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1. Introduction

In the last two decades, the study of algebraic structures using the proper-
ties of graphs has emerged as an exciting area of research. This study began
way back in 1988 with Istvan Beck establishing a correspondence between
the theory of graph and ring theory. In his paper [18], Beck introduced
the notion of coloring of a commutative ring by defining the zero-divisor
graph of a commutative ring. The various properties of the graph defined
by I. Beck is extensively studied by different authors [2, 3, 4, 7, 8] in the
following years. Motivated by the idea of zero divisor graph, researchers
have associated graphs with different algebraic structures in various ways.
Some of them are regular graph of a ring, total graph of a ring, unit graph
of a ring, the inclusion ideal graph of a ring, the nil-graph of ideals of
commutative ring and co-maximal graph of a ring etc. In the study of the
graphs constructed out of different algebraic structures like rings, modules
etc, researchers mostly study the interplay between the algebraic properties
and the graph theoretical properties of the graphs.

Among the graphs mentioned above, the concept of total graph of com-
mutative ring was introduced by Anderson et al.[6] in 2008. For a commu-
tative ring R, they defined this graph as the undirected graph with R as
the vertex set and if x and y are any two vertices then they are adjacent if
and only if x+ y ∈ Z(R), where Z(R) denotes the set of zero divisors of R.
Different properties of this graph are investigated by many authors [9, 10]
and also the study of several other variants of the total graph are found
in the literature [1, 5, 10, 13, 21, 22]. The total graph defined on various
algebraic structures involves both the operations associated with the struc-
ture instead of only multiplication, which is the case for zero-divisor graph
and so the study of total graphs of various algebraic structures reveal more
of the important properties than the study of zero-divisor graph. In [21]
the authors have introduced the notion of total graph of a module with
respect to singular submodule. For a commutative ring R with unity and
an R-module M they define the total graph of M with respect to singular
submodule Z(M) of M as an undirected graph with vertex set M and any
two distinct vertices x and y are adjacent if and only if x+ y ∈ Z(M).

The theory of semiring was first introduced by H. S. Vandiver in 1934
[24]. In recent development of theory, semiring has achieved an importance
as it has got many applications in different areas like combinatorics and
graph theory, Euclidean geometry and topology, functional analysis, au-
tomata and formal language, mathematical modeling of quantum physics,
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probability theory etc. Various graphs related to semirings have been stud-
ied recently. Also, the notion of various graphs like zero-divisor graphs and
total graphs related to ring and module has been extended to semiring and
this area of research is also growing rapidly. S.E. Atani has studied the
zero divisor graph and total graph of commutative semiring in his papers
[11, 12] and some other variants of total graph of semiring are investigated
by many authors [14, 15, 16, 17, 23].

In this paper we define the total graph of a commutative semiring S with
respect to the singular ideal Z(S). This graph is defined as the undirected
graph T (Γ(S)) with S as the vertex set and two vertices x and y(x 6= y)
are adjacent if x+y ∈ Z(S). We characterize this graph and also study the
interplay between algebraic properties of S and graph theoretic properties
of T (Γ(S)). For any subset A of S, the induced subgraph of T (Γ(S)) with
all elements of A as vertices is denoted by T (Γ(A)). We discuss some
characteristics of two induced subgraphs T (Γ(Z(S))) and T (Γ(Z(S))) of
this graph where Z(S) = S \ Z(S).

2. Preliminaries

In this section, we present some basic definitions and notations which will
be used in the subsequent sections. General references for graph theory
and semiring theory are [19] and [20] respectively.

Let G be a simple graph. G is said to be connected if every pair of
distinct vertices are connected by a path. If no two vertices of G are
adjacent then G is called totally disconnected. The graph G is called a
complete graph if every pair of distinct vertices are adjacent. A complete
graph with n vertices is denoted by Kn. The graph G is said to be acyclic
if it has no cycles. If G is a connected acyclic graph then it is called a tree.
G is called a star graph if it is a tree of order n with maximum diameter
2. For any two distinct vertices x and y of G, the distance between x and
y is the length of a shortest path connecting x and y which is denoted by
d(x, y). d(x, y) =∞ if no such path exists. The diameter diam(G) of G is
defined as diam(G) = sup{d(x, y) | x and y are vertices of G }. The girth,
gr(G) of G is the length of a shortest cycle in G, if G contains a cycle;
otherwise gr(G) =∞.

