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1. Introduction

Given a commutative ring R, one can consider whether the structure

(R;0,1,+,|), where | denotes the divisibility relation, is decidable. This line
of research has been studied for several years. In [10] J. Robinson showed
that the first order theory of (Z; 0,1, +,|) is undecidable. Later on, Lipshitz
[8] (and independently, Bel’tyukov [1]) proved that the positive existential
theory of (Z;0,1,+,|) is decidable; this also holds in any ring of algebraic
integers of an imaginary quadratic number field. In [7] and [9] Liphitz
proved that multiplication is positive existentially definable from addition
and divisibility in the ring of integers O, whenever K is a number field
which is neither Q nor imaginary quadratic. Thus, the positive-existential
theory of (Ok;0,1,4+,]|) is decidable if and only if the positive-existential
theory of the ring Ok is decidable.

In [3] Pheidas proved that the existential theory of addition and divis-
ibility in a ring of polynomials F[t], over a field F', with constants for the
elements 0, 1, and ¢, is decidable if and only if the ring-theory of F' is decid-
able. He also showed, in [4], that this result does not extend to polynomials
in two variables. In order to do so, he shows that the positive existential
theory of of the structure (A[t,t7'];0,1,+, |,z + tx), where x + tx repre-
sents the multiplication by ¢ map, is undecidable whenever A is an integral
domain. In this paper we extend Pheidas result to holomorphy rings of
rational functions over finite fields.

Our main result is the following.

Main Theorem 1.1. If S is a non-empty finite set of irreducible polyno-
mials, then multiplication is positive existentially definable in

.7'—5' = (S_IF[t]/ :aF7Oa 17—1_’ |7f = tf)

In particular, the positive existential theory of the structure Fg is undecid-
able.

The analogous result for the rational integers also holds and it was
proved by the authors in [2]. The proof follows closely the one from [2]
which is classical in this sort of problems, and consists of gradually defining
the multiplication: first we square units, then we multiply a unit by an
arbitrary element of the ring, and finally we define the squaring function.
Multiplication is definable from the squaring function thanks to the identity
(x4 y)* = 2 + 2zy + 3.
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The main differences whit results presented in [2] are that we need a
deep result from Lenstra [6] to define the relation different from zero, and
the main formula is different and requires new arguments. However, it
is worth pointing out, that Lemmas 3.4, and 3.6 and Proposition 3.5 are
straightforward adaptations of Lemmas 2.11, 2.14 and Proposition 2.12 in
[2], respectively and are added for the sake of completeness.

Before proceeding any further we need to introduce some notation.

So from now on we fix an arbitrary finite field F of odd characteristic,
and a non-empty finite set

S:{Ql,...,QM}

of M monic irreducible polynomials. Our goal is to define multiplication
on the structure

Fs=(S7'F[t;=,F,0,1,+,|, f — tf).
Notation 1.2. 1. as (z,y) stands for the formula x|y A y|x (namely, x

and y are associate).

2. vty |w= z stands for
r+ylwtzAz—y|lw-—z

3. Ify = (1, .,7Mm) is a vector of natural numbers and Q = (Q1, ...,Qnr),
then Q7 will stand for the product
M

[[or

i=1
Definition 1.3. Let ordgz be the Q-adic order of x € F(t). We define a
norm function N: S~'F[t] — F[t] by
—ordg;

T+— X H Q;
if x # 0, and N(0) = 0.
We observe that the function IV satisfies the following:
o N(xy) = N(x)N(y)
o N(z)=0ifonly if x =0
e z | yifonlyif N(z) |py N(y), where [py) means “divisibility in F[t]”.
e The norm of a unit is a unit in F.

From now on, whenever it is clear from the context, we use the “|”

symbol to indicate divisibility both in both rings S~!F[t] and F[t].
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2. Definability of “to be distinct”

We start by proving that the relation “different from 0” is positive-existentially
definable in Fg. In order to do this, we need the following results. The
first one is an analogue of Dirichlet theorem for primes in arithmetic pro-
gressions — see [5].

Theorem 2.1 (Kornblum, ’19). Let a,m € F[t] be two relatively prime
polynomials. If m has positive degree, then the set

I'={p € Ft]:p =a (mod m), p is irreducible}
has positive Dirichlet density. In particular, I' is infinite.

