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1. Introduction

In recent years there had been an increasing interest in fractional calculus
because of its many applications in Science and Engineering see [5, 6, 9, 13]
and references therein. Several researchers have worked on the oscillation
of second order dynamic, sublinear and superlinear differential equations
but not many have worked on oscillation of factional differential equations
and the few have used Caputo, Riemann-Liouville and Modified Riemann-
Liouville such fractional derivatives see [3, 11, 12, 14, 15]. To the best
of our knowledge only Jessada Tariboom and Sotiris K. Ntouyas [7] have
worked on the oscillation of conformable fractional differential equations.

In this article, with the definition of conformable fractional derivative given
by R. Khalil [8], we consider the establishment of oscillation of solutions to
the generalized forced nonlinear conformable fractional differential equation

Tala(t)d((t) Taa(t)] + P(t, (t), Taz(t)) = Q(t, z(t), Taz(t)) t >t > 0,

(1.1) ae(1,2)

where T,(.) denotes the operator called conformable fractional derivative
of order a with respect to variable t, C'* denotes continuous function with
fractional derivative of order o, a € C*[[tp, 00), R] and P, Q € C%[[to, 00) X
R2 R].

2. Preliminaries

For the purpose of this paper, we state the following definitions and theo-
rems without proof.

Definition 2.1. [§]
Given a function f : [0,00) — R. Then the ”conformable fractional deriva-
tive” of f of order « is defined by

T (F)(t) = lim L) = 1)

e—0 €

Vit > 0,a € (0,1)

If f is a-differentiable in some (0,a), a > 0, and lim,_,g+ f*(¢) exists,
then define
f4(0) = lim f%(?)

t—0t
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Definition 2.2. [§]
Let a € (n,n+ 1], and f be an n-differentiable at ¢, where ¢t > 0. Then the
conformable fractional derivative of f of order « is defined as

f((a] -1) (t + et(fal a)) _ f(roJ -1) (t)
To(f)(t) = lim vVt >0,a € (0,1)

e—0 €

where « is the smallest integer greater than or equal to a.

Definition 2.3. [§]
Let @ € (0,1] and 0 < a < b. A function f : [a,b] — R is a-fractional
integrable on [a, b] if the integral

/ab f(z)dox = /ab f(z)z* tda

exists and is finite. All a-fractional integrable function on [a, b] is denoted
by Lg([a, b])

We refer the readers who are not familiar with the properties of con-
formable fractional derivatives to the article of R. Khalil et-al [8] for clari-
fication.

Definition 2.4.
The point tg is said to be a zero of x(t) if z(ty) = 0.

Definition 2.5.

A solution z(t) of (1.1) is said to be oscillatory if it has arbitrarily large
zeros, otherwise it is said to be nonoscillatory. The equation is said to be
oscillatory if all its solutions are oscillatory.

Theorem 2.6. {Integration by parts [1]}
Let f,g:[a,b] — R be two functions such that fg is differentiable. Then

b

b b
| r@Ta@) @ e = fo) — [ 9@ @)dan

where T'(.) represent the conformable fractional derivative of order o
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Theorem 2.7. (ChainRule|[l], [16])

Suppose f,g : (a,00) — R be (left) a-differentiable functions, where
0 <a<1. Let h(t) = f(g(t)). Then h(t) is left a-differentiable and for all
t with t # a and g(t) # 0 we have

(Tah)(t) = (Ta)(9(t)).(Tag)(t).9()*

If t = a, we have

(Teh)(a) = lim (T2)(9(6)-(Tig) (0)-9(8)"

t—at

3. Main Results

In this section, we establish sufficient conditions for equation (1.1) to be
oscillatory. We also introduce some functions h, H € C([to, 00), R) satisfy-
ing H(t,t) =0, H(t,s) >0, t > s > tp with H having continuous partial

derivative % and % on [tp,00) such that

aHa(i,s) = —hy(t, s)VH(L, 5)
aﬂgz, s) _ —ha(t, s)VH(L, 5)

Theorem 3.1. Assume that:

fr: xf(x) >0, x#0

ﬁ2:f/(x)21u>o’ 93750

Bs: 0 <y(x) <M

By: PListl) > p(t) and AL < (1) forz #0
Also, suppose 3 o(t) and g(t) € C%[[ty,0), (0,00)] such that

t s)P(s sl= (s
gy 0 [P o=
where
(3.2) ofs) = exp(~241 [ g()dv)

(3:3) (1) = a(t)Mug*(t) +p(t) — q(t) — Tala(t)(x(t)g()]

then every solution of (1.1) is oscillatory.
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Proof.  Let z(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that z(¢) > 0 on [79, 00) for some 79 > to.