A graph H is said to be an induced subgraph of G if the vertex set of H
is a subset of the vertex set of G and two vertices are adjacent in H if and
only if they are adjacent in G. Two (induced) subgraphs H1 and H2 of G
are said to be disjoint if the vertices of H1 are different from the vertices of
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H2 and no vertex of H1 (respectively, H2) is adjacent (in G) to any vertex
not in H1 (respectively, H2).

A semiring is a non-empty set S together with two binary operations
+ and · such that (S,+) is a commutative monoid with identity element
0 and (S, ·) is a monoid with identity 1, furthermore multiplication dis-
tributes over addition from either side and 0 is multiplicatively absorbing.
A semiring S is said to be a commutative if (S, ·) is a commutative monoid.

An ideal of a commutative semiring S is a non-empty subset I of S such
that a + b ∈ I and as ∈ I for a, b ∈ I, s ∈ S. An ideal I of a semiring S
is called a k−ideal (subtractive ideal) if and only if x ∈ I and x + y ∈ I
imply y ∈ I. An ideal I of a semiring S is said to be an essential ideal if
I ∩K 6= 0 for every nonzero ideal K of S.

The singular ideal Z(S) of a commutative semiring S is defined as
Z(S) = {s ∈ S | sK = 0 for some essential ideal K of S}. Z(S) denotes
the complement of Z(S), i.e. Z(S) = S \ Z(S).

3. On the graph T (Γ(S)) of a commutative semiring S

Throughout this section S represents a commutative semiring with nonzero
identity and Z(S) denotes the singular ideal of S. In this section, we
discuss the characteristics of this total graph T (Γ(S)) and also characterize
some important properties of the two induced subgraphs T (Γ(Z(S)) and
T (Γ(Z(S)) of this graph.

Proposition 3.1. The singular ideal Z(S) of a commutative semiring S is
a k-ideal.

Proof. Let x ∈ Z(S) and x + y ∈ Z(S) for some x, y ∈ S. As Z(S) is
the singular ideal, there exist essential ideals I, J of S such that xI = 0 and
(x+ y)J = 0. Since the intersection of two essential ideals of a semiring is
again an essential ideal, we have I ∩ J is essential in S. Let K = I ∩ J ,
then obviously xK = 0 and (x + y)K = 0. From this we get yK = 0 and
this implies that y ∈ Z(S). Hence Z(S) is a k-ideal of S.

2

Theorem 3.2. For s ∈ Z(S), 2 ∈ Z(S) if and only if 2s ∈ Z(S).

Proof. Let 2 ∈ Z(S) and s ∈ Z(S), then as Z(S) is an ideal of S so
2s ∈ Z(S).
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Conversely, we suppose that 2s ∈ Z(S) for s ∈ Z(S). Now, 1 /∈ Z(S)
for if 1 ∈ Z(S) then 1.I = 0 for some essential ideal I of S which implies
that 0 is essential in S and this is not possible. So we have 1 ∈ Z(S) and
hence 2 ∈ Z(S).

2

Theorem 3.3. The induced subgraph T (Γ(Z(S)) of T (Γ(S)) is complete
and T (Γ(Z(S)) is disjoint from T (Γ(Z(S)).

Proof. 1st part of the theorem follows directly from the definition.

2nd Part:
If possible we suppose that the graphs T (Γ(Z(S)) and T (Γ(Z(S)) are

not disjoint. Then we must have s1 + s2 ∈ Z(S) for some s1 ∈ Z(S) and
s2 ∈ Z(S). As Z(S) is a k-ideal we get s2 ∈ Z(S) which is a contradiction.
So our supposition is wrong. Hence T (Γ(Z(S)) is disjoint from T (Γ(Z(S)).

2

Example 3.1. Let S = {0, x, 1, a} where {0, x, 1} is a linearly ordered
lattice with 0 ≤ x ≤ 1. Also a2 = 0, 2a = a, xa = a, x + a = x and
1 + a = 1. Then S forms a semiring.

