-code. The last
section, i.e., Section 4 is devoted to obtain such bounds for an (n = ft, k)
Em,b,lC-code.
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2. Detection of repeated burst errors in multiple sub-blocks

This section contains lower and upper bounds for detection of the errors
from the set Em,b,l.

Theorem 2.1. (Lower Bound) An (n = ft, k) Em,b,lD-code having r
check digits satisfies

qr ≥
lX

s=0

Ã
l

s

!³
qmb − 1

´s
.(2.1)

Proof. To prove this theorem, we consider the set X of n-tuples such
that components of m distinct fixed sets of b consecutive positions within a
sub-block out of some l sub-blocks are nonzero. Then, the difference of any
two elements of X is an error from the set Em,b,l. Therefore, by condition
(i), the syndromes of the elements of X must be in different cosets. Since
there are

lX
s=1

Ã
l

s

!³
qmb − 1

´s
distinct nonzero syndromes corresponding to the elements of X and there
are at most qr distinct cosets, we get

qr ≥
lX

s=0

Ã
l

s

!³
qmb − 1

´s
.

This proves the required result. 2

For 2-repeated burst error, the following corollary is obtained by taking
m = 2 in Theorem 2.1.

Corollary 2.2. An (n = ft, k) E2,b,lD-code having r check digits satisfies

qr ≥
lX

s=0

Ã
l

s

!³
q2b − 1

´s
.

Remark 2.3. Putting m = 2 and l = 1 in (2.1), we get

qr ≥ q2b,

coinciding with Theorem 2.1 given by Berardi, Dass and Verma [1].
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The following result is based on Varshamov- Gilbert-Sacks bound [11]
and Theorem 4.17 given by Peterson and Weldon [10].

Theorem 2.4. (Upper Bound) There always exists an (n = ft, k) Em,b,lD-
code (t > mb) having r check digits provided

qr > qm(b−1)
(Ã

t−mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
t−mb+ i

i

!
(q−1)iqm−2−i

)
×

l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

(2.2)

Proof. To prove this, we will construct a suitable (n − k) × n check
matrix H for the code. Let us suppose that all columns of f −1 sub-blocks
and first j − 1 columns of the f th sub-block are chosen suitably and added
to H. Now, we put down the condition to add the jth column hj such that
the column hj should not be a linear combination of immediately preceding
b− 1 columns of the f th sub-block, together with m− 1 sets of b or fewer
successive columns out of the first j−b columns of the f th sub-block, along
with any m sets of b or fewer successive columns within a sub-block chosen
from any l− 1 or less sub-blocks out of the remaining f − 1 sub-blocks. In
other words, we can write this condition as follows:
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hj 6=
∙
a1hj−1 + a2hj−2 + . . .+ ab−1hj−b+1

¸
+

"
(ci1hi1 + ci1+1hi1+1 + . . .+ ci1−b+1hi1−b+1)

+(ci2hi2 + ci2+1hi2+1 + . . .+ ci2−b+1hi2−b+1)

+ . . .+ (cim−1him−1 + cim−1+1him−1+1 + . . .+ cim−1−b+1him−1−b+1)

#

+

"
(d111h111 + d111+1h111+1 + . . .+ d111+(b−1)h111+(b−1))

+(d112h112 + d112+1h112+1 + . . .+ d112+(b−1)h112+(b−1))+

. . .+ (d11mh11m + d11m+1h11m+1 + . . .+ d11m+(b−1)h11m+(b−1))

#
+
...
+

+

"
(ds11hs11 + ds11+1hs11+1 + . . .+ ds11+(b−1)hs11+(b−1))

+(ds12hs12 + ds12+1hs12+1 + . . .+ ds12+(b−1)hs12+(b−1))+

. . .+ (ds1mhs1m + ds1m+1hs1m+1 + . . .+ ds1m+(b−1)hs1m+(b−1))

#
,

(2.3)

where ai, ci, dwip ∈ GF (q), 1 ≤ s ≤ l− 1 and ai’s in the first square bracket
are any immediate preceding b − 1 columns and ci’s in the second square
bracket are any m − 1 sets of b or less consecutive columns from the first
j−b columns of the f th sub-block, while dwip ’s are anym sets of consecutive
b or fewer columns within a sub-block (for same value of w) chosen from
any l − 1 or fewer sub-blocks.

