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574 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

1. Introduction

Cooray and Ananda [5] study the generalized half-normal (GHN) distri-
bution. A random variable X is said to have the generalized half-normal
distribution, denoted as X ∼ GHN(σ, α), if its probability density function
(pdf) is given by

f(x;σ,α) =
2α

σα
xα−1φ

∙µ
x

σ

¶α¸
, x > 0,(1.1)

and its cumulative distribution function (cdf) is

F (x;σ, α) = 2Φ

∙µ
x

σ

¶α¸
− 1,(1.2)

where σ > 0 is a scale parameter, α > 0 is a shape parameter and φ(·) and
Φ(·) are the pdf and cdf of the standard normal distribution. The classical
half-normal distribution (Hogg and Tanis, [7]) is obtained as a special case
when α = 1.

In this article we use the transmutation map approach suggested by
Shaw and Buckley [13] to define a new distribution that extends the gen-
eralized half-normal distribution. We will call the generalized distribution
as the transmuted generalized half-normal distribution.

Definition 1.1. A random variable X is said to have transmuted distri-
bution if its pdf is given by

g(x) = f(x) [1 + λ− 2λF (x)](1.3)

and its cdf is given by

G(x) = (1 + λ)F (x)− λF 2(x),(1.4)

where |λ| ≤ 1 is a shape parameter and f(x) and F (x) are the pdf and cdf
of the base distribution, respectively.

Observe that at λ = 0 we have the distribution of the base random vari-
able. Aryal and Tsokos [2] studied the transmuted Gumbel distribution;
Aryal and Tsokos [9] studied the transmuted Weibull distribution; Merovci
[10] studied the transmuted Rayleigh distribution; Merovci [10] studied the
transmuted generalized Rayleigh distribution.

The rest of the paper is organized as follows: In Section 2 we propose
the new distribution and investigate its properties. Section 3 discusses the
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A new type of generalized closed set via γ-open set 575

maximum likelihood estimation for the parameters. In addition, simulation
studies are performed. Section 4 gives a real data application and reports
the results. Section 5 concludes our work.

2. Transmuted generalized half-normal distribution

In this section, we present the pdf and cdf of the new distribution. In
addition, we derive an analytical expression for distributional moments and
use this result to calculate the skewness and kurtosis coefficients.

2.1. Pdf and cdf

In this subsection we present the pdf and cdf of the transmuted generalized
half-normal distribution. We replace (1) and (2) into (3) to obtain the pdf
of the new distribution. The respective cdf is obtained replacing (2) into
(4).

Definition 2.1. A random variable X follows a transmuted generalized
half-normal (TGHN) distribution, denoted as X ∼ TGHN(σ, α, λ), if its
probability density function (pdf) is given by

f(x;σ, α, λ) =
2α

σα
xα−1φ

∙µ
x

σ

¶α¸½
1 + 3λ− 4λΦ

∙µ
x

σ

¶α¸¾
, x > 0,

(2.1)

and its cumulative distribution function (cdf) is given by

F (x;σ, α, λ) =

½
2Φ

∙µ
x

σ

¶α¸
− 1

¾½
1 + 2λ− 2λΦ

∙µ
x

σ

¶α¸¾
,(2.2)

where σ > 0 is a scale parameter and α > 0 and |λ| < 1 are shape pa-
rameters and φ(·) and Φ(·) are the pdf and cdf of the standard normal
distribution.

Note that the classical half-normal distribution and the generalized half-
normal distribution are special cases of the transmuted generalized half-
normal distribution. More specifically, if X ∼ TGH(σ, α, λ), then

1. For λ = 0 we obtain

f(x;σ, α) =
2α

σα
xα−1φ

µµ
x

σ

¶α¶
,(2.3)

which is the generalized half-normal law (Cooray and Ananda [5]).
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576 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

2. For λ = 0 and α = 1 we obtain

f(x;σ) =
2

σ
φ

µ
x

σ

¶
,(2.4)

which is the half-normal law (Hogg and Tanis [7]).

Figure 1 illustrates some of the possible shape of the pdf and cdf of a
transmuted generalized half-normal distribution for selected values of the
parameters σ, α and λ.