The singular ideal of S is Z(S) = {0, a}. The graph T (Γ(S)) is as given
in figure 1.

In the example 3.1., we can see that T (Γ(Z(S))) is a complete induced
subgraph of T (Γ(S)) and T (Γ(Z(S))) is disjoint from T (Γ(Z(S))).

pc
f-1
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Remark: Theorem 3.3. gives us a complete description of the induced
subgraph T (Γ(Z(S)) of T (Γ(S)) and so in the next part of this section we
discuss the induced subgraph T (Γ(Z(S)) of T (Γ(S)).

Theorem 3.4. Let s1, s2 (s1 6= s2) are vertices of T (Γ(Z(S)) such that
they are connected by a path. If s1 and s2 are not adjacent, then between
s1 and s2 there is a path in the graph T (Γ(Z(S)) of length at most 2. In
particular, if T (Γ(Z(S))) is connected, then diam(T (Γ(Z(S)))) ≤ 2.

Proof. Let us consider the vertices r, s, t, u of T (Γ(Z(S)) such that they
are distinct. It serves our purpose if we can show that if there is a path
r− s− t− u from r to u, then the vertices r to u are adjacent. Since there
is a path r−s− t−u from r to u in T (Γ(Z(S)), so r+s, s+ t, t+u ∈ Z(S).
This implies r + s+ t+ u ∈ Z(S) as Z(S) is an ideal. Again as Z(S) is a
k-ideal of S we have r+u ∈ Z(S). Hence r and u are adjacent, as required.
Again if T (Γ(Z(S))) is connected, then clearly diam(T (Γ(Z(S)))) ≤ 2. 2

Theorem 3.5. The following hold:

(i) If 2 ∈ Z(S), then T (Γ(Z(S)) is the union of disjoint complete subgraphs.

(ii) If 2 /∈ Z(S), then T (Γ(Z(S)) is the union of totally disconnected sub-
graphs and some connected subgraphs.

(i) Here 2 ∈ Z(S). Let s ∈ Z(S). We consider the set s + Z(S). As
Z(S) is a k-ideal of S so for any a ∈ Z(S), s + a ∈ Z(S) and hence
s + Z(S) ⊆ Z(S). Now as 2 ∈ Z(S) so by Theorem 3.2., for s ∈ Z(S),
2s ∈ Z(S). We take a, b ∈ Z(S). Then s + a, s + b ∈ s + Z(S) and
(s + a) + (s + b) = 2s + (a + b) ∈ Z(S). This implies that the subgraph
T (Γ((s+Z(S)))) of T (Γ(Z(S))) with vertex set s+Z(S) is a complete sub-
graph. Now if for any two distinct r, s ∈ Z(S), r + Z(S) and s+ Z(S) are
disjoint then clearly the induced subgraphs with the vertex sets r + Z(S)
and s+Z(S) are also disjoint. If for some r, s ∈ Z(S), r+Z(S) and s+Z(S)
are not disjoint, then we get r + a ∈ r + Z(S) and s + b ∈ s + Z(S) such
that (r+a)+(s+ b) ∈ Z(S) for some a, b ∈ Z(S). Then r+ s ∈ Z(S) since
Z(S) is a k-ideal. This implies that for any elements r + z1 ∈ r + Z(S)
and s + z2 ∈ s + Z(S), (r + z1) + (s + z2) ∈ Z(S), i.e. each vertex of
r + Z(S) is adjacent to each vertex of s + Z(S) and so the induced sub-
graph of T (Γ(Z(S))) with vertex set (r + Z(S)) ∪ (s+ Z(S)) is complete.
Thus we get that the graph T (Γ(Z(S))) is the union of disjoint complete
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subgraphs.