In the expression (2.3), the total choices of ai’s is q
b−1 and the choices

of ci’s is equal to the number of m − 1 repeated bursts of length b or less
in a (j − b)-tuple which is (see [5])

q(m−1)(b−1)
(Ã

j −mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
j −mb+ i

i

!
(q−1)iqm−2−i

)
.

The number of dwip ’s within a single sub-block is equivalent to the
number of m-repeated bursts of at most length b in a t-tuple, which is
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given as (see [5])

qm(b−1)
"
(q − 1)m

Ã
t−mb+m

m

!
+

m−1X
i=0

(q − 1)i
Ã
t−mb+ i

i

!
qm−1−i

#
− 1.

Since these errors occur in l−1 or less sub-blocks simultaneously, there-
fore the total number of linear combinations (including the zero combina-
tion) is

l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

(2.4)
Thus, the total number of possible linear combinations of ai’s, ci’s and

dwip ’s is

qm(b−1)
(Ã

j −mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
j −mb+ i

i

!
(q−1)iqm−2−i

)
×

l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

Therefore, to add the jth column to the f th sub-block, we must have

qr > qm(b−1)
(Ã

j −mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
j −mb+ i

i

!
(q−1)iqm−2−i

)
×

l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

(2.5)

The required result is obtained by replacing j by t in the expression
(2.5). 2

By putting m = 2 in Theorem 2.4, we have the following corollary.

Corollary 2.5. There always exists an (n = ft, k) E2,b,lD-code (t > 2b)
having r check digits provided
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qr > q2(b−1)
"³
t− 2b+ 1

´
(q − 1) + 1

#
×

Xl−1
s=0

¡f−1
s

¢⎧⎨⎩q2(b−1)
½
(q − 1)

∙¡t−2b+2
2

¢
(q − 1) +

¡t−2b+1
1

¢
+ q

¸¾
− 1

⎫⎬⎭
s

.

Remark 2.6. If we put m = 2 and l = 1 in (2.5), we get

qr > q2(b−1) ×
"³
t− 2b+ 1

´
(q − 1) + 1

#
,

coinciding with Theorem 2.2, Berardi, Dass and Verma [1].

Now, we provide an example of a code discussed in Theorem 2.4.

Example 2.7. Take a (20, 13) linear code over GF (3) whose parity check
matrix H7×20 is given below. Here, we take the parameters of Theorem 2.4
as f = 4, t = 5, l = 2, b = 1, m = 2.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 1 2 1 1 1 1 1 0 1 1 1 1
0 1 0 0 0 0 0 2 0 1 2 1 2 1 0 2 0 1 0 2
0 0 1 0 0 0 0 1 1 2 2 2 2 1 1 0 2 0 2 1
0 0 0 1 0 0 0 2 0 1 1 1 1 1 0 2 2 2 2 0
0 0 0 0 1 0 0 1 0 2 2 2 1 1 1 0 0 2 0 1
0 0 0 0 0 1 0 2 1 1 2 1 2 1 0 2 1 0 1 1
0 0 0 0 0 0 1 1 0 0 1 1 2 1 1 0 1 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All the 15200 syndromes of the errors from the set E2,1,2 are found to

be nonzero. This is verified by MS-EXCEL. Therefore, this code can detect
2 or less corrupted sub-blocks affected by the errors from the set E2,1,2.

3. Location of repeated burst errors in multiple sub-blocks

In this section, we present both the bounds for Em,b,lL-code.

Theorem 3.1. (Lower Bound) For an (n = ft, k) Em,b,lL-code with r
number of check digits, we must have the inequality

qr ≥
lX

s=0

Ã
f

s

!³
q2b − 1

´s
.
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Proof. For the proof, we calculate the total number of syndromes pro-
duced by the errors from the set Em,b,l of which the nonzero components
are confined to first mb consecutive positions in each sub-block out of the
l (≤ f) or less corrupted sub-blocks. Then, according the conditions (i)
and (ii), the syndromes produced by such errors from the set Em,b,l must
be nonzero and distinct from each syndrome produced from likewise sim-
ilar errors from the set Em,b,l. There are qmb − 1 distinct nonzero such
syndromes in any single sub-block and the number of corrupted sub-blocks
is l or less. Therefore, the total number of such nonzero syndromes is

lX
s=1

Ã
f

s

!
(qmb − 1)s.

As there can be at most qr possible distinct syndromes, including the
all zero syndrome, therefore

qr ≥
lX

s=0

Ã
f

s

!³
qmb − 1

´s
.(3.1)

2

By taking m = 2 in (3.1), we have the following corollary.

