

Maps preserving the square zero of η-Lie product of operators

Ali Taghavi ${ }^{1}$ © orcid.org/0000-0001-6230-733X
Roja Hosseinzadeh ${ }^{2}$ © orcid.org/0000-0003-2413-1892
Masoomeh Yousefi ${ }^{3}$

University of Mazandaran, Dept. of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran.
${ }^{1 \times}$ taghavi@umzacir; ${ }^{2}$ rohosseinzadeh@umzacir ; ${ }^{3}$ m.usefy@yahoo.com

Received: July 2019 | Accepted: January 2020

Abstract:

Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. In this paper, we identify the form of the unital surjective additive map $\varphi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ which preserves the square zero of η-Lie product of operators for some scalar η with $\eta \neq 0,1,-1$.

Keywords: Preserver problem; Square zero operator; η-Lie product.

MSC (2010): 46J10, 47B48.

Cite this article as (IEEE citation style):

A. Taghavi, R. Hosseinzadeh, and M. Yousefi, "Maps preserving the square zero of η-Lie product of operators", Proyecciones (Antofagasta, On line), vol. 39, no. 3, pp. 591-597, Jun. 2020, doi: 10.22199/issn.0717-6279-2020-03-0036.

1. Introduction

Let \mathcal{A} be a Banach algebra, $A, B \in \mathcal{A}$ and η be a scalar. The Lie product, η Lie product and triple Jordan products are defined as $[A, B]=A B-B A$, $[A, B]_{\eta}=A B+\eta B A$ and $A * B=A B A$, respectively. In last decade, Many mathematician research on the preserving problems. Specially, maps preserving a certain property of products were often considered, see [1-4], [6], [8] and $[10-12]$. We point to some of them close to our purpose.

Authors in [10], considered the maps that strongly preserve the η-Lie product, that is $\phi(A) \phi(P)+\eta \phi(P) \phi(A)=A P+\eta P A$, for every A, some idempotent P and some scalar η. Author in [12], identified the forms of bijective maps preserving Lie products from a factor von Neumann algebra into another factor von Neumann algebra.

Let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on a Banach space \mathcal{X}. In [4], authors characterized the form of unital surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of product of operators in both directions. Also in [11], authors characterized the form of linear surjective maps on $\mathcal{B}(\mathcal{X})$ preserving the nonzero idempotency of either products of operators or triple Jordan products of operators.

We say an operator $A \in \mathcal{B}(\mathcal{X})$ is a square zero operator, when $A^{2}=0$. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. In this paper, we identify the form of surjective additive map $\phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ such that $\phi(I)=I$ and preserves the square zero of η-Lie product of operators for some scalar η with $\eta \neq 0,1,-1$. The complete form of our main result is as following:

Main Theorem. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. Let $\phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ be an unital surjective additive map which satisfies

$$
[A, B]_{\eta}^{2}=0 \Leftrightarrow[\phi(A), \phi(B)]_{\eta}^{2}=0,
$$

for every $A, B \in \mathcal{B}(\mathcal{H})$ and for some scalar η with $\eta \neq 0,1,-1$. Then there exists either a bounded invertible linear or a conjugate linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\phi(A)=T A T^{-1} \quad \text { or } \quad \phi(A)=T A^{*} T^{-1}
$$

for every $A \in \mathcal{B}(\mathcal{H})$.

2. Proofs

First we recall some notations. We denote by $\mathcal{I}(\mathcal{H})$ the set of all idempotent operators in $\mathcal{B}(\mathcal{H})$. For every nonzero $x, y \in \mathcal{H}$, the symbol $x \otimes y$ stands for the rank one linear operator on \mathcal{H} defined by $(x \otimes y) z=<z, y>x$ for any $z \in \mathcal{H}$. Note that every rank one operator in $\mathcal{B}(\mathcal{H})$ can be written in this way.

The rank one operator $x \otimes y$ is idempotent if and only if $<x, y>=1$. Let $P, Q \in \mathcal{B}(\mathcal{H})$ be idempotent operators. We say that P and Q are orthogonal if and only if $P Q=Q P=0$.