(ii) Here 2 /∈ Z(S). We consider an element s ∈ Z(S). Now we show that
the induced subgraph with vertex set s+Z(S) of the graph T (Γ(Z(S))) is
totally disconnected. If possible we suppose that this induced subgraph is
not totally disconnected. Then there exist s+a, s+ b ∈ s+Z(S) such that
they are adjacent. Which implies (s+a)+(s+b) ∈ Z(S) i.e. 2s+a+b ∈ Z(S)
and since Z(S) is a k-ideal we have 2s ∈ Z(S). But this is a contradiction
to the fact that 2 /∈ Z(S) as by Theorem 3.2, we have for s ∈ Z(S),
2s ∈ Z(S) implies that 2 ∈ Z(S). Thus we have, that the induced subgraph
of T (Γ(Z(S))) with vertex set s+ Z(S) is totally disconnected. Now if for
any two distinct r, s ∈ Z(S), the induced subgraphs with the vertex sets
r + Z(S) and s+ Z(S) are also disjoint then there is nothing to prove. If
for some r, s ∈ Z(S), r + Z(S) and s + Z(S) are not disjoint, then there
exist r+ a ∈ r+Z(S) and s+ b ∈ s+Z(S) for some a, b ∈ Z(S) such that
(r+a)+(s+b) ∈ Z(S). This implies r+s ∈ Z(S) as Z(S) is a k-ideal. From
this we get that for any elements r+ z1 ∈ r+Z(S) and s+ z2 ∈ s+Z(S),
(r+z1)+(s+z2) ∈ Z(S), i.e. each element of T (Γ(r+Z(S))) is adjacent to
each element of T (Γ(s+Z(S))) and so the induced subgraph of T (Γ(Z(S)))
with vertex set (r + Z(S)) ∪ (s + Z(S)) is connected. Hence we have, if
2 /∈ Z(S), then T (Γ(Z(S))) is the union of totally disconnected subgraphs
and some connected subgraphs. 2

Theorem 3.6. Let 2 /∈ Z(S). If the induced subgraph T (Γ(Z(S)) of
T (Γ(S)) is complete, then either |Z(S)| = 1 or 2.

Proof. Here 2 /∈ Z(S). Let us consider an element s ∈ Z(S). Then we
have shown in the proof of the Theorem 3.5. that the induced subgraph
T (Γ(s+Z(S))) of T (Γ(Z(S))) is totally disconnected. Also we have shown
that if for any two distinct r, s ∈ Z(S), the induced subgraphs with the
vertex sets r + Z(S) and s + Z(S) are not disjoint then each element of
T (Γ(r+Z(S))) is adjacent to each element of T (Γ(s+Z(S))). Now as the
graph T (Γ(Z(S))) is complete, so from the first case we have T (Γ(Z(S)))
is the complete graph K1 with one vertex. Thus |Z(S)| = 1. Again in
the second case T (Γ(Z(S))) is the complete graph with two vertex and so
|Z(S)| = 2. Thus we have if 2 /∈ Z(S) and T (Γ(Z(S))) is complete, then
either |Z(S)| = 1 or 2. 2
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Theorem 3.7.

(i) If 2 ∈ Z(S), then diam(T (Γ(Z(S)))) = 0, 1 or ∞.
(ii) If 2 /∈ Z(S), then diam(T (Γ(Z(S)))) = 0, 1, 2 or ∞.

(i) We take 2 ∈ Z(S). From Theorem 3.4. we have if T (Γ(Z(S))) is con-
nected then diam(T (Γ(Z(S)))) ≤ 2. Again by Theorem 3.5.(i) we have
T (Γ(Z(S))) is the union of disjoint complete subgraphs and so
diam(T (Γ(Z(S)))) 6= 2. Hence diam(T (Γ(Z(S)))) = 0, 1 or ∞.

(ii) Obvious from Theorem 3.4. 2

Theorem 3.8. diam(T (Γ(Z(S))) = 0 if and only if |Z(S)| = 1.

Proof. Let diam(T (Γ(Z(S))) = 0. Then clearly T (Γ(Z(S)) is the com-
plete graph K1 with one vertex, and so |Z(S)| = 1. Converse part is trivial.
2

Theorem 3.9. gr(T (Γ(Z(S))) ≤ 4 if T (Γ(Z(S)) contains a cycle. Other-
wise gr(T (Γ(Z(S))) =∞.