Corollary 3.2. For an (n = ft, k) E2,b,lL-code with r number of check
digits, we have

qr ≥
lX

s=0

Ã
f

s

!³
q2b − 1

´s
.

Remark 3.3. Taking m = 2 and l = 1, (3.1) is reduced to

qr ≥ 1 + f
³
q2b − 1

´
.

This coincides with Theorem 2.1 given by Dass and Madan [8].

Theorem 3.4. (Upper Bound) An (n = ft, k) Em,b,lL-code (t > mb)
having r check digits, can always be constructed if

qr > qm(b−1)
(Ã

t−mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
t−mb+ i

i

!
(q−1)iqm−2−i

)
×

2l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

(3.2)
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Proof. To prove this theorem, we will construct a suitable (n− k)× n
check matrix H for the code as in Theorem 2.4. After selecting the first
f − 1 sub-blocks and first j − 1 columns of f th sub-block of H suitably, we
go for adding the jth column of the f th sub-block to H as follows.

By condition (i), for detection of the corrupted sub-blocks due to errors
from the set Em,b,l, the j

th column hj should not be any one of the linear
combinations given by (2.3).

By condition (ii), for location of corrupted sub-blocks due to occur-
rence of the errors from the set Em,b,l, the column hj should not a linear
combination as given below:

hj 6=
∙
a1hj−1 + a2hj−2 + . . .+ ab−1hj−b+1

¸
+

"
(ci1hi1 + ci1+1hi1+1 + . . .+ ci1−b+1hi1−b+1)

+(ci2hi2 + ci2+1hi2+1 + . . .+ ci2−b+1hi2−b+1)

+ . . .+ (cim−1him−1 + cim−1+1him−1+1 + . . .+ cim−1−b+1him−1−b+1)

#

+

"
(d111h111 + d111+1h111+1 + . . .+ d111+(b−1)h111+(b−1))

+(d112h112 + d112+1h112+1 + . . .+ d112+(b−1)h112+(b−1))+

. . .+ (d11mh11m + d11m+1h11m+1 + . . .+ d11m+(b−1)h11m+(b−1))

#
+
...
+

+

"
(ds11hs11 + ds11+1hs11+1 + . . .+ ds11+(b−1)hs11+(b−1))

+(ds12hs12 + ds12+1hs12+1 + . . .+ ds12+(b−1)hs12+(b−1))+

. . .+ (ds1mhs1m + ds1m+1hs1m+1 + . . .+ ds1m+(b−1)hs1m+(b−1))

#
,

(3.3)

where ai, ci, dwip ∈ GF (q), 1 ≤ s ≤ 2l−1 and ai’s in the first square bracket
are any immediate preceding b − 1 columns and ci’s in the second square
bracket are any m − 1 sets of b or less consecutive columns from the first
j−b columns of the f th sub-block, while dwip ’s are anym sets of consecutive
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b or fewer columns within a sub-block (for same value of w) chosen from
any l − 1 or fewer sub-blocks.

Note that the linear combinations in (3.3) takes care of all linear com-
binations of (2.3). So, counting the linear combinations of (3.3) is sufficient
to satisfy the conditions (i)− (ii).

Therefore, the total number of possible choices of ai’s, ci’s and dwip ’s is

qm(b−1)
(Ã

j −mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
j −mb+ i

i

!
(q−1)iqm−2−i

)
×

2l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

This must be strictly less than qr. Hence, we must have

qr > qm(b−1)
(Ã

j −mb+ (m− 1)
m− 1

!
(q−1)m−1+

m−2X
i=0

Ã
j −mb+ i

i

!
(q−1)iqm−2−i

)
×

2l−1X
s=0

Ã
f − 1
s

!⎧⎨⎩qm(b−1)
"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1

⎫⎬⎭
s

.

The required result is obtained by replacing j by t in the above inequal-
ity. 2

Corollary 3.5. An (n = ft, k) E2,b,lL-code (t > 2b) having r check digits,
can always be constructed if

qr > q2(b−1)
(³

t− 2b+ 1
´
(q − 1) + 1

)X2l−1
s=0

¡f−1
s

¢
⎧⎨⎩q2(b−1)

½¡t−2b+2
2

¢
(q − 1)2

+
¡t−2b+1

1

¢
(q − 1) + q

¾
− 1

⎫⎬⎭
s

.