Figure 1. Pdf and cdf for a transmuted generalized half-normal
distribution.

Marisol Martínez
tabla-1
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2.2. Transformations

Next, we present some transformations related to TGHN distributions.

Proposition 2.1. Let X ∼ TGHN(σ, α, λ). Then,

a) W = aX ∼ TGHN(aσ, α, λ) for all a > 0,

b) The pdf of W = X−1 is

f(w;σ, α, λ) =
2α

σαwα+1
φ

µ
1

σαwα

¶ ∙
1 + 3λ− 4λΦ

µ
1

σαwα

¶¸
,

c) The pdf of W = log(X) is given by

f(w;σ, α, λ) =
2α

σα
ew(α−1)φ

µµ
ew

σ

¶α¶ ∙
1 + 3λ− 4λΦ

µµ
ew

σ

¶α¶¸
.

Proof. Parts a) − c) are directly obtained from the change-of-variable
method. More details in Appendix.

Remark 1. Part a) of Proposition 2.1 indicates that the TGHN distribu-
tions belong to the scale family, Part b) shows that these distributions are
not closed under reciprocation, while the result in Part c) can be used to
study regression models in same lines as in the context of regression models
for positive random variables; see McDonald and Butler [8]. In addition,
Part a) allows us to obtain a two parameter TGHN distribution. That is,
if X ∼ TGHN(σ, α, λ), then X/σ ∼ TGHN(1, α, λ).

2.3. Related distribution

The following corollary is a direct consequence of f-tghn and is obtained as
an extension of a particular case of the generalized half-normal distribution.

Corollary 2.1. Let X ∼ TGHN(σ, 1, λ). Then X follows a THN(σ, λ)
transmuted half-normal distribution, whose probability density function is
given by

f(x;σ, λ) =
2

σ
φ

µ
x

σ

¶µ
1 + 3λ− 4λΦ

µ
x

σ

¶¶
, x > 0,(2.5)

where σ > 0 is a scale parameter, |λ| ≤ 1 is a shape parameter and φ and
Φ are the pdf and cdf of the standard normal distribution, respectively.
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2.4. Reliability analysis

The reliability function RT (t), which is the probability of an item not failing
prior to some time t, is defined by RT (t) = 1 − FT (t). The reliability
function of a transmuted generalized half-normal distribution is given by

RT (t) = 1−
½
2Φ

∙µ
t

σ

¶α¸
− 1

¾½
1 + 2λ− 2λΦ

∙µ
t

σ

¶α¸¾
.

An interesting characteristic of a random variable is its hazard rate function
defined by hT (t) =

fT (t)
1−FT (t) which is an important quantity in the life-time

analysis of a certain phenomenon. It can be loosely interpreted as the
conditional probability of failure at time t, given it has survived to time t.
The hazard rate function for a transmuted generalized half-normal random
variable is given by

hT (t) =

2α
σα t

α−1φ
h¡

t
σ

¢αi n
1 + 3λ− 4λΦ

h¡
t
σ

¢αio
1−

n
2Φ

h¡
t
σ

¢αi− 1on1 + 2λ− 2λΦ h¡ tσ ¢αio .
Figure 2 displays some plots of the reliability function and the hazard rate
function of a TGHN distribution for different values of its parameters.
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A new type of generalized closed set via γ-open set 579

Figure 2. Reliability and hazard rate function for a transmuted
generalized half-normal distribution.

2.5. Moment and related measures

In this subsection, analytical expression for the r-th moment is derived.
In addition, we use this result to calculate the mean, variance and the
skewness and kurtosis coefficients.

Marisol Martínez
tabla-2
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580 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

Proposition 2.2. Let X ∼ TGHN(σ, α, λ). Then, for r = 1, 2, ... it fol-
lows that r-th moment is given by

µr = E(Xr) = 2σrar,(2.6)

where ar is defined as

ar =

Z ∞
0

ur/αφ(u)[1 + 3λ− 4λΦ(u)] du.(2.7)

Proof. Using the defining moments, the r-th moment is given by

E(Xr) =

Z ∞
0

xr
2α

σα
xα−1φ

∙µ
x

σ

¶α¸½
1 + 3λ− 4λΦ

∙µ
x

σ

¶α¸¾
dx,

and by letting u =
¡
x
σ

¢α
, the result is obtained.

