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1. Introduction

As a standard notation, assume that G = G(V,E) is a finite, simple and
undirected graph with p vertices and q edges. A labeling of a graph is
any mapping that sends some set of graph elements to a set of numbers
(usually positive integers). if the domain is the vertex-set or the edge-set,
the labeling are called respectively vertex-labeling or edge labeling. If the
domain is V ∪ E then we call the labeling a total labeling. In many cases
it is interesting to consider the sum of all labels associated with a graph
element. This will be called the weight of element.
For a graph G we define a labeling φ : V ∪ E → {1, 2, ..., k} to be a total
k− labeling. A total k−labeling φ is defined to be an edge irregular to-
tal k−labeling of the graph G if for every two different edges uv and u0v0

their weights φ(u) + φ(uv) + φ(v) and φ(u0) + φ(u0v0) + φ(v0) are distinct.
Similarly a total k−labeling φ is defined to be an vertex irregular total
k−labeling of the graph G if for every two different vertices u and v their
weights wt(u) and wt(v) are distinct. Here, the weight of a vertex x in G
is the sum of the label of u and the labels of all edges incident with the
vertex u. The minimum k for which the graph G has an edge irregular
total k−labeling is called the total irregularity strength of G, denoted by
tes(G). Analogously, the minimum k for which the graph G has a vertex
irregular total k−labeling is called the total vertex irregularity strength of
G, denoted by tvs(G).

The total edge irregularity strength and total vertex irregularity strength
are invariant analogous to irregular assignments and the irregularity strength
of a graph G introduced by Chartrand et al. [11] and studied by numerous
authors, see [9, 13, 14, 16, 23]. The irregular assignment is a k−labeing
of the edge φ : E → {1, 2, ..., k} such that the sum of the labels of edges
incident with a vertex is different for all the vertices of G, and the smallest
k for which there is an irregular assignment is the irregularity strength,
denoted by s(G).

A simple lower bound for tes(G) and tvs(G) of a (p, q)−graph G in
terms of maximum degree ∆(G) and the minimum degree δ(G), determine
in the following theorems.

Theorem 1. [9] Let G be a (p, q)−graph with maximum degree∆ = ∆(G)
then tes(G) ≥ max

nl
q+2
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m
,
l
∆+1
2
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Theorem 2. [9] Let G be a (p, q)−graph with minimum degree δ = δ(G)
and maximum degree ∆ = ∆(G) then»

p+ δ

∆+ 1

¼
≤ tvs(G) ≤ p+∆− 2δ + 1

Ivančo and Jendroľ [15] posed the following conjecture:

Conjecture 1. Let G be an arbitrary graph different from K5. Then

tes(G) = max
nl

q+2
3

m
,
l
∆+1
2

mo
In [20] Nurdin et al. posed the following conjecture:

Conjecture 2. Let G be a connected graph having ni vertices of degree
i(i = δ, δ+1, δ+2, ...,∆), where δ and∆ are the minimum and the maximum
degree of G respectively. Then

tvs(G)= max

⎧⎨⎩
&

δ+nδ

δ+1

'
,

&
δ+nδ+nδ+1

δ+2

'
,...,
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δ+
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i=δ

ni

∆+1

⎤⎥⎥⎥
⎫⎬⎭.

Conjecture 1 has been for complete graphs and complete bipartite graphs
[16, 17], for the grid [19], for hexagonal grid graphs [5], for toroidal grid
[12], for generalized prism [10], for categorical product of two cycles [1], for
strong product of cycles and paths [6], for zigzag graphs [7] and for strong
product of two paths [3].
Conjecture 2 has been verified for trees [20], for circulant graphs [8].
Combining both total edge irregularity strength and total vertex irregular-
ity strength notions, Marzuki et al. [18] introduced a new irregular total
k-labeling of a graph G, which is required to be at the same time both
vertex and edge irregular. The minimum value of k for which such labeling
exist is called total irregularity strength of graph and is denoted by ts(G).
Besides that, they determined the total irregularity strength of cycles and
paths. Marzuki, et al. [18] given a lower bond of ts(G) as follows.

For every graph G, ts(G) ≥ max{tes(G), tvs(G)}(1.1)

Ramdani and Salman [21] showed that the lower bound in (1.1) for
some cartesian product graphs is tight. In [2], Ahmad et al. found the
exact value of total irregularity strength of generalized Petersen graph.
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2. The plane graph Dn

In [4] A. Ahmad et al. defined the plane graph Dn and found the vertex
irregular total labeling of cubic graphs. we have investigated the total
irregularity strength of plane graph, cross prism graph, Necklace graph
and goldberg snark graph.
Let Dn be a plane graph. The set of vertices and edges of the plane graph
Dn is given as followed.