Remark 3.6. Putting m = 2 and l = 1 in (3.2), we get

qr > q2(b−1)
(
(t− 2b+ 1)(q − 1) + 1

)

×

⎧⎨⎩1 + (f − 1)
(
q2(b−1)

(
(q − 1)2

¡t−2b+2
2

¢
+ (k − 1)

¡t−2b+1
1

¢
+ q

)
− 1

)⎫⎬⎭,
which coincides with Theorem 2.3, Dass and Madan [8].
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Example 3.7. Consider a (20, 7) code over GF (3) with the parity check
matrix H13×20 taking f = 4, t = 5, l = 2, b = 1, m = 2 in Theorem 3.4.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 2
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 2 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 2 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 2 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 2 2 2
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 2 0 2
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 2 0 2 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All the 15200 syndromes of the errors from the set E2,1,2 are nonzero

and distinct in different set of l or less sub-blocks (verified with the help of
MS-EXCEL). Therefore, this code is an example of E2,1,2L-code.

4. Correction of repeated burst errors occurring in multiple
sub-blocks

In this section, the study is about the codes capable of correcting the errors
from the set Em,b,l.

Theorem 4.1. (Lower Bound) An (n = ft, k) Em,b,lC-code (t > mb)
with r parity check digits must satisfy

qr ≥
lX

s=0

Ã
f

s

!(
qm(b−1)

"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1
)s

.

Proof. In this case also, we prove the result by counting the total
number of syndromes satisfying conditions (i)−(iii). We count all possible
number of errors in the set Em,b,l. The number of m-repeated burst errors
of length b or less occurred in one sub-block of length t (excluding zero
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vector) is given by (see [5])

qm(b−1)
"
(q − 1)m

Ã
t−mb+m

m

!
+

m−1X
i=0

(q − 1)i
Ã
t−mb+ i

i

!
qm−1−i

#
− 1.

Since the number of corrupted sub-blocks is l(≤ f) or less, the total
number of errors from the set Em,b,l, excluding the zero vector, is

lX
s=1

Ã
f

s

!(
qm(b−1)

"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1
)s

.

(4.1)

Therefore, total number of nonzero and distinct syndromes (according
to conditions (i) − (iii)) is given by (4.1). Since there are at most qr

syndromes, we get

qr ≥
lX

s=0

Ã
f

s

!(
qm(b−1)

"
(q−1)m

Ã
t−mb+m

m

!
+
m−1X
i=0

(q−1)i
Ã
t−mb+ i

i

!
qm−1−i

#
−1
)s

.

(4.2)
2

Corollary 4.2. An (n = ft, k) E2,b,lC-code (t > 2b) with r parity check
digits must satisfy

qr ≥
lX

s=0

Ã
f

s

!⎧⎨⎩q2(b−1)
(Ã

t− 2b+ 2
2

!
(q−1)2+

Ã
t− 2b+ 1

1

!
(q−1)+q

)
−1

⎫⎬⎭
s

.

Remark 4.3. By taking m = 2 and l = 1, the result obtained in (4.2)
reduces to

qr ≥ 1+ f

⎧⎨⎩q2(b−1)
½Ã

t− 2b+ 2
2

!
(q− 1)2+

Ã
t− 2b+ 1

1

!
(q− 1)+ q

¾
− 1

⎫⎬⎭.
This coincides with Theorem 1, Dass and Madan [7].

Theorem 4.4. (Upper Bound) The existence of an (n = ft, k) Em,b,lC-
code (t > 2mb) is always ensured provided
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qr > q2m(b−1)
"¡t−2mb+2m−1

2m−1
¢
(q − 1)2m−1 +

X2m−2
i=0

(q − 1)i
¡t−2mb+i

i

¢
q2m−2−i

#
×"Pl−1

s=0

¡f−1
s

¢⎧⎨⎩q2m(b−1)
½
(q − 1)2m(b−1)

¡t−2mb+2m
2m

¢
+
P2m−1

i=0 (q − 1)i
¡t−2mb+i

i

¢
q2m−1−i

¾
− 1

⎫⎬⎭
s#

+ qm(b−1)
(¡t−mb+(m−1)

m−1
¢
(q − 1)m−1 +

Xm−2
i=0

¡t−mb+i
i

¢
(q − 1)iqm−2−i

)
×

P2l−1
s=l

¡f−1
s

¢⎧⎨⎩qm(b−1)
"
(q − 1)m

¡t−mb+m
m

¢
+
Pm−1

i=0 (q − 1)i
¡t−mb+i

i

¢
qm−1−i

#
− 1

⎫⎬⎭
s

,

(4.3)

where r is the number of check digits of the code.