Corollary 2.2. Let X ∼ TGHN(σ,α, λ). Then, the mean and variance
are respectively

E(X) = 2σa1 and V ar(X) = 2σ2
³
a2 − 2σa21

´
.

Corollary 2.3. Let X ∼ TGHN(σ, α, λ). Then, the skewness (
√
β1) and

kurtosis (β2) coefficients are respectively

p
β1 =

a3 − 6a1a2 + 8a31√
2
¡
a2 − 2a21

¢3/2 and β2 =
a4 − 8a1a3 + 24a21a2 − 24a41

2
¡
a2 − 2a21

¢2 .

Remark 2. If λ = 0 and α = 1 the skewness and kurtosis coefficients
of the TGHN distribution take the approximate values 0.995 and 3.869,
respectively, which correspond to those for the half-normal distribution. If
λ = 0 the asymmetry and kurtosis coefficients of the TGHN distribution
take the values.
√
β1GHN =

Γ( 3
2α
+ 1
2)−

3√
π
Γ( 1

2α
+ 1
2)Γ(

1
α
+ 1
2)+

2
π
Γ3( 1

2α
+ 1
2)

1
π3

h
Γ( 1α+

1
2)−

1√
π
Γ2( 1

2α
+ 1
2)
i3/2

and

β2GHN =
Γ( 2α+

1
2)−

4√
π
Γ( 1

2α
+ 1
2)Γ(

3
2α
+ 1
2)+

6
π
Γ2( 1

2α
+1
2)Γ(

1
2α
+1
2)−

3

π3/2
Γ4( 1

2α
+ 1
2)

1√
π

h
Γ( 1α+

1
2)−

1√
π
Γ2( 1

2α
+ 1
2)
i2 ,

respectively, which correspond to those for the generalized half-normal dis-
tribution. Figure 3 depict graphic representations for the asymmetry and
kurtosis coefficients, respectively, of the TGHN distribution for different
values of the α and λ.
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A new type of generalized closed set via γ-open set 581

Figure 3. Skewness and kurtosis coefficients for a transmuted generalized
half-normal distribution.

2.6. Order statistics

In statistics, the j-th order statistical of a sample is equal to its j-th-smallest
value. Together with rank statistics, order statistics are among the most
fundamental tools in non-parametric statistics and inference. For a sample
of size n, the n-th order statistics (or, the largest order statistic) is its
maximum, that is,

X(n) = max{X1,X2, ...,Xn}.
Similarly, X(1) = min{X1,X2, ...,Xn} is the minimum of the sample.

The sample range is the difference between the maximum and the min-
imum in the sample. It is clearly a function of the order statistics:

Range{X1,X2, ...,Xn} = X(n) −X(1).

It is well known that if X(1) ≤ X(2) ≤ ... ≤ X(n) denotes the order statistics
of a random sample X1,X2, ...,Xn from a continuous population with cdf
FX(x) and pdf fX(x) then, the pdf of X(j) is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
f(x) [F (x)]j−1 [1− F (x)]n−j ,

for j = 1, 2, ..., n. Therefore the pdf of the j-th order statistics for a trans-
muted half-normal distribution is given by

Marisol Martínez
table-3
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582 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

fX(j)
(x) =

2n!α

(j − 1)!(n− j)!σα
xα−1φ

∙µ
x

σ

¶α¸½
1 + 3λ− 4λΦ

∙µ
x

σ

¶α¸¾

×
½
2Φ

∙µ
x

σ

¶α¸
− 1

¾j−1 ½
1 + 2λ− 2λΦ

∙µ
x

σ

¶α¸¾j−1

×
∙
1−

½
2Φ

µµ
x

σ

¶α¶
− 1

¾½
1 + 2λ− 2λΦ

µµ
x

σ

¶α¶¾¸n−j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(2.8)