V (Dn) = V {ai; bi; ci; di : 1 ≤ i ≤ n}

E(Dn) = {cici+1; bici; aibi; bidi; aidi; ai+1di : 1 ≤ i ≤ n}

where the subscript n+ 1 must be replaced by 1. In the next theorem we
determined the total irregularity strength of plane graphs Dn.

Theorem 3. Let Dn, n ≥ 3 be plane graph, Then ts(Dn) = 2n+ 1

pc
f-1
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Proof: Since |E(Dn)| = 6n, so from Theorem 1, tes(Dn) ≥ 2n + 1. Also
Dn has 4n vertices of degree 3, so from Theorem 2, we get tvs(Dn) ≥»
4n+3
4

¼
. From equation (1.1), we get ts(Dn) ≥ 2n + 1 Now we show that

ts(Dn) ≤ 2n+1. For this we define a total labeling φ from V (Dn)∪E(Dn)

into

½
1, 2, . . . , 2n+ 1} and compute the vertex weight and edge weight in

the following way.
For 1 ≤ i ≤ n,
φ(ci) = i, φ(bi) = 1, φ(ai) = n+ i, φ(di) = k, φ(bici) = i, φ(bidi) = n+ i,
φ(aidi) = n+1, φ(ai+1di) = k, wt(aidi) = 4n+2+ i, wt(bidi) = 3n+2+ i,
wt(bici) = 1 + 2i, wt(di) = 6n+ 3 + i,

wt(ai+1di) =

(
5n+ 3 + i, for 1 ≤ i ≤ n− 1
5n+ 3, for i = n

Case.1. when n is even

φ(cici+1) =

(
1, for 1 ≤ i ≤ n− 1
n+ 2, for i = n

φ(aibi) =

(
n, for i = 1
n+ 1, for 2 ≤ i ≤ n

wt(cici+1) =

(
2 + 2i, for 1 ≤ i ≤ n− 1
2n+ 3, for i = n

wt(aibi) =

(
2n+ 2, for i = 1
2n+ 2 + i, for 2 ≤ i ≤ n

wt(ai) =

(
5n+ 3, for i = 1
5n+ 3 + i, for 2 ≤ i ≤ n

wt(bi) =

(
2n+ 3, for i = 1
2n+ 2 + 2i, for 2 ≤ i ≤ n

wt(ci) =

⎧⎪⎨⎪⎩
n+ 5, for i = 1
2 + 2i, for 2 ≤ i ≤ n− 1
3n+ 3, for i = n

Case.2. when n is odd

φ(aibi) = n+ 1, wt(aibi) = 2n+ 2 + i,
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φ(cici+1) =

(
1, for 1 ≤ i ≤ n− 1
n+ 1, for i = n

wt(cici+1) =

(
2 + 2i, for 1 ≤ i ≤ n− 1
2n+ 2, for i = n

wt(bi) =

(
2n+ 4, for i = 1
2n+ 2 + 2i, for 2 ≤ i ≤ n

wt(ai) =

(
5n+ 4, for i = 1
5n+ 3 + i, for 2 ≤ i ≤ n

wt(ci) =

⎧⎪⎨⎪⎩
n+ 4, for i = 1
2 + 2i, for 2 ≤ i ≤ n− 1
3n+ 2, for i = n

It is easy to check that there are no two edges of the same weight and
there are no two vertices of the same weight. So φ is a totally irregular
total k−labeling. We conclude that ts(Dn) = 2n+ 1. Which complete the
proof.

3. The crossed prism graph Cn

In [4] A. Ahmad et al. defined the cross prism graph Cn and found the
vertex irregular total labeling of the cross prism graphs and is denoted by
Cn. The set of vertices and edges of Cn is given as followed.

V (Cn) = V {ai; bi : 1 ≤ i ≤ n}

E(Cn) = {aiai+1; bibi+1; aibi+1; aibi−1 : 1 ≤ i ≤ n} ∪ {a1bn; anb1}.