Proposition 2.1. Let $A \in \mathcal{B}(\mathcal{H}), x, y \in \mathcal{H}$ such that $<x, y>=1$ and let η be a scalar such that $\eta \neq 0,1,-1$. Then $[A, x \otimes y]_{\eta}^{2}=0$ if and only if only one of the following statements occurs: (i) $A x<A x, y>=-\eta x<A^{2} x, y>$ and $A x=-\eta x<A x, y>$. (ii) $A^{*} y=0$.

Proof. Assume first that $A x<A x, y>=-\eta x<A^{2} x, y>$ and $A x=-\eta x<A x, y>$. Hence

$$
\begin{aligned}
& {[A, x \otimes y]_{\eta}^{2}=\left(A x \otimes y+\eta x \otimes A^{*} y\right)^{2}} \\
& =<A x, y>A x \otimes y+\eta A x \otimes A^{*} y \\
& +\eta^{2}<A x, y>x \otimes A^{*} y+\eta<A^{2} x, y>x \otimes y \\
& =-\eta x<A^{2} x, y>\otimes y-\eta^{2} x<A x, y>\otimes y A \\
& +\eta^{2}<A x, y>x \otimes A^{*} y+\eta<A^{2} x, y>x \otimes y=0 .
\end{aligned}
$$

Now if $A^{*} y=0$, then

$$
\begin{aligned}
& {[A, x \otimes y]_{\eta}^{2}=\left(A x \otimes y+\eta x \otimes A^{*} y\right)^{2}} \\
& =(A x \otimes y)^{2}=<A x, y>A x \otimes y \\
& =<x, A^{*} y>A x \otimes y=0
\end{aligned}
$$

Conversely, Assume that $[A, x \otimes y]_{\eta}^{2}=0$. It is clear that

$$
B^{2}=0 \Leftrightarrow B(B x)=0, \quad \forall x \in \mathcal{X} \Leftrightarrow \operatorname{Im} \mathrm{~B} \subseteq \operatorname{ker} B .
$$

This together with assumption implies

$$
[A, x \otimes y]_{\eta}^{2}=0 \Leftrightarrow \operatorname{Im}[A, x \otimes y]_{\eta} \subseteq \operatorname{ker}[A, x \otimes y]_{\eta}
$$

Let $A^{*} y \neq 0$. If $A^{*} y$ and y are linearly independent, then In the following lemmas, assume that $\phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is an unital surjective additive map which satisfies

$$
[A, B]_{\eta}^{2}=0 \Leftrightarrow[\phi(A), \phi(B)]_{\eta}^{2}=0,
$$

for every $A, B \in \mathcal{B}(\mathcal{H})$ and for some scalar η with $\eta \neq 0,1,-1$.
Lemma 2.2. ϕ preserves the square zero operators in both directions.

Proof. Let $A \in \mathcal{B}(\mathcal{H})$. By assumptions we have

$$
\begin{aligned}
A^{2}=0 & \Leftrightarrow(1+\eta)^{2} A^{2}=[A, I]_{\eta}^{2}=0 \\
& \Leftrightarrow[\phi(A), I]_{\eta}^{2}=0 \\
& \Leftrightarrow(1+\eta)^{2} \phi(A)^{2}=0 \\
& \Leftrightarrow \phi(A)^{2}=0 .
\end{aligned}
$$

The following theorem is a straightforward consequence of Theorem 2.1 in [7].

Theorem 2.3. Let \mathcal{H} be an infinite dimensional Hilbert space and ϕ : $\mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})$ be a surjective additive map satisfying $\phi(I)=I$. Assume that ϕ preserves the square zero operators in both directions. Then ϕ is injective and preserves the idempotent operators in both directions.

Lemma 2.4. ϕ is injective and preserves the idempotent operators in both directions.

Proof. It is clear by assumptions and Theorem 2.3.
Lemma 2.5. There exists either a bounded invertible linear or a conjugate linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\phi(P)=T P T^{-1}
$$

or

$$
\phi(P)=T P^{*} T^{-1}
$$

for every $P \in \mathcal{I}(\mathcal{H})$.

