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1. Introduction and Preliminaries

Let X, Y be infinite dimensional complex Banach spaces and B(X,Y ) de-
note the complex algebra of all bounded linear operators from X to Y . For
Y = X we write B(X,X) = B(X). If T ∈ B(X), we denote by T ∗, N(T ),
R(T ), σap(T ), σsu(T ), σ(T ), respectively the adjoint, the null space, the
range, the approximate point spectrum, the surjectivity spectrum and the
spectrum of T .

A bounded linear operator is called an upper semi-Fredholm (resp,
lower semi-Fredholm) if α(T ) = dimN(T ) < ∞ and R(T ) is closed (resp,
β(T ) = codimR(T ) <∞). T is semi-Fredholm if it is a lower or upper semi-
Fredholm operator. The index of a semi Fredholm operator T is defined by
ind(T ) = α(T )− β(T ).

T is a Fredholm operator if is a lower and upper semi-Fredholm opera-
tor. The essential spectrum of T is the subset of C defined by:

σe(T ) = {λ ∈ C : T − λI is not a Fredholm operator}

Let T ∈ B(X,Y ), T is said to be left Atkinson if T is upper semi-
Fredholm and R(T ) is complemented in X, and it is said to be right Atkin-
son if T is lower semi-Fredholm and N(T ) is complemented in X (see [1]).
The left and right Atkinson spectra are the subsets ofC defined respectively
by:

σle(T ) = {λ ∈ C : T − λI is not a left Atkinson operator}
σre(T ) = {λ ∈ C : T − λI is not a right Atkinson operator}

σe(T ), σre(T ) and σle(T ) are compact subset and we have

σe(T ) = σre(T ) ∪ σle(T )

For A ∈ B(X), B ∈ B(Y ), we denote by MC ∈ B(X ⊕ Y ) the operator
matrix acting on the product of Banach space X ⊕ Y [5]:

MC =

Ã
A C
0 B

!

It is well know that, in the case of infinite dimensional, the inclusion
σ(MC) ⊂ σ(A) ∪ σ(B), may be strict. This motivates serval authors to
study the defect (σ∗(A) ∪ σ∗(B)) \ σ∗(MC) where σ∗ runs different type of
spectra.
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If H and K are Hilbert spaces, Du and Pan [5] have studied the de-
scription of

\
C∈B(K,H)

σ(MC) by showing that

\
C∈B(K,H)

σ(MC) = σap(A) ∪ σsu(B) ∪ {λ ∈ C : α(B − λ) 6= β(A− λ)}

Han H.Y. Lee and W. Y. Lee [6] extended the result to the Banach spaces.
In [3], D.S. Djordjevic give a description of

\
C∈B(K,H)

σe(MC), he showed

the following theorem.

Theorem 1.1 (3). . For given (A,B) ∈ B(X)×B(Y ) the following holds:\
C∈B(Y,X)

σe(MC) = σle(A) ∪ σre(B) ∪W (A,B)

WhereW (A,B) = {λ ∈ C,N(B−λ) and X/R(A− λ)are not isomorphic
up to a finite dimensional subspace}

In [9], the authors showed the following theorem.

Theorem 1.2 (9). . Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then

σe(MC) ∪We = σe(A) ∪ σe(B)

where We is the union of certain holes in σe(MC), which happen to be
subsets of σe(A) ∩ σe(B).

For a compact subset K of C, let accK, intK, isoK, ∂K and η(K) be
the set of all points of accumulation of K, the interior of K, the isolated
points of K, the boundary of K and the polynomially convex hull of K
respectively.

In this paper, we investigate the relationship between accσe(MC) and
accσe(A)∪accσe(B). We show that the passage from accσe(M0) to accσe(MC)
can be described as follows:

accσe(MC) ∪W = accσe(M0) = accσe(A) ∪ accσe(B)

where W is the union of certain holes in accσe(MC), which happen to be
subsets of accσe(A) ∩ accσe(B).
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2. Main results

We start this section by proving that the limit point of essential spectrum
set of a direct sum is the limit point of essential spectra of its summands.