In the next theorem we determined the total irregularity strength of
crossed prism graphs Cn.
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Theorem 4. Let Cn, n ≥ 4 and n is even be a crossed prism graph, Then
ts(Cn) = n+ 1

Proof: Since |E(Cn)| = 3n, so from Theorem 1, tes(Cn) ≥ n + 1. Also
Cn has 2n vertices of degree 3, so from Theorem 2, we get tvs(Cn) ≥»
2n+3
4

¼
. From equation (1.1), we get ts(Cn) ≥ n + 1 Now we show that

ts(Cn) ≤ n + 1 For this we define a total labeling φ from V (Cn) ∪ E(Cn)

into

½
1, 2, . . . , n + 1} and compute the vertex weight and edge weight in

the following way.

Let k = n+ 1 and 1 ≤ i ≤ n.

φ(bi) = 1, φ(ai) = k, φ(bibi+1) = i, φ(aiai+1) = i, φ(a1bn) = 2, φ(anb1) = 1,
wt(bibi+1) = 2 + i, wt(aiai+1) = 2n+ 2+ i, wt(ai) = n+ 2+ i, wt(a1bn) =
n+ 4, wt(anb1) = n+ 3,

pc
f-2
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Case.1. when i is odd

φ(aibi−1) = n+ 3− i, 3 ≤ i ≤ n− 1,
wt(aibi−1) = 2n+ 5− i, 3 ≤ i ≤ n− 1,
wt(bi) = 2n+ 3 + i, 1 ≤ i ≤ n− 1,

Case.2. when i is even

φ(aibi+1) = n+ 1− i, 2 ≤ i ≤ n− 2,
wt(bi) = 2n+ 1 + i, 2 ≤ i ≤ n,
wt(aibi+1) = 2n+ 3− i, 2 ≤ i ≤ n− 2,

It is easy to check that there are no two edges of the same weight and there
are no two vertices of the same weight. So φ is a totally irregular total
k−labeling. We conclude that ts(Cn) = n+ 1. Which complete the proof.

4. The necklace graph Nn

In [4] A. Ahmad et al. defined the necklace graph Nn and found the vertex
irregular total labeling of Nn. The necklace graph has 2n+ 3 vertices and
having the vertex set and the edge set as follows.

V (Nn) = V {ai : 1 ≤ i ≤ n} ∪ {bj : 2 ≤ j ≤ n− 1}

E(Nn) = {aiai+1 : 1 ≤ i ≤ n−1}∪{bjbj+1 : 2 ≤ i ≤ n−2}∪{aibj : 2 ≤ i, j ≤ n−1 :}

∪{a1an, a1b2, anbn−1}

where the subscript n+ 1 must be replaced by 1.
In the next theorem we determined the total irregularity strength of neck-
lace graph Nn.
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Theorem 5. Let Nn, n ≥ 4 be necklace graph, Then ts(Nn) = n.

Proof: Since |E(Nn)| = 3n− 3, so from Theorem 1 tes(Nn) ≥ n. Also Nn

has 2n−2 vertices of degree 3, so from Theorem 2, we get tvs(Nn) ≥ d2n+14 e.
From equation (1.1), we get ts(Nn) ≥ n. Now we show that ts(Nn) ≤ n.

For this we define a total labeling φ from V (Nn)∪E(Nn) into

½
1, 2, . . . , n}

and compute the vertex weight and edge weights in the following way.
φ(bjbj+1) = j, 2 ≤ j ≤ n− 2
φ(aibj) = n+ 2− i, 2 ≤ i, j ≤ n− 1
φ(bj) = 1, 2 ≤ j ≤ n− 1,
φ(a1an) = 2, φ(anbn−1) = 1, φ(a1b2) = 1,

φ(aiai+1) =

(
1 + i, for 1 ≤ i ≤ n− 3
n, for i = n− 2, n− 1

φ(ai) =

⎧⎪⎨⎪⎩
1, for i = 1
n, for 2 ≤ i ≤ n− 1
n− 1, for i = n

wt(bjbj+1) = 2 + j, 2 ≤ j ≤ n− 2
wt(aibj) = 2n+ 3− i, 2 ≤ i, j ≤ n− 1,
wt(a1b2) = 3, wt(a1an) = n+ 2, wt(anbn−1) = n+ 1,

wt(aiai+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 3, for i = 1
2n+ 1 + i, for 2 ≤ i ≤ n− 3
3n, for i = n− 2
3n− 1, for i = n− 1

pc
f-3
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wt(ai) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

6, for i = 1
2n+ 3 + i, for 2 ≤ i ≤ n− 3
3n+ 2, for i = n− 2
3n+ 3, for i = n− 1
2n+ 2, for i = n

wt(bj) =

(
n+ 2 + j, for 2 ≤ j ≤ n− 2
n+ 3, for j = n− 1

It is easy to check that there are no two edges of the same weight and there
are no two vertices of the same weight. So φ is a totally irregular total
k−labeling. We conclude that ts(Nn) = n. Which complete the proof.

