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1. Introduction

Let A be a Banach algebra, A,B ∈ A and η be a scalar. The Lie product, η-
Lie product and triple Jordan products are defined as [A,B] = AB −BA,
[A,B]η = AB + ηBA and A ∗ B = ABA, respectively. In last decade,
Many mathematician research on the preserving problems. Specially, maps
preserving a certain property of products were often considered, see [1−4],
[6], [8] and [10− 12]. We point to some of them close to our purpose.

Authors in [10], considered the maps that strongly preserve the η-Lie
product, that is φ(A)φ(P ) + ηφ(P )φ(A) = AP + ηPA, for every A, some
idempotent P and some scalar η. Author in [12], identified the forms of
bijective maps preserving Lie products from a factor von Neumann algebra
into another factor von Neumann algebra.

Let B(X ) be the algebra of all bounded linear operators on a Banach
space X . In [4], authors characterized the form of unital surjective maps on
B(X ) preserving the nonzero idempotency of product of operators in both
directions. Also in [11], authors characterized the form of linear surjective
maps on B(X ) preserving the nonzero idempotency of either products of
operators or triple Jordan products of operators.

We say an operator A ∈ B(X ) is a square zero operator, when A2 = 0.
Let B(H) be the algebra of all bounded linear operators on an infinite di-
mensional Hilbert space H. In this paper, we identify the form of surjective
additive map φ : B(H)→ B(H) such that φ(I) = I and preserves the square
zero of η-Lie product of operators for some scalar η with η 6= 0, 1,−1. The
complete form of our main result is as following:

Main Theorem. Let B(H) be the algebra of all bounded linear oper-
ators on an infinite dimensional Hilbert space H. Let φ : B(H)→ B(H) be
an unital surjective additive map which satisfies

[A,B]2η = 0⇔ [φ(A), φ(B)]2η = 0,

for every A,B ∈ B(H) and for some scalar η with η 6= 0, 1,−1. Then
there exists either a bounded invertible linear or a conjugate linear operator
T : H→ H such that

φ(A) = TAT−1 or φ(A) = TA∗T−1

for every A ∈ B(H).

rvidal
Cuadro de texto
592



Maps preserving the square zero of η-Lie product of operators 637

2. Proofs

First we recall some notations. We denote by I(H) the set of all idempotent
operators in B(H). For every nonzero x, y ∈ H, the symbol x ⊗ y stands
for the rank one linear operator on H defined by (x⊗ y)z =< z, y > x for
any z ∈ H. Note that every rank one operator in B(H) can be written in
this way.

The rank one operator x⊗ y is idempotent if and only if < x, y >= 1.
Let P,Q ∈ B(H) be idempotent operators. We say that P and Q are
orthogonal if and only if PQ = QP = 0.

Proposition 2.1. Let A ∈ B(H), x, y ∈ H such that < x, y >= 1 and let
η be a scalar such that η 6= 0, 1,−1. Then [A,x⊗y]2η = 0 if and only if only
one of the following statements occurs: (i) Ax < Ax, y >= −ηx < A2x, y >
and Ax = −ηx < Ax, y >. (ii) A∗y = 0.

Proof. Assume first that Ax < Ax, y >= −ηx < A2x, y > and
Ax = −ηx < Ax, y >. Hence

[A, x⊗ y]2η = (Ax⊗ y + ηx⊗A∗y)2

=< Ax, y > Ax⊗ y + ηAx⊗A∗y
+η2 < Ax, y > x⊗A∗y + η < A2x, y > x⊗ y
= −ηx < A2x, y > ⊗y − η2x < Ax, y > ⊗yA
+η2 < Ax, y > x⊗A∗y + η < A2x, y > x⊗ y = 0.

Now if A∗y = 0, then

[A, x⊗ y]2η = (Ax⊗ y + ηx⊗A∗y)2

= (Ax⊗ y)2 =< Ax, y > Ax⊗ y
=< x,A∗y > Ax⊗ y = 0.

Conversely, Assume that [A,x⊗ y]2η = 0. It is clear that

B2 = 0⇔ B(Bx) = 0, ∀x ∈ X ⇔ Im B ⊆ kerB.