Proof. Since ϕ is additive and by Lemma 2.4 preserves idempotent operators in both directions, then ϕ preserves the orthogonality of idempotent operators in both directions. Thus we can obtain the form of ϕ on idempotents by Lemma 3.1 in [5].

Remark 2.6. Let T be the same operator defined in Lemma 2.5. It is clear that $\Psi=T^{-1} \phi T: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ satisfies the assumptions on ϕ. Therefore, without loss of generality we can assume that $\phi(P)=P$ or $\phi(P)=P^{*}$ for every $P \in \mathcal{I}(\mathcal{H})$.

Now we are in a position to prove our main result.

Proof of Main Theorem. Let $A \in \mathcal{B}(\mathcal{H})$ such that ker $A \neq 0$. Let $x \in \operatorname{ker} A$ be nonzero. Hence there exists a nonzero vector $y \in \mathcal{H}$ such that $<x, y>=1$. Let the first case of Lemma 2.5 occurs. So by Remark 2.6, $\phi(x \otimes y)=x \otimes y$. By $A x=0$ and Proposition 2.1 we infer that $[A, x \otimes y]_{\eta}^{2}=0$ and by assumption

$$
[\phi(A), \phi(x \otimes y)]_{\eta}^{2}=[\phi(A), x \otimes y]_{\eta}^{2}=0
$$

Using again Proposition 2.1 implies

$$
\begin{equation*}
\phi(A) x<\phi(A) x, y>=-\eta x<\phi(A)^{2} x, y> \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(A) x=-\eta x<\phi(A) x, y> \tag{2}
\end{equation*}
$$

or $\phi(A)^{*} y=0$. We assert that $\phi(A) x=0$. We assume on the contrary that $\phi(A) x \neq 0$. Let us first assume that (1) and (2) occur.

Thus

$$
-\eta x<\phi(A) x, y>^{2}=-\eta x<\phi(A)^{2} x, y>
$$

and since $\eta \neq 0,<\phi(A) x, y>^{2}=<\phi(A)^{2} x, y>$. It easily follows that x, $\phi(A) x$ and $\phi(A)^{2} x$ are linearly dependent, because otherwise, there exists a vector y such that $<x, y>=1$ and $<\phi(A) x, y>^{2} \neq<\phi(A)^{2} x, y>$.

If x and $\phi(A) x$ are linearly dependent, then $\phi(A) x=\alpha x$ for some nonzero scalar α. From (2) we obtain $\alpha x<x, y>=-\eta \alpha x<x, y>$ which implies that $\eta=-1$, that is a contradiction. If x and $\phi(A) x$ are linearly independent, then we conclude that $\phi(A)^{2} x \in \operatorname{span}\{\phi(A) x, x\}$ and so $\phi(A)^{2} x=\alpha \phi(A) x+\beta x$ for some scalars α, β. It implies that $<\phi(A)^{2} x, y>=\alpha<\phi(A) x, y>+\beta$. According to (1)

$$
\phi(A) x<\phi(A) x, y>=-\eta x(\alpha<\phi(A) x, y>+\beta) .
$$

Since x and $\phi(A) x$ are linearly independent, $\langle\phi(A) x, y\rangle=0$ which by (2) implies, $\langle x, y\rangle=0$, a contradiction.