Before stating the next result, we need to introduce some notation:
e K is a function field in one variable over a finite field.

e [ is a finite Galois extension of K.

C' C Gal(F/K) is a union of conjugacy classes.

W is a finitely generated subgroup of K*, of rank » > 1 modulo its
torsion subgroup.

e k is an integer relatively prime with the characteristic p of K.

e If p is a prime of K, (p, F//K) will denote the Frobenius symbol.

Let M = M(K, F,C,W, k) denote the set of primes p so that:
L (p. F/K)CC,
2. ordp (w) =0 for all w € W, and

3. ifyp: W — 7; denote the quotient map to the unit subgroup of the
residue class field, then the index of ¢ (W) in 7; divides k.

Lenstra [6] found a formula for the Dirichlet density of M. In order to
state this formula, we need to introduce some further notation. Consider
K, F, C, W and k as above. For a prime number ¢ # p, let ¢(¢) be the
smallest power of ¢ not dividing k and let

Ly=K (Cq(€)7 Wﬁ)
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be the field obtained by adjoining all ¢(¢)-roots of the elements of W to K.
If n is a positive square-free integer, relatively prime to p, then define L,
to be the composite of the fields L, where £ is a prime factor of n. Define

Cpn={0¢€ Gal(F-L,/K):op € C, and oy, # 1dg, for all {|n}

and
&

T IF Ly K]
Note that if n divides m, then a, > a,, > 0. It follows that the sequence

(an) has a limit as n ranges over all square free integers relatively prime to
p, ordered by divisibility. Let a = lim a,.

Theorem 2.2 (Lenstra, *77). If K is a function field in one variable over
a finite field then the set M has Dirichlet density a.

Lemma 2.3. There exists an irreducible polynomial q not in S, and a
polynomial b € F|t] of degree less than q, such that gz + b is never a unit
of STIF[t] as = varies over STIF[t].

Proof. Let K = F = F(t), C = {Idx},k = 2 and let W be the
multiplicative subgroup of K* generated by F* U S. Observe that if p ¢
M(K, F,C,W, k), then the index of ¢(WW) in F; does not divide 2. In
particular, ¥(W) # 7;. Since S is non-empty, the identity is not in C,,
hence a,, < 1 for each possible n > 1, so by Lenstra’s theorem, the Dirichlet
density of M is less than 1.

Choose q=(q)¢ M such that ¢ € K is irreducible and different from
all @;, and b a polynomial of degree less than the degree of ¢ whose class
modulo ¢ lies in 7;; \ ¥(W). The polynomials ¢ and b trivially satisfy the
desired condition.

Lemma 2.4. The relation # is positive-existentially definable in the struc-
ture Fg.

Proof. Let ¢ and b be some polynomials given by Lemma 2.3. The
formula

Yx(y): JA, B,x(y | ANqx +b| BANA+ B =1)

defines the relation “y # 0” in Fg.
First note that the formula 9. (y) translates to “There exist r, s,z €
S~1F[t] such that ry + s(qz +b) = 17 in Fg.
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If y = 0, then the formula is false, since by Lemma 2.3, gx + b is never
a unit in STIF[t].

Assume y # 0. Since ¢ and b are relatively prime, by Kornblum’s
theorem, there exists x such that gx + b is an irreducible, and furthermore
coprime with N(y). By Bézout’s identity, which holds in any Euclidean
domain, there are polynomials ' and s such that

' N(y) + s(qz +b) = 1.
/

Since y = N(y)u, where u is a unit, we have 7n—y +s(qx +b) =1.
u

Remark 2.5. As usual, once we have proved that a relation is positive-
existentially definable we can use it freely in forthcoming formulas.

3. Definability of multiplication

Given z € F(t)*, define sgn(z) to be the unique a € F such that

ax
z=—,
Y

and x and y are monic polynomials. By ord..z we mean the difference
of degrees degy — degx. In order to have simpler statements along this
section, we may write ordg. instead of ords. It is easy to see that

sgn(z -y) = sgn(z) - sgn(y),
and if ordg_z # ordg.y, then
sgn(z +y) € { sgn(z), sgn(y)}.

Lemma 3.1. Let z, y, z and v be arbitrary elements of S~ F[t]. Assume
that for all i € {oo,1,..., M} we have ordg,x # ordg,y and ordg,z #
ordg,v. If the formula as(x £y, z £ v) holds in Fg, then either we have
TV = Yz or Tz = Yv.