Proposition 2.1. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then

accσe(M0) = accσe(A) ∪ accσe(B)

Proof. We have λ ∈ accσe(M0) if and only if λ ∈ acc(σe(A) ∪ σe(B)) =
acc(σe(A)) ∪ acc(σe(B)). 2

Lemma 2.1. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then

accσe(MC) ⊆ accσe(M0) = accσe(A) ∪ accσe(B)

Proof. Without loss of generality, let λ = 0 /∈ accσe(A) ∪ accσe(B),
then there exists ε > 0 such that for any λ, 0 < |λ| < ε, we have A − λI
and B − λI are Fredholm. According to [4, Lemma 2.1], we have MC − λI
is Fredholm for any λ, 0 < |λ| < ε, thus 0 /∈ acc(σe(MC)). Therefore
accσe(MC) ⊆ accσe(A) ∪ accσe(B).
2

Definition 2.1. Let T ∈ B(X). We said that T has the property aE at
λ ∈ C if λ /∈ accσe(T ).

The following lemma will be needed in the sequel.

Lemma 2.2. If two of MC , A and B have the property aE at 0, then the
third is also has the property aE.

Proof. i) If A and B have the property aE, by lemma 2.1 MC has the
property aE.
ii) If MC and A have the property aE, then 0 /∈ acc(σe(MC)) and 0 /∈
acc(σe(A)), thus there exists ε > 0 such that MC − λI and A − λI are
Fredholm for every λ, 0 < |λ| < ε. From [6, Corollary 5], B−λI is Fredholm
for every λ, 0 < |λ| < ε.
iii) If B and MC have the property aE, the proof is similar to ii). 2

The first main result of this paper is the following theorem.
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Theorem 2.1. Let (A,B) ∈ B(X)× B(Y ) and C ∈ B(Y,X). Then

accσe(MC) ∪W = accσe(A) ∪ accσe(B)

where W is the union of certain holes in accσe(MC), which happen to be
subsets of accσe(B) ∩ accσe(A).

Proof. We first claim that, for every C ∈ B(Y,X) we have

(accσe(A) ∪ accσe(B)) \ accσe(A) ∩ accσe(B) ⊆ accσe(MC) (1)

Indeed, let λ ∈ (accσe(A) ∪ accσe(B)) \ accσe(A) ∩ accσe(B), then
λ ∈ accσe(A) \ accσe(B) or λ ∈ accσe(B) \ accσe(A).

i) If λ ∈ accσe(A) \ accσe(B), then A has not the property aE at λ
and B has the property aE at λ. Suppose that λ /∈ accσe(MC), hence
MC has the property aE at λ, by lemma 2.2 A has the property aE at λ,
contradiction. So λ ∈ accσe(MC).

ii) If λ ∈ accσe(B) \ accσe(A), by the same argument of i) we have
λ ∈ accσe(MC).

Next, we claim that for every C ∈ B(Y,X) we have

η(accσe(MC)) = η(accσe(A) ∪ accσe(B)) (2)

Since accσe(MC) ⊆ accσe(A)∪accσe(B), we need to prove ∂(accσe(A)∪
accσe(B)) ⊆ ∂accσe(MC). But since int(accσe(MC)) ⊆ int(accσe(A) ∪
accσe(B)), by the maximum modules theorem, it suffices to show that
∂(accσe(A) ∪ accσe(B)) ⊆ accσe(MC). Without loss of generality, suppose
0 ∈ ∂(accσe(A) ∪ accσe(B)). There are two cases to consider.

Case 1: If 0 ∈ acc(∂(accσe(A) ∪ accσe(B))), then there exists (λn) ⊆
∂(accσe(A) ∪ accσe(B)) such that lim

n→∞
λn = 0, since

∂(accσe(A)) ⊆ ∂(σe(A)) ⊆ σle(A) ⊆ σe(MC)

and

∂(accσe(B)) ⊆ ∂(σe(B)) ⊆ σre(B) ⊆ σe(MC)
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we have, λn ∈ σe(MC), n = 1, 2, ..., hence 0 ∈ acc(σe(MC)).

Case 2: If 0 ∈ iso(∂(accσe(A) ∪ accσe(B))), since accσe(A) ∪ accσe(B) is
closed, then iso(∂(accσe(A) ∪ accσe(B))) = iso(accσe(A) ∪ accσe(B)).
0 ∈ iso(accσe(A) ∪ accσe(B)), thus there exists ε > 0 such that λ /∈
acc(accσe(A) ∪ accσe(B)) for every λ, 0 < |λ| < ε. Since 0 ∈ accσe(A) ∪
accσe(B) = acc(σe(A) ∪ σe(B)), there exists (µn) ⊆ σe(A) ∪ σe(B) such
that lim

n→∞
µn = 0, µn 6= 0 for all n, thus there exists certain positive in-

teger N such that 0 < |µn| < ε for any n ≥ N . Let λn = µN+1+n, then
λn ∈ iso(σe(A) ∪ σe(B)), n = 1, 2, .. and lim

n→∞
λn = 0. Since σe(A) and

σe(B) are closed, then

iso(σe(A) ∪ σe(B)) ⊆ iso(σe(A)) ∪ iso(σe(B))
⊆ ∂σe(A) ∪ ∂σe(B)
⊆ σle(A) ∪ σre(B) ⊆ σe(MC)

