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1. Introduction

Throughout this paper, we shall assume that X is a locally compact Haus-
dorff space.

A continuous real function f on X is said to vanish at infinity if for
every € > 0 the set {z € X : |f(x)| > e} is compact. Let Cy(X;R) be the
vector space of all continuous real functions on X vanishing at infinity and
equipped with the supremum norm.

Recall that for each x € X,

(fAg)z) = inf(f(z) g(x))
(fvg)z) = sup(f(z),g(z)).

A subset B of Cp(X;R) is called a lattice (or a sublattice) if f A g and
fV g belong to B whenever f € B and g € B.

We denote the closure of a subset T of a topological space by T.

In the paper [1], Boel, Carlsen and Hansen present a proof of a result of
simultaneous interpolation and approximation from certain subalgebras of
Co(X;C), where C is the complex field, through Stone-Weierstrass Theorem.
Motivated by their paper, we give a proof of a theorem of this type for
sublattices of Co(X;R) by using Bonsall Theorem [2].

2. Main result
In order to show the main theorem we list some results. First of all, we

present a version of Bonsall Theorem [2] concerning characterization of the
uniform closure of sublattices of Cy(X;R).

Theorem 1. Let B C Cy(X;R) be a sublattice and let f € Co(X;R).
Then f € B if, and only if, for any pair of points =,y € X and any € > 0,
there is v € B such that

flz) <ilz) +e,

fy) > Y(y) —e.



Interpolation and approximation from sublattices of Co(X;R) 397

Proof. It is clear that the condition is necessary. Conversely, let ¢ > 0
be given. Let ¢t € X be given. For any x € X there is ¥, € B such that

f(z) < p(x) + ¢ and f(t) > P (t) —e. Let
Ky ={veX: f(v) 2 ¢:(v) +e}.

The closed set K is a subset of the compact set {s € X : |f(s) — ¢¥(s)] >
e}. Hence K, is compact and does not contain z. Therefore Nyex K, =
(). By the finite intersection property, there are x1,...,x,, € X such that
Ky n---NK,, =0.Let ¢y = ¢y, V- -V, . Note that ¢, € B and
f(t) > 1y, (t) — e for all i = 1,...,m. Hence

(2.1) f(t) > ¢u(t) —e.
On the other hand, given = € X there is some ¢ € {1,...,m} such that
Therefore

(2.2) f(@) <thay() +2 < ¢r(2) + e

The closed set Iy = {v € X : f(v) < ¢+(v)—e} is a subset of the compact
set {s € X : |f(s) — ¢¢(s)| > e}. Then I; is compact and by (2.1) I; does
not contain t. Hence Miex Iy = (). By the finite intersection property, there
are ty,...,t, € X such that Iy N---NI;, = 0. Let ¥ = ¢4y A--- Ay,. Then
Y € B. If v € X, there is some j € {1,...,n} such that x ¢ I; . Therefore
(2.3) P(x) —e < ¢y (x) —e < f(a).

It follows by (2.2) that

f(x) < ¢y(@) +¢
for each 1 < j < mn.

Hence
(2.4) F@) < () +e.

It follows from (2.3) and (2.4) that

[f(z) —(z)] <e

for all x € X.

Therefore f belongs to the uniform closure of B.
Lemma 2. Let X be a locally compact Hausdorff space, t1,...,%,, distinct
points in X, and y1,..., ¥, distinct real numbers. If L is a dense linear

subspace of Co(X;R), then there exists a function h € L such that h(t;) =
Yy, g =1,...,m.
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Proof. Let L be a dense linear subspace of Co(X;R). Let S = {z1,...,2m}
be a subset of X. Consider the following linear mapping

T:Co(X;R) — R™
o (fla),.o f@m)-

Notice that T is linear and continuous. It follows from the Tietze Ex-
tension Theorem ([4] p. 389) that T is surjective. Moreover, T'(L) is closed
because it is a linear subspace of R™. Then by density of L and continuity
of T, it follows that

R™=T(Co(X;R))=T(L) CT(L)=T(L).
Therefore, there exists h € L such that

(h(x1), - s h(@m)) = (Y15 - - - Ym)-

Lemma 3. Let X be a locally compact Hausdorff space, L a dense linear
sublattice of Co(X;R), and z1,...,z, distinct points in X. Consider the
locally compact Hausdorff space

X:X\{'xla"'?xn}
and the sublattice
M={flg: el fm)=..=f(z) =0}

Then M is dense in Co(X;R).

Proof. Take an arbitrary ¢ € CO(X;R), € > 0 and let x,y be any
distinct points in X. Consider the following subset

S:{$,y,$1,...,$n}

of X. By Lemma 2 there exists h € L such that h(z) = ¢(x), h(y) = ¥(y)
and h(zj) =0for j=1,...,n.
Notice that h|s € M. Moreover,
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(¥(y) —hlg(y) =0> —e.

Then, it follows from Theorem 1 that 1 € M.

O

Here is the main result. It can be showed through Deutsch Theorem
[3]. We give a proof by using Bonsall Theorem.

Theorem 4. Let X be a locally compact Hausdorff space. Suppose that
feCy(X;R),e>0,and z1,...,x, are distinct points in X. If L is a dense
vector sublattice of Cy(X;R), then there exists a function g € L such that
g(zj) = f(z;) for j =1,...,n and |g(z) — f(z)| < e for all z € X.

Proof. It follows from Lemma 2 that there exists h € L, such that
h(zj) = f(xj), j =1,...,n. Then, by Lemma 3 there exists ¢ € L such that
d(x;) = 0 for j = 1,...,n and |¢(z) — (f(x) — h(x))| < ¢ for all z € X.
Notice that ¢(z;) — (f(zj) — h(z;)) =0 for j =1,...,n. Taking g = ¢ + h,
the result follows.

Example 5. Consider for each t € (0,1), the function

1 ifex=t
ho(z) = (2z —t)/t if x € [t/2,1]
2r—t—1)/(t—1) ifzxelt(t+1)/2]
0 otherwise .
Let
1 ifz=0
ho(z) =¢ —2z+1 ifzel0,1/2]
0 otherwise .
Let
1 ife=1
hi(x)=¢ 2x—1 ifxe[l/2,1]
0 otherwise .

Let L be the vector sublattice of C([0,1]; R) generated by the set {h; : t €
[0,1]}. Then L is uniformly dense in C|0, 1] by [6, Theorem 4.2]. Since [0, 1]
is a compact Hausdorff space, it follows that C([0,1]; R) = Cy([0,1]; R). By
using Theorem 4 we conclude that L has the simultaneous approximation
and interpolation property.
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