5. The goldberg snark graph Gn

The goldberg snark graph Gn is a 3 regular graph with 12n vertices denoted
by Gn is a graph with the vertex set and the edge set as follows.

V (Gn) = V {ai; bi; ci; di; ei; fi; gi;hi; 1 ≤ i ≤ n}

E(Gn) = {aiai+1; ei+1fi; gihi+1; aibi; bici; bidi; ciei; difi; eifi; cigi; dihi; gihi1 ≤
i ≤ n}

where the subscript n+ 1 must be replaced by 1.
In the next theorem we determined the total irregularity strength of gold-
berg snark graph Gn.
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Theorem 6. Let Gn, n ≥ 3 be goldberg snark graph, Then ts(Gn) =»
12n+2
3

¼
= 4n+ 1.

Proof: Since |E(Gn)| = 12n, so from Theorem 1, tes(Gn) ≥ 4n+ 1. Also
Gn has 8n vertices of degree 3, so from Theorem 2, we get tvs(Gn) ≥»
8n+3
4

¼
. From equation (1.1), we get ts(Gn) ≥ 4n + 1. Now we show that

ts(Gn) ≤ 4n+1. For this we define a total labeling φ from V (Gn)∪E(Gn)

into

½
1, 2, . . . , 4n+ 1} and compute the vertex weight and edge weights in

the following way.
Let k = 4n+ 1 and 1 ≤ i ≤ n,

φ(ai) = k, φ(bi) = k, φ(ci) = 2n − 1 + 2i, φ(di) = 2n + 2i, φ(ei) = 1,
φ(fi) = 1, φ(gi) = 2n+1, φ(hi) = 2n+1, φ(aiai+1) = k−i, φ(aibi) = 2n+i,
φ(bici) = 2n + 1, φ(bidi) = 2n + 1, φ(ciei) = 1, φ(difi) = 1, φ(cigi) = 1,
φ(dihi) = 1,

pc
f-4
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φ(eifi) =

(
2, for i = 1
2i− 1, for 2 ≤ i ≤ n

φ(gihi) =

(
2n+ 2, for i = 1
2n− 1 + 2i, for 2 ≤ i ≤ n

φ(ei+1fi) =

(
1, for i = 1
2i, for 2 ≤ i ≤ n

φ(gihi+1) =

(
2n+ 1, for i = 1
2n+ 2i, for 2 ≤ i ≤ n

wt(bi) = 10n+3+i, wt(ci) = 4n+2+2i, wt(di) = 4n+3+2i, wt(fi) = 1+4i,
wt(gi) = 6n + 1 + 4i, wt(aiai+1) = 3k − i, wt(aibi) = 2k + 2n + i,
wt(bici) = k + 4n+ 2i, wt(bidi) = k + 4n+ 1 + 2i, wt(ciei) = 2n+ 1 + 2i,
wt(difi) = 2n+ 2 + 2i, wt(cigi) = 4n+ 1 + 2i, wt(dihi) = 4n+ 2 + 2i,

wt(eifi) =

(
4, for i = 1
2i+ 1, for 2 ≤ i ≤ n

wt(gihi) =

(
6n+ 4, for i = 1
6n+ 1 + 2i, for 2 ≤ i ≤ n

wt(ei+1fi) =

(
3, for i = 1
2 + 2i, for 2 ≤ i ≤ n

wt(gihi+1) =

(
6n+ 3, for i = 1
6n+ 2 + 2i, for 2 ≤ i ≤ n

wt(ai) =

(
13n+ 3, for i = 1
14n+ 4− i, for 2 ≤ i ≤ n

wt(ei) =

⎧⎪⎨⎪⎩
2n+ 4, for i = 1
6, for i = 2
4i− 1, for 3 ≤ i ≤ n

wt(hi) =

⎧⎪⎨⎪⎩
8n+ 4, for i = 1
6n+ 6, for i = 2
6n− 1 + 4i, for 3 ≤ i ≤ n

It is easy to check that there are no two edges of the same weight and
there are no two vertices of the same weight. So φ is a totally irregular

total k−labeling. We conclude that ts(Gn) =

»
12n+2
3

¼
. Which complete

the proof.
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