Proof. In line with the proof of Theorem 2.4 and Theorem 3.4, let us
assume that the first f − 1 sub-blocks and the first j − 1 columns of the
f th sub-block of the parity check matrix H(n−k)×n of the desired code are

chosen suitably. Now for addition of the jth column hj of f
th sub-block

to the matrix H, by conditions (i)− (iii), the syndromes produced by the
errors from the set Em,b,l must be nonzero and distinct from the syndromes
produced by other any Em,b,l errors from not only in the same set, but also
in other set of l or fewer sub-blocks out of f sub-blocks.

According to conditions (i)− (ii), the linear combinations that hj can
not be equal to is given by (3.3).

According to condition (iii), in order to put the column hj as j
th col-

umn, the following condition needs to be satisfied.
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hj 6=
h
a1hj−1 + a2hj−2 + . . .+ ab−1hj−b+1

i
+

"
(ci1hi1 + ci1+1hi1+1 + . . .+ ci1−b+1hi1−b+1)

+(ci2hi2 + ci2+1hi2+1 + . . .+ ci2−b+1hi2−b+1)

+ . . .+ (ci2m−1hi2m−1 + ci2m−1+1hi2m−1+1 + . . .+ ci2m−1−b+1hi2m−1−b+1)

#

+

"
(d111h111 + d111+1h111+1 + . . .+ d111+(b−1)h111+(b−1))

+(d112h112 + d112+1h112+1 + . . .+ d112+(b−1)h112+(b−1))+

. . .+ (d112mh112m + d112m+1h112m+1 + . . .+ d112m+(b−1)h112m+(b−1))

#
+
...
+

+

"
(ds11hs11 + ds11+1hs11+1 + . . .+ ds11+(b−1)hs11+(b−1))

+(ds12hs12 + ds12+1hs12+1 + . . .+ ds12+(b−1)hs12+(b−1))+

. . .+ (ds12mhs12m + ds12m+1hs12m+1 + . . .+ ds12m+(b−1)hs12m+(b−1))

#
,

(4.4)

where ai, ci, dwip ∈ GF (q), 1 ≤ s ≤ l− 1 and ai’s in the first square bracket
are any immediate preceding b − 1 columns and ci’s in the second square
bracket are any 2m − 1 sets of b or less consecutive columns from the
first j − b columns of the f th sub-block, while dwip ’s are any 2m sets of
consecutive b or fewer columns within a sub-block (for same value of w)
chosen from any l − 1 or fewer sub-blocks.

In this expression, the total choices of ai’s are q
b−1 and the number of

choices of ci has the same as the number of (2m − 1)-repeated burst of
length at most b in a (j − b)-tuple. Therefore, the total number of choices
of ai and ci is given by (refer Theorem 2.2, [5])

q2m(b−1)
(Ã

j − 2mb+ 2m− 1
2m− 1

!
(q−1)2m−1+

2m−2X
i=0

(q−1)i
Ã
j − 2mb+ i

i

!
q2m−2−i

)
.

(4.5)
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The total choices of the coefficients dwip ’s in the expression (4.4) has
the same number as that of 2m-repeated bursts of length at most b in any
l − 1 or fewer sub-blocks (each of length t). So, the total choices of dwip ’s
is

Pl−1
s=0

¡f−1
s

¢⎧⎨⎩q2m(b−1)
½
(q − 1)2m(b−1)

¡t−2mb+2m
2m

¢
+
P2m−1

i=0 (q − 1)i
¡t−2mb+i

i

¢
q2m−1−i

¾
− 1

⎫⎬⎭
s

.

(4.6)

Thus, the total number of linear combinations in expression (4.4) is
given by

Expr.(4.5)×Expr.(4.6)

i.e.

q2m(b−1)
"¡j−2mb+2m−1

2m−1
¢
(q − 1)2m−1 +P2m−2

i=0 (q − 1)i
¡j−2mb+i

i

¢
q2m−2−i

#
×"Pl−1

s=0

¡f−1
s

¢⎧⎨⎩q2m(b−1)
½
(q − 1)2m(b−1)

¡t−2mb+2m
2m

¢
+
P2m−1

i=0 (q − 1)i
¡t−2mb+i

i

¢
q2m−1−i

¾
− 1

⎫⎬⎭
s#
.