Thus, the pdf the largest order statistics X(n) is given by

fX(n)
(x) =

2nα

σα
xα−1φ

∙µ
x

σ

¶α¸½
1 + 3λ− 4λΦ

∙µ
x

σ

¶α¸¾

×
½
2Φ

∙µ
x

σ

¶α¸
− 1

¾n−1 ½
1 + 2λ− 2λΦ

∙µ
x

σ

¶α¸¾n−1
and the pdf of the smallest order statistics X(1) is given by

fX(1)
(x) =

2nα

σα
xα−1φ

∙µ
x

σ

¶α¸½
1 + 3λ− 4λΦ

∙µ
x

σ

¶α¸¾

×
∙
1−

½
2Φ

µµ
x

σ

¶α¶
− 1

¾½
1 + 2λ− 2λΦ

µµ
x

σ

¶α¶¾¸n−1

3. Inference

In this section we discuss moment and maximum likelihood estimations
for the parameters σ, α and λ of the TGHN distribution. In addition, we
present the observed information matrix for the TGHN distribution and
conduct a simulation study toillustrate the behavior of maximum likelihood
estimates (MLE).

3.1. Moment estimation

The following proposition presents an analytical expression for the moment
estimators for parameters σ, α and λ.
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A new type of generalized closed set via γ-open set 583

Proposition 3.1. Let X1, . . . ,Xn be a random sample of size n from the
T ∼ TGHN(σ, α, λ) distribution. Then the moment estimate for σ, α and
λ are given by bσM = X

2a1

a2
a21

= 2X2

X
2

a3
a31

= 4X3

X
3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.1)

where Xk = (1/n)
Pn

i=1X
k
i , k = 1, 2, 3 and ai, i = 1, 2, 3 are given in (2.7).

Proof. From Proposition 3.1 and considering the first three equations in
the moments method, we have

X = 2σa1, X2 = 2σ2a2 and X3 = 2σ2a3.(3.2)

Solving the first equation above for σ yields bσM . Replacing bσM in the other
equation above, the second and third equations in (3.1) are obtained.

3.2. Maximum Likelihood estimation

In this subsection, we consider the MLE of the parameters θ = (σ, α, λ) of
the TGHN model. Suppose that x1, x2, ..., xn is a random sample of size n
from the transmuted generalized half-normal distribution TGHN(θ). Then
the likelihood function is given by

L(θ) =
2nαn

σnα

nY
i=1

xα−1i φ

µµ
xi
σ

¶α¶ ∙
1 + 3λ− 4λΦ

µµ
xi
σ

¶α¶¸
,(3.3)

with respective sample log-likelihood function
l(θ) = logL(θ) = n log 2 + n logα− nα log σ + (α− 1)Pn

i=1 log(xi)
+ 1

σα
Pn

i=1 x
α
i

+
Pn

i=1 log
£
1 + 3λ− 4λΦ

¡¡xi
σ

¢α¢¤
,

so that the maximum likelihood equations are given by

−nα
σ −

α
σα+1

Pn
i=1 x

α
i +

Pn
i=1

H1(xi)
H(xi)

= 0,
n
α − n log σ +

Pn
i=1 log xi +

1
σα
Pn

i=1 x
α
i log

¡xi
σ

¢
+
Pn

i=1
H2(xi)
H(xi)

= 0,Pn
i=1

H3(xi)
H(xi)

= 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.4)
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584 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

whereH(xi) = 1+3λ−4λΦ((xi/σ)α), H1(xi) =
d
dσH(xi), H2(x) =

d
dαH(xi)

and H3(xi) =
d
dλH(xi). The solution for the equations lik can be obtained

by using the optim function available in software R Development Core
Team [11], the specific method is the L-BFGS-B developed by Byrd, Lu,
Nocedal and Zhu [4] which allows box constraint. This uses a limited-
memory modification of the quasi-Newton method.