Now let $\phi(A)^{*} y=0$. Since we assume that $\phi(A) x \neq 0$, there exists a vector y such that $\langle x, y\rangle=1$ and $\langle\phi(A) x, y\rangle \neq 0$. This implies $<x, \phi(A)^{*} y>\neq 0$. It is a contradiction, because $\phi(A)^{*} y=0$. The proof of assertion is completed and so $\operatorname{ker} A \subseteq \operatorname{ker} \phi(A)$, when $\operatorname{ker} A \neq 0$. This implies that if $\operatorname{ker} A \neq 0$, then $\operatorname{ker} \phi(A) \neq 0$ and this with a similar discussion as above yields that $\operatorname{ker} \phi(A) \subseteq \operatorname{ker} A$. Therefore, $\operatorname{ker} \phi(A)=\operatorname{ker} A$ for every operator A such that ker $A \neq 0$. Moreover, this implies that ker $A \neq 0$ if and only if $\operatorname{ker} \phi(A) \neq 0$ which yields that $\operatorname{ker} A=0$ if and only if $\operatorname{ker} \phi(A)=0$. Hence $\operatorname{ker} \phi(A)=\operatorname{ker} A$ for every operator A and so $F(\phi(A))=F(A)$ and since ϕ is additive, $F(\phi(A)+\phi(B))=F(A+B)$ for every $A, B \in \mathcal{B}(\mathcal{H})$. The form of such ϕ has been given in [9], Theorem 3.5. By this theorem, $\phi(A)=U A+R$ such that $U=I-2 \phi(0)$ and $R=\phi(0)$. Since ϕ is additive, $\phi(A)=A$. With a similar discussion, we obtain $\phi(A)=A^{*}$, when the second case in Lemma 2.5 occurs. These together with Remark 2.6 complete the proof.

References

[1] M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, "Mappings preserving zero products", Studia mathematica, vol. 155, no. 1, pp. 77-94, 2003, doi: 10.4064/sm155-1-6
[2] M. Dobovišek, B. Kuzma, G. Lešnjak, C. Li, and T. Petek, "Mappings that preserve pairs of operators with zero triple Jordan product", Linear algebra and its applications, vol. 426, no. 2-3, pp. 255-279, Oct. 2007, doi: 10.1016/j.laa.2007.04.017
[3] G. Dolinar, S. Du, J. Hou, and P. Legiša, "General preservers of invariant subspace lattices", Linear algebra and its applications, vol. 429, no. 1, pp. 100-109, Jul. 2008, doi: 10.1016/j.laa.2008.02.007
[4] L. Fang, G. Ji, and Y. Pang, "Maps preserving the idempotency of products of operators", Linear algebra and its applications, vol. 426, no. 1, pp. 40-52, Oct. 2007, doi: 10.1016/j.laa.2007.03.030
[5] J. Hou and L. Huang, "Maps completely preserving idempotents and maps completely preserving square-zero operators", Israel journal of mathematics, vol. 176, no. 1, pp. 363-380, Mar. 2010, doi: 10.1007/s11856-010-0032-y
[6] L. Molnár, "Non-linear Jordan triple automorphisms of sets of selfadjoint matrices and operators", Studia mathematica, vol. 173, no. 1, pp. 39-48, 2006, doi: 10.4064/sm173-1-3
[7] P. Šemrl, "Linear mappings that preserve operators annihilated by a polynomial", Journal of operator theory, 36, pp. 45-58, 1996. [On line]. Available: https://bit.ly/2ZCJnB1
[8] A. Taghavi and R. Hosseinzadeh, "Maps preserving the dimension of fixed points of products of operators", Linear and multilinear algebra, vol. 62, no. 10, pp. 1285-1292, Sep. 2013, doi: 10.1080/03081087.2013.823680
[9] A. Taghavi, R. Hosseinzadeh, and H. Rohi, "Maps preserving the fixed points of sum of operators", Operators and matrices, no. 3, pp. 563-569, 2015, doi: 10.7153/oam-09-34
[10] A. Taghavi, F. Kolivand, and H. Rohi, "A note on strong η-Lie products preserving maps on some algebras", Mediterranean journal of mathematics, vol. 14, no. 1, 2017, doi: 10.1007/s00009-016-0824-3
[11] M. Wang, L. Fang, and G. Ji, "Linear maps preserving idempotency of products or triple jordan products of operators", Linear algebra and its applications, vol. 429, no. 1, pp. 181-189, Jul. 2008, doi: 10.1016/j.laa.2008.02.013
[12] J.-H. Zhang and F.-J. Zhang, "Nonlinear maps preserving Lie products on factor von Neumann algebras", Linear algebra and its applications, vol. 429, no. 1, pp. 18-30, Jul. 2008, doi: 10.1016/j.laa.2008.01.031