(4.7)

Further, there are some linear combinations on R.H.S. of (3.3) which
are not included on R.H.S. of (4.4) and this number is

qm(b−1)
(¡t−mb+(m−1)

m−1
¢
(q − 1)m−1 +Pm−2

i=0

¡t−mb+i
i

¢
(q − 1)iqm−2−i

)
×

P2l−1
s=l

¡f−1
s

¢⎧⎨⎩qm(b−1)
"
(q − 1)m

¡t−mb+m
m

¢
+
Pm−1

i=0 (q − 1)i
¡t−mb+i

i

¢
qm−1−i

#
− 1

⎫⎬⎭
s

.

(4.8)

Therefore, the total number of linear combinations satisfying conditions
(i)− (iii) is

Expr.(4.7) +Expr.(4.8).
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Thus, we have

qr > q2m(b−1)
"¡j−2mb+2m−1

2m−1
¢
(q − 1)2m−1 +P2m−2

i=0 (q − 1)i
¡j−2mb+i

i

¢
q2m−2−i

#
×"Pl−1

s=0

¡f−1
s

¢⎧⎨⎩q2m(b−1)
½
(q − 1)2m(b−1)

¡t−2mb+2m
2m

¢
+
P2m−1

i=0 (q − 1)i
¡t−2mb+i

i

¢
q2m−1−i

¾
− 1

⎫⎬⎭
s#

+qm(b−1)
(¡t−mb+(m−1)

m−1
¢
(q − 1)m−1 +Pm−2

i=0

¡t−mb+i
i

¢
(q − 1)iqm−2−i

)
×

P2l−1
s=l

¡f−1
s

¢⎧⎨⎩qm(b−1)
"
(q − 1)m

¡t−mb+m
m

¢
+
Pm−1

i=0 (q − 1)i
¡t−mb+i

i

¢
qm−1−i

#
− 1

⎫⎬⎭
s

.

(4.9)

Replacing j by t in (4.9) gives the required result. 2

Corollary 4.5. (Upper Bound) There always exists an (n = ft, k) E2,b,lC-
code with (t > 4b) having r parity check digits provided that

qr >

⎡⎣q4(b−1)"¡t−4b+33

¢
(q − 1)3 +

X2

i=0
(q − 1)i

¡t−4b+i
i

¢
q4−2−i

)

×

⎧⎨⎩Pl−1
s=0

¡f−1
s

¢⎧⎨⎩q4(b−1)
½¡t−4b+4

4

¢
(q − 1)4+

X3

i=0
(q − 1)i

¡t−4b+i
i

¢
q4−1−i

¾
− 1

⎫⎬⎭
s⎤⎦

+

⎡⎣q2(b−1)((t− 2b+ 1)(q − 1) + 1)
⎧⎨⎩X2l−1

s=l

¡f−1
s

¢
×

∙
q2(b−1)

½¡t−2b+2
2

¢
(q − 1)2 +

¡t−2b+1
1

¢
(q − 1) + q

¾
− 1

¸s⎫⎬⎭
⎤⎦.

Remark 4.6. Take m = 2 and l = 1, the result (4.3) reduces to
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qr > q4(b−1)

⎧⎨⎩¡t−4b+33

¢
(q − 1)3 +

X2

i=0
(q − 1)i

¡t−4b+i
i

¢
q2−i

⎫⎬⎭
+q2(b−1)

(
(t− 2b+ 1)(q − 1) + 1

)
×

(f − 1)
∙
q2(b−1)

½¡t−2b+2
2

¢
(q − 1)2 +

¡t−2b+1
1

¢
(q − 1) + q

¾
− 1

¸
,

coinciding with Theorem 2, Dass and Madan [7].

Now, an example of an E2,b,lC code is provided below.

Example 4.7. Consider a (15, 4) linear code over GF (3) with the parity
check matrix H11×15 for Theorem 4.4 by choosing f = 3, t = 5, l = 2,
b = 1, m = 2.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 2
0 0 0 1 0 0 0 0 0 0 0 1 2 2 2
0 0 0 0 1 0 0 0 0 0 0 1 0 2 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 2 0 2
0 0 0 0 0 0 0 0 0 1 0 1 0 2 1
0 0 0 0 0 0 0 0 0 0 1 1 1 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This matrix is constructed by the synthesis procedure discussed in The-

orem 4.4. All the 7650 syndromes of the errors from the set E2,1,2 are
nonzero and distinct altogether (verified by MS-EXCEL). Therefore, this
E2,1,2C-code code can correct 2 or less corrupted sub-blocks affected by
errors from the set E2,1,2.
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