Proof. We suppose that T (Γ(Z(S)) contains a cycle. Then it is not pos-
sible that T (Γ(Z(S)) is totally disconnected. Now by the proof of Theorem
3.5., T (Γ(Z(S)) has either a complete subgraph or a complete bipartite
subgraph, which means it either contains a 3-cycle or contains a 4-cycle
and hence gr(T (Γ(Z(S))) ≤ 4. 2

Theorem 3.10. The following hold:

(i) gr(T (Γ(Z(S))) = 3 if and only if 2 ∈ Z(S) and |s+ Z(S)| ≥ 3 for some
s ∈ Z(S).

(ii) gr(T (Γ(Z(S))) = 4 if and only if 2 /∈ Z(S), s1 + s2 ∈ Z(S) and |s1 +
Z(S)|, |s2 + Z(S)| ≥ 2 for some s1, s2 ∈ Z(S).

Proof.

(i) If gr(T (Γ(Z(S))) = 3, then by Theorem 3.5. T (Γ(Z(S)) is a complete
graph Kα with α ≤ 3. Therefore, 2 ∈ Z(S) and |s + Z(S)| ≥ 3 for some
s ∈ Z(S). The converse part of (i) is obvious from Theorem 3.5.
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(ii) If gr(T (Γ(Z(S))) = 4, then by Theorem 3.5., T (Γ(Z(S)) has a complete
bipartite subgraph; which implies 2 /∈ Z(S) and s1 + s2 ∈ Z(S) for some
s1, s2 ∈ Z(S). Also it is clear that |s1+Z(S)|, |s2+Z(S)| ≥ 2. Conversely,
from Theorem 3.5., the graph with vertex set (s1+Z(S))∪ (s2+Z(S)) is a
complete bipartite subgraph of T (Γ(Z(S)). Again, |s1+Z(S)|, |s2+Z(S)| ≥
2 implies that gr(T (Γ(Z(S))) = 4. 2

Theorem 3.11. The following hold:

(i) gr(T (Γ(S))) = 3 if and only if |Z(S)| ≥ 3.
(ii) gr(T (Γ(S))) = 4 if and only if 2 /∈ Z(S), |Z(S)| < 3 and s1+s2 ∈ Z(S),
|s1 + Z(S)|, |s2 + Z(S)| ≥ 2 for some s1, s2 ∈ Z(S).

(iii) Otherwise, gr(T (Γ(S))) =∞.

Proof.

(i) We suppose that gr(T (Γ(S))) = 3. We know that T (Γ(Z(S))) is dis-
joint from T (Γ(Z(S))) which means that either gr(T (Γ(Z(S)))) = 3 or
gr(T (Γ(Z(S)))) = 3. If gr(T (Γ(Z(S)))) = 3 then clearly |Z(S)| ≥ 3.
Again if gr(T (Γ(Z(S)))) = 3, then by Theorem 3.10, |s + Z(S)| ≥ 3 for
some s ∈ Z(S) which implies that |Z(S)| ≥ 3. Conversely, |Z(S)| ≥ 3 im-
plies that gr(T (Γ(Z(S)))) = 3 and since T (Γ(Z(S))) is a complete induced
subgraph of T (Γ(S)), so gr(T (Γ(S))) = 3.

(ii) Let gr(T (Γ(S))) = 4. Since the induced subgraph T (Γ(Z(S))) of T (Γ(S))
is complete, so gr(T (Γ(Z(S))) = 3 or 1 and hence we must have gr(T (Γ(Z(S)))) =
4. Therefore by Theorem 3.10, we have 2 /∈ Z(S), s1 + s2 ∈ Z(S) and
|s1 + Z(S)|, |s2 + Z(S)| ≥ 2 for some s1, s2 ∈ Z(S). Again gr(T (Γ(S))) 6=
3 implies that |Z(S)| < 3. Conversely, using Theorem 3.10, we have
gr(T (Γ(Z(S)))) = 4. Again |Z(S)| < 3 implies that gr(T (Γ(Z(S)))) = ∞
i.e. gr(T (Γ(Z(S)))) can not be equal to 3. Hence gr(T (Γ(S))) = 4.

(iii) Obvious from definition. 2
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