3.3. Observed information matrix

In this subsection, we consider the observed information matrix of the
TGHN model. Given X ∼ TGHN(θ), the observed information matrix is

In(θ) =

⎛⎜⎜⎝
∂2l(θ)
∂σ2

∂2l(θ)
∂α∂σ

∂2l(θ)
∂λ∂σ

∂2l(θ)
∂α2

∂2l(θ)
∂λ∂α
∂2l(θ)
∂λ2

⎞⎟⎟⎠ ,

where
∂2l(θ)
∂σ2 = nα

σ2 +
α(α+1)
σα+2

Pn
i=1 x

α
i +

Pn
i=1

∂
∂σ

H1(xi)
H(xi)

,
∂2l(θ)
∂α∂σ = −

n
σ −

1−α log(σ)
σα+1

Pn
i=1 x

α
i − α

σα+1
Pn

i=1 x
α
i log(xi) +

Pn
i=1

∂
∂α

H1(xi)
H(xi)

,
∂2l(θ)
∂λ∂σ =

Pn
i=1

∂
∂λ

H1(xi)
H(xi)

,
∂2l(θ)
∂σ∂α = −

n
σ −

α
σα+1

Pn
i=1 x

α
i log

¡xi
σ

¢
− 1

σα+1
Pn

i=1 x
α
i +

Pn
i=1

∂
∂σ

H2(xi)
H(xi)

∂2l(θ)
∂α2 = − n

α2 +
1
σα
Pn

i=1 x
α
i log

2 ¡xi
σ

¢
+
Pn

i=1
∂
∂α

H2(xi)
H(xi)

,
∂2l(θ)
∂λ∂α =

Pn
i=1

∂
∂λ

H2(xi)
H(xi)

,
∂2l(θ)
∂σ∂λ =

Pn
i=1

∂
∂σ

H3(xi)
H(xi)

, ∂2l(θ)
∂α∂λ =

Pn
i=1

∂
∂α

H3(xi)
H(xi)

and ∂2l(θ)
∂λ2 =

Pn
i=1

∂
∂λ

H3(xi)
H(xi)

.

3.4. Simulation study

In this subsection, a simulation study is performed to illustrate the behavior
of the MLE parameter σ, α and λ. We generate 1000 random samples of
sizes n = 50, n = 150 and n = 300 from the distribution TGHN(θ) for
fixed values of the parameters. Random numbers X ∼ TGHN(θ) can be
generated as

1. Generate U ∼ Unif(0, 1).

2. Compute X = σ

∙
Φ−1

µ
1+λ−

√
(1+λ)2−4λU
4λ + 1

2

¶¸1/α
.
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A new type of generalized closed set via γ-open set 585

where Φ−1 is the quantile function of the standard normal distribution.
Measures and empirical standard deviations are presented in Table 3.1.
Here, the parameters are well estimated and the estimates are asymptoti-
cally unbiased.

n = 50

σ α λ bσ (SD) bα (SD) bλ (SD)
1.0 0.5 1.0 0.916856 (0.255959) 0.520920 (0.065720) 0.938142 (0.119670)

0.5 0.914440 (0.360617) 0.499354 (0.068656) 0.325292 (0.383286)
-1.0 1.196665 (0.406695) 0.570780 (0.124729) -0.819658 (0.363444)

2.0 1.0 1.0 1.896826 (0.258498) 1.043402 (0.121237) 0.938109 (0.123406)
0.5 1.839288 (0.401754) 0.977326 (0.140665) 0.284698 (0.422958)
-1.0 2.163885 (0.343411) 1.144162 (0.258204) -0.814281 (0.363698)

3.0 2.0 1.0 2.923249 (0.197402) 2.078352 (0.243693) 0.945194 (0.114554)
0.5 2.869020 (0.310812) 1.945938 (0.274630) 0.297925 (0.397159)
-1.0 3.126112 (0.518595) 2.310691 (1.250204) -0.794375 (0.884442)

n = 150

σ α λ bσ (SD) bα (SD) bλ (SD)
1.0 0.5 1.0 0.931762 (0.177101) 0.510188 (0.0356710) 0.940026 (0.115232)

0.5 0.950623 (0.330346) 0.488532 (0.0473573) 0.372702 (0.373124)
-1.0 1.101251 (0.289657) 0.531747 (0.0772491) -0.904767 (0.256996)

2.0 1.0 1.0 1.909465 (0.189369) 1.022025 (0.0706584) 0.936197 (0.121109)
0.5 1.915185 (0.352607) 0.977040 (0.0969972) 0.374632 (0.383413)
-1.0 2.073748 (0.225784) 1.059712 (0.1542691) -0.913137 (0.249717)