Define
o [etee® T
ut) = olt)| R+ altyu <t>>g<t>]
_ (V) Tarlt)
Tau(t) = g(t)Ta[ e altyu <t>>g<t>]

f(=(t))
_ o) Tala®y(e®)Taz(t)]  o)a(t)d(z(t)z>" ) f (x(1))
f(x(t)) f2((t))

(3.4)
Using 1 — B4 and (3.2) in (3.4), we have
u?p
(3.5) Tou(t) < —W —o(t)®(t)

for t > 79. It follows that for all ¢ > 7 > 79, we multiply (3.5) through by
H(t,s) and integrate both sides w.r.t d,s from 7 to ¢

I [H(t,s)Tau(s)] < Ia[—H(t )

t
/ H(t,s)s' 7 (s)dys

VAN
~1\W
—

ﬁ
7;
E
m
’;.
&=
2
I;I
IS8
Q
V2]

/Tt Q(S)H(tgf)g)(s) ds < —/: sTTOH (t, 8)u (8)dos — /Tt 1 UQZL(H)( 7(3)) ds
(3.6)

Using Theorem 2.6 on the first integral at the right hand side of in-
equality (3.6) above we have
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t

_ /t 51*°‘H(t, s)u/(s)das = - [H(ta s)u(s)

T

- /Tt H(t, s)u(s)ds]

—  H(t,T)u(r) — / t [—%H(t,s)u(s)}ds

T

(3.7) — H(t, 7)u(r) — / h () JH ( s)u(s)ds

substitute (3.7) into (3.6) to get

simplifying, we have

t s)®(s) s'™%a(s
) [ ot T 2 s s < et

This implies that for every t > 7,

s)P(s s1™(s
/T:@@)[H“S’l)f o )Mh%u,s)]ds < H(t.m)uln)

A

H(t,t0)|u(70)]

Therefore,

t s)®(s sl=q(s
/ g<s>[H“’ 2] o oMy, s>] ds

gl—«a 4'u

_ /t:) o(s) lH(tgls_)f ) s ajféswh%(t,s)] ds
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gl—a 4,[1,
o(s)®(s)

Sfa

o(5)®(s)

-«

N /: Q(S)lH(t, $)B(s)  s'“a(s)M w20, 3)1 i

dS + H(t, to)’u(T0)|

ds + |u(70)|]

. 1 t H(t,s)®(s) s @a(s)M ,
1 - —
1£nsup H(t,to)/t (s [ o p hi(t,s)|ds

0

70
</
t()

which contradicts (3.1). The proof is complete.
Example 1. For ¢ > 2, consider the nonlinear forced fractional differential
equation

o(5)®(s)

o ds + |u(mp)| < oo

1132 a\COS T
T 2a(t) 49 T (D)4t Tt exp(@let) = 22 () SinH%
(3.9)
We set
f@(t) = 2(t), f'(= t())) >p=1, aEt; =2
z(t)=t+1, 2/(t) =

(3.10) W(@(t) =z +5>5 = M, g(t) = -5/

H(t,s) = (t—s) A=2, a=4, o(t) =t2,tg =2

Using (4 in (3.9), we deduce that

P(t,x(t), Taz(t))
f(z)

1
= §t_5/2 + (# + 7YY exp(t + 1)

(3.12) <tV %sint = ¢(t)
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Also

Tala(t)y(x(t)g(t)] = Tal2(t + 6) x ¢5/4) = —5¢~19/12 —15¢31/12
hi(t,s) = [\t — )M2 12 = N2 (t — 5) 22
(3.13)
substitute (3.10) - (3.13) into LHS of (3.1), we have

t—o0

1 t 21 1 15
limsupm/z [(t—S)Q (532/3+S5/2—|—s9/6_34/3Sin8+§51/4+7t3/4>‘|ds

t
—lim su / 10s1/0ds = 0o
t—>oop (t - 2)2 2

This shows that (3.1) is satisfied and thus, equation (3.9) is oscillatory.