This together with assumption implies

[A, x⊗ y]2η = 0⇔ Im[A, x⊗ y]η ⊆ ker[A, x⊗ y]η.
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Let A∗y 6= 0. If A∗y and y are linearly independent, then In the following
lemmas, assume that φ : B(H)→ B(H) is an unital surjective additive map
which satisfies

[A,B]2η = 0⇔ [φ(A), φ(B)]2η = 0,

for every A,B ∈ B(H) and for some scalar η with η 6= 0, 1,−1.

Lemma 2.2. φ preserves the square zero operators in both directions.

Proof. Let A ∈ B(H). By assumptions we have

A2 = 0 ⇔ (1 + η)2A2 = [A, I]2η = 0

⇔ [φ(A), I]2η = 0

⇔ (1 + η)2φ(A)2 = 0

⇔ φ(A)2 = 0.

2 The following theorem is a straightforward consequence of Theorem 2.1
in [7].

Theorem 2.3. Let H be an infinite dimensional Hilbert space and φ :
B(H) −→ B(H) be a surjective additive map satisfying φ(I) = I. Assume
that φ preserves the square zero operators in both directions. Then φ is
injective and preserves the idempotent operators in both directions.

Lemma 2.4. φ is injective and preserves the idempotent operators in both
directions.

Proof. It is clear by assumptions and Theorem 2.3. 2

Lemma 2.5. There exists either a bounded invertible linear or a conjugate
linear operator T : H→ H such that

φ(P ) = TPT−1

or

φ(P ) = TP ∗T−1

for every P ∈ I(H).
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Proof. Since φ is additive and by Lemma 2.4 preserves idempotent
operators in both directions, then φ preserves the orthogonality of idem-
potent operators in both directions. Thus we can obtain the form of φ on
idempotents by Lemma 3.1 in [5]. 2

Remark 2.6. Let T be the same operator defined in Lemma 2.5. It is clear
that Ψ = T−1φT : B(H)→ B(H) satisfies the assumptions on φ. Therefore,
without loss of generality we can assume that φ(P ) = P or φ(P ) = P ∗ for
every P ∈ I(H).

Now we are in a position to prove our main result.

Proof of Main Theorem. Let A ∈ B(H) such that kerA 6= 0. Let
x ∈ kerA be nonzero. Hence there exists a nonzero vector y ∈ H such that
< x, y >= 1. Let the first case of Lemma 2.5 occurs. So by Remark 2.6,
φ(x⊗y) = x⊗y. By Ax = 0 and Proposition 2.1 we infer that [A, x⊗y]2η = 0
and by assumption

[φ(A), φ(x⊗ y)]2η = [φ(A), x⊗ y]2η = 0.

Using again Proposition 2.1 implies

(1) φ(A)x < φ(A)x, y >= −ηx < φ(A)2x, y >

and

(2) φ(A)x = −ηx < φ(A)x, y >

or φ(A)∗y = 0. We assert that φ(A)x = 0. We assume on the contrary that
φ(A)x 6= 0. Let us first assume that (1) and (2) occur.

Thus
−ηx < φ(A)x, y >2= −ηx < φ(A)2x, y >

and since η 6= 0, < φ(A)x, y >2=< φ(A)2x, y >. It easily follows that x,
φ(A)x and φ(A)2x are linearly dependent, because otherwise, there exists
a vector y such that < x, y >= 1 and < φ(A)x, y >2 6=< φ(A)2x, y >.

If x and φ(A)x are linearly dependent, then φ(A)x = αx for some
nonzero scalar α. From (2) we obtain αx < x, y >= −ηαx < x, y >
which implies that η = −1, that is a contradiction. If x and φ(A)x are
linearly independent, then we conclude that φ(A)2x ∈ span{φ(A)x, x}
and so φ(A)2x = αφ(A)x + βx for some scalars α, β. It implies that
< φ(A)2x, y >= α < φ(A)x, y > +β. According to (1)

φ(A)x < φ(A)x, y >= −ηx(α < φ(A)x, y > +β).
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