3.0 2.0 1.0 2.927837 (0.150383) 2.040683 (0.1426299) 0.938162 (0.117917)
0.5 2.921038 (0.285649) 1.964368 (0.1972316) 0.365500 (0.384122)
-1.0 3.051073 (0.158212) 2.120309 (0.3036818) -0.912356 (0.248957)

n = 300

σ α λ bσ (SD) bα (SD) bλ (SD)
1.0 0.5 1.0 0.942250 (0.145848) 0.506106 (0.025127) 0.949547 (0.109387)

0.5 0.979323 (0.312453) 0.488000 (0.037587) 0.410776 (0.338208)
-1.0 1.049801 (0.180932) 0.515084 (0.047462) -0.953957 (0.166514)

2.0 1.0 1.0 1.918997 (0.162825) 1.015543 (0.049621) 0.942905 (0.114174)
0.5 1.947923 (0.340752) 0.972927 (0.081222) 0.408279 (0.365341)
-1.0 2.043949 (0.166501) 1.030886 (0.096272) -0.953172 (0.178910)

3.0 2.0 1.0 2.936010 (0.132371) 2.023273 (0.097304) 0.941166 (0.118513)
0.5 2.950370 (0.258666) 1.949546 (0.159468) 0.406133 (0.358088)
-1.0 3.034126 (0.125131) 2.069454 (0.217579) -0.944696 (0.201418)

Table 3.1: MLE for samples generated of size 50, 150 and 300 for different
values of σ, α and λ.
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586 Hugo S. Salinas, Yuri A. Iriarte and T. Panigrahi

4. Real data application

Devore [6] presents a data set associated with energy consumption (in BTU)
of 90 homes 140 with gas heating. The electric companies consider essential
to analyze this type information for respond to energy demands. Table 4.1
presents summary statistics for the energy consumption data where b1 and
b2 are the coefficients of asymmetry and kurtosis, respectively.

sample size mean variance asymmetry kurtosis

90 10.038 8.225 0.283 3.000

Table 4.1: Summary statistics for fatigue life data set.

Using results in Subsection 3.1, moment estimators were computed,
leading to bσM = 9.796, bαM = 1.877 and bλM = −0.994. These estimates
were then used as starting values for the optim algorithm for maximiz-
ing the likelihood function. Table 4.2 presents parameter estimates for
the GHN and TGHN models, using maximum likelihood approach and the
corresponding Akaike Information Criterion (AIC) [1] and Bayesian Infor-
mation Criterion (BIC) [12] for model choice. For these data, AIC and BIC
shows a better fit of the TGHN model.

MLE GHN(SD) TGHN(SD)bσ 11.719(0.342) 9.795(0.748)bα 2.829(0.229) 1.946(0.332)bλ −1.000(0.353)
AIC 455.873 450.907
BIC 460.872 458.406

Table 4.2: MLE for fitting various models: GHN and TGHN models on the
fatigue life data set.

Figure 4 depicts the histogram for the data with the fitted densities, re-
vealing good performance of the TGHN model.
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5. Concluding remarks

In this paper we study an extension of the generalized half-normal distribu-
tion study by Cooray and Aranda [5]. We use the quadratic rank transmu-
tation map to generate a transmuted generalized half-normal distribution.
This extension is more flexible in terms of skewness and kurtosis than the
generalized half-normal distribution. MLE for the proposal distribution re-
quires numerical procedures such as the Newton-Raphson algorithm to be
computed. Application to real data have demonstrated that the transmuted
generalized half-normal distribution can present better fit than generalized
half-normal distribution.

Appendix

Proof of Proposition 2.1

Let X ∼ TGHN(σ, α, λ), then

a) W = aX and a > 0, then

FW (w) = P (W ≤ w) = P (aX ≤ w) = P
¡
X ≤ w

a

¢
= FX

¡w
a

¢
=

©
2Φ

£¡ x
aσ

¢α¤− 1ª ©1 + 2λ− 2λΦ £¡ x
aσ

¢α¤ª
.

Marisol Martínez
figure-4
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