Theorem 3.2. Assume that 31 — 84 in Theorem 3.1 hold. Let A > 1
be a constant. Suppose (3.1) does not hold such that 3 a function g €
C®[[tg, 0), (0, 00)] satisfying

t _ e\ 2
lim sup i}\/ l(t ) 16)(8)(1)(3) _)‘_(t—s)/\ﬂg(s)a(s)Msl*a ds = 00
t—o0 to s 4/.L

(3.14)
where o(s) and ®(s) are the same as equations (3.2) and (3.3) respectively.
Then, every solution of (1.1) is oscillatory.

Proof.  Without loss of generality, we assume that 3 a solution of (1.1)
such that x(t) > 0 on [1p, 00) for some 79 > to. Define u(t) as in Theorem
3.1, then we obtained (3.5). Multiply (3.5) through by (t—s)* and integrate
both sides w.r.t d,s from 7 to ¢

U2
I,[(t — S)ATau(s)] < I, l —(t— S)Am —(t— s)’\g(s)@(s)]
t t — s )\u2
[t < [ - [(;(S)st) (o) s>A<I><s>] o
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Using Theorem 2.6 on the first integral at the right hand side of the above
inequality, we have

t _S>\ s t
Lg@ﬁ12%§il@ < (= ulr) = A [ (= 9 tuls)ds

t _ 3 by
- /T [9(352(8)12451au2(s)+A(t—s)A—1u(s)1d5

Therefore, for every t > tg

— ) \P(s 2(t — ) 2p(s)a(s) M st~
hmm%/;[@(s)(t Pa(s) Nt ) o(s)a(s)M 1d8 it

o Slfa 4M

t—o0

which contradicts (3.14). The proof is complete.

Theorem 3.3. For sufficiently large T > tg, 3 n2, m1 and n3 with 7 < 12 <
m < n3. Assume that 1 — B4 hold with (3.1)- (3.3) not holding. Also, if
there exist o(t) € C[[to, 00), (0,00)] such that

1 3 Q(S)
T Sy, P08 G=alp(s) — a(s)lds
1 m Q(S)
T |, ) g lpls) —als)lds

1 1 Mo(s)a(s)s' =
/

” THsm) e
) 1
1 m Mo(s)a(s)s*™ ,
3.15 + / s,m2)ds
1) Haom) e GO
where
(3.16) x1(t,8) = hi(t,s) — i’,((j)) H(t,s)
Xa(s,) = ha(s, t) — S5 /H(s,2)

then, every solution of equation (1.1) is oscillatory.
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Proof.  Suppose the contrary, that is, () is a non-oscillatory solution
of equation (1.1) on [, c0).
Define

t>T19 > 1o

_ a(t)(z(t))Tax(t)
(3.17) Tou®) =Tl o=
Then, by using 51 — 4 in Theorem 3.1 on (3.17), we obtain

(318)(Olp(0) = a(t)] <~ (1) = sl (1) +

Multiplying both sides of (3.18) by H(t, s) and integrating with respect
to dys from ny to t for t € [n1,m3), we have

()2 () - gls))ds < — /nt STOH (¢, s)u/(8)dus

l—« -
m S 1

— ' S /L 'LL2 S)as
) T yagaa ()
L)

- m H(t7 S) Q(S)

Using Theorem 2.6 on the first integral at the right hand side, we have

() 2 () — gl)ds < H(Emu(m)

_ /[ hi(t,s)y/H(t,s)u(s)ds
o

m

=) A e

! d'(s)
+ . H(t,s) o(5) u(s)ds

t s)a(s)st—«
(3.19) < H(t,m)u(m) +/n = )4;3)

divide (3.19) by H(t,n:1) and let ¢ — 15, then we obtain

Xi(t, s)ds

1 713 Q(S)
T Lo, H0m09) = [p(s) — a(s)lds < u(m)
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N 1 /’73 Mo(s)a(s)s'—@
4H(T737 771) m K
In the same way, we multiply both sides of (3.18) by H(s,t) and inte-
grate with respect to dys for t € (m2,m1] to get

(3.20) Xi (13, 5)ds

" Hs, ) 2 () — g(s)ds < — /m SO (5, )0/ (8)dus

t sl—a t

— " S H U/QS
B S gamer= )

m o'(s)
+ /t (s, 1) 2 u(s)ds

o\s

=

Following the same process in (3.20) with ¢t — 7, , we arrive at

m Q(fi [p(s) — q(s)lds < —u(m)

(3.21) + X5 (s, m2)ds

1 /Til Mo(s)a(s)s'™
AH (n1,m2) Jns p
Add (3.20) and (3.21) together to obtain

1 UE] Q(S)
Hmmn) / H (s, )22 [p(s) — a(s)]ds

L el
+H(771,772) - H( 7772)31*04[])() q(s)]d

< 1 /773 Mo(s)a(s)s! ™
~ 4H(n3,m) Jny o

1 m Mo(s)a(s)s'=®
+ / s,m2)ds
4H (11,2) Jus p Kaler )

which contradicts (3.15). The proof is thus complete.