Then, λn ∈ iso(σe(A) ∪ σe(B)) ⊆ σe(MC), n = 1, 2, ... Since
lim
n→∞

λn = 0, so 0 ∈ accσe(MC).

Therefore ∂(accσe(A) ∪ accσe(B)) ⊆ accσe(MC). This proves (2).

accσe(MC) ⊆ accσe(A) ∪ accσe(B) and (2) says that the passage from
accσe(MC) to accσe(A) ∪ accσe(B) is the filling in certain of the holes in
accσe(MC). But since (accσe(A) ∪ accσe(B)) \ accσe(MC) is contained in
accσe(A) ∩ accσe(B), it follows that the filling in certain of the holes in
accσe(MC) should occur in accσe(A) ∩ accσe(B). 2

Corollary 2.1. Let (A,B) ∈ B(X)×B(Y ). If accσe(A)∩accσe(B) has no
interior points, then for every C ∈ B(Y,X) we have

accσe(MC) = accσe(A) ∪ accσe(B)

Second main result is the following theorem.

Theorem 2.2. Let (A,B) ∈ B(X) × B(Y ) and C ∈ B(Y,X). Then the
following assertions are equivalent

1. σe(MC) = σe(A) ∪ σe(B),

2. accσe(MC) = accσe(A) ∪ accσe(B).
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Proof. First we show that We ⊆W .
Indeed, if λ ∈We, from theorem 1.2, we have λ ∈ (σe(A)∪σe(B))\σe(MC),
then λ /∈ σe(MC), hence λ /∈ accσe(MC). It suffice to show that

λ ∈ accσe(A) ∪ accσe(B) = acc(σe(A) ∪ σe(B))

Suppose that λ /∈ acc(σe(A) ∪ σe(B)), since λ ∈ σe(A) ∪ σe(B), then

λ ∈ iso(σe(A) ∪ σe(B)) ⊆ iso(σe(A)) ∪ iso(σe(B))
⊆ ∂σe(A) ∪ ∂σe(B)
⊆ σle(A) ∪ σre(B) ⊆ σe(MC)

Hence λ ∈ σe(MC), contradiction. Therefore

λ ∈ (accσe(A) ∪ accσe(B)) \ accσe(MC)

By theorem 2.1, we have λ ∈W . So We ⊆W .

Furthermore, We ⊆W implies that

accσe(MC) = accσe(A) ∪ accσe(B) =⇒ σe(MC) = σe(A) ∪ σe(B)

Conversely, if σe(MC) = σe(A) ∪ σe(B) let λ /∈ accσe(MC), without
loss of generality, we assume that 0 /∈ accσe(MC), then there exists ε > 0
such that MC − λ is Fredholm for all λ, 0 < |λ| < ε, hence λ /∈ σe(MC) =
σe(A) ∪ σe(B). Thus both A − λ and B − λ are Fredholm for every λ,
0 < |λ| < ε. Therefore 0 /∈ acc(σe(A)) ∪ acc(σe(B)). Since accσe(MC) ⊆
accσe(A)∪accσe(B) always holds, then accσe(MC) = accσe(A)∪accσe(B).
2

It is immediate to check the following result.

Corollary 2.2. Let (A,B) ∈ B(X)×B(Y ). If accσe(A)∩accσe(B) has no
interior points, then for every C ∈ B(Y,X), we have we have

σe(MC) = σe(A) ∪ σe(B) (∗∗)

In particular, if either A ∈ B(X) or B ∈ B(Y ) is a Riesz, then (∗∗) holds.

Now, For (A,B) ∈ B(X) × B(Y ), let LA (resp RB) be the left (resp.
right) multiplication operator given by LA(X) = AX; (resp. RB(X) =
XB), and let δA,B(X) = AX − XB = LA(X) − RB(X) be the usual
generalized derivation associated with A and B. We denote by N∞(A) =S
n≥1N(A

n) the generalized kernel of A [1].
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