Xi(1s, 5)ds

Theorem 3.4. Under the conditions of Theorem 3.3, Suppose (3.15) does
not hold such that

m /,:3 (13 — 8)/\801(8,1 [p(s) — q(s)]ds

el
+(771—?72)A/772( )" Goalp(s) —a(s)ld
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3 s)a(s)st— /(s 2
= 4(773i771)>‘ /7: Mo )”( ) (773—3)’\2<)\— o )(773—5)> ds

1 m Mo(s)a(s)s' ~ J(s) 2
i A — ) /172 I (5= 772)/\ ? <)‘ + (s — 772)) ds

(3.22)

then, equation (1.1) is oscillatory.

Proof.  Let z(t) be a non-oscillatory solution of (1.1). Following the
proof of Theorem 3.3, we obtain (3.18). Multiply (3.18) by (¢ — s)* and
integrate with respect to dys from 1y to ¢ for ¢ € [1,7n3) so that

[ (=P B pte) — ateds < = [ (65 (51

1 S m
— t — S A H U2 S)as t — S AQI(S)U S)as
329 = | 0= g+ [ ¢ Gl

By Theorem 2.6, (3.23) becomes

~

m

[ =P E ) —aelds < (= m)utm) — [N Tl
t

— — S A /L 'LL2 S S
/m(t S Meatmaat

' — S A /<8)'U/ S S

* /n t=9) o(s) (s)d

1

= (t—m) u(m)

I
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Letting ¢ — 13 in (3.24) and dividing the result by (3 — n1)”, we have

s [ = 9 45k p(s) — ) < ulm)

1 3 Y N J(s) 2
+ W ‘/771 MQ(S)a(s)sl (773 _ S) 2 l/\ _ (773 B S) ‘| s

(3.25)
Following the same process as above, multiplying both sides of (3.18) by

(s—t)* and then integrating with respect to dys from ¢ to ny for t € [n2,m),
we have

[~ 0 2 p(s) — at)ds <~ P utm)

Sl—oz

1 [ Mo(s)a(s)s' . d(s)]°
+Z/t . (s —t)* 2[>\+(3—772)Q ]ds

Letting t — n; and dividing through by (71 — 12)*, we have

s [ = E () — aslds < —utm)

(771 - 772)>\ n2
+ ; " Mg(s)a(s)slfa(s — 772))‘*2 l)\ +(s—mn2) g’(s)] 2ds
Ap(m = m2)* Ji o(s)
(3.26)

Adding (3.25) and (3.26) together we have

s [ = 9 45 ()~ )+

<1 " Mo(s)als)s' 0 ns — s [A Y Q’(S)rds
~ Au(ns — )N o
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S [ Mols)as)st s - )

+ A4 (s—n )Ql(s) 2d5
RN — 72
Ap(ny — ) Iy

o(s)

which contradicts (3.22). This completes the proof.
Example 2. For ¢t > 2, consider the nonlinear forced fractional differ-
ential equation

To[2(22(t) + 3)Taz ()] + t4?[4t1/ 2 4 exp(éto‘) — 27T, x(t)]

(3.27) — £73/20(1) + 2%(£) T (cos éx(t))

We set

f@) =), f'(2) =1=p, a(t) =2
r=t+1,2'(t)=1

(3.28) Y(x) =2 +3>3=M, g(t)=t"5/1
a=32 o) =12 tg=2

m=4,m=2mn=>5

Using (4 in (3.27), we deduce that

P(t, x%?am)) _ % 42 4 exp(ém — 22T (1))
_ % + %exp(éto‘) - tiga 0
S

Q(t,a}((t;,(gjw(t)) _ t-z/a_@sméw)

< 2= (1)
Also note that

19/3  417/6
(3.29) o) ey — g = B0

_ /3
tl-o 2 2

substitute p(t), q(t), (3.28) and (3.29) into (3.15), we have
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