Proof. Let ui, us be units such that
(3.1) r+y=u(z+v) and x—y=mu2(z—v).
Observe that since ordg,z # ordg,y, we have

ordg, (z + y) = min{ ordg,z, ordg,y} = ordg,(z —y)
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and since ordg,z # ordg,v, we have
ordg,(z + v) = min{ ordg,z, ordg,v} = ordg,(z —v)
for all 1 <7 < M. Thus, for each 1 <7 < M, we have

ordg,u1 + min{ ordg,z, ordg,v} = min{ ordg,z, ordg,y}
ordg,us + min{ ordg,z, ordg,v} = min{ ordg,z, ordg,y}

so that ordg,u1 = ordg,us (note that the hypothesis of the Lemma imply
that all the terms in these equalities are actual integers). This implies that
u1 = aug for some a € F*. Now we show that ¢ = +1.

Since ordg.x # ordg.y and ordg,z # ordg. v we have

sgn(z +y) =+ sgn(x —y) and sgn(z+v) == sgn(z — v).

On the other hand, since we have

san(uy) = BTV san(ug) = SEEZY)
sgn(z + v) sgn(z — v)
we get a = +1.
This implies that either u; = us or u; = —us. We proceed by cases.

If u; = ug, then from Equations (3.1), we have z + y = u1z + ujv and
r —y = u1z —u1v. By adding and subtracting these equations, we obtain
x = wu1z and y = ujv, hence zv = yz.

If u; = —ug, then from Equations (3.1), we have z +y = w1z + ujv and
r—y = —u1z 4+ uv. By adding and subtracting these equations again, we
obtain x = uiv and y = u1 2, hence xz = vy.

The next Lemma is a first step to define the squaring function among
units of STIF[t].

Lemma 3.2. Let z and y be units in S~'F[t] such that x # +1 and y # 1.
Assume that for alli € {00, 1,..., M} we have ordg,x # ordg,y. We have:

y = x? if and only if Fg satisfies as(z + 1,y + ).

Proof. If y = 22 then S™'F[t] trivially satisfies as(z + 1,y & x) (since
r is a unit). Suppose that as(z + 1,y & z) is true in S~!F[t]. By Lemma

3.1, either y = 22 or xy = x. Since x is a unit and y # 1, we conclude that

y = 2.

From Lemma 3.2, we can show that the squaring function between units
is positive-existentially definable.
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Proposition 3.3. The set
SQ. = {(z,y): x,y are units in ST'F[X] and y = 2°}

is positive-existentially definable in the structure Fg.

Proof. Write I = {0,1,2,3,4}™ and consider the formula
Squ(z,y):x | 1Ay | 1A /\ as(Q'z +1,QYy + Qx)
yel

where ~ reads as (v1,...,7v:) (see Notation 1.2).
Assume that (z,y) holds. In particular, for each ~;, for i € {1,...M}, in

1
~vi €{0,1,2,3,4} \ {— ordg,z, —3 ordg,y, ordg,x — oriny} ,

Q"x and Q*'y satisfy the hypothesis of Lemma 3.2 except maybe for the
order at infinity. So we have to make sure that

ordg., QYy — ordg, Q" x # 0,

hence that "
ordg. y — ordg. x + Z ordg. Q)" #0,
i=1
which clearly can be done since we still have two degrees of freedom for
choosing 1 (say). We conclude that y = 22.
Write v(x,y, z) for the formula

as(y £ 1,z + ) Aas(y + z, 2 + 2?).

Lemma 3.4. Letx be a unit in Fg withx # +1. Iffor alli € {oo, 1, ..., M},
we have ordg,y # 0, ordg,z # ordg,x, ordg,y # ordg,x and ordg,z #
ordg,x?, then z = xy if and only if Fg satisfies v(x,y, 2).

Proof.  Assume that the formula v(z,y, 2) holds in Fs. By Lemma 3.1,
since as(y £ 1, z £+ x) holds, we have that either z = zy or z = yz. Again
by Lemma 3.1, since as(y £ =,z £ ZL‘2) holds, we have that either z = xy or
23 = yz. So the only case in which we may have z # zy is when = = yz
and 23 = yz, which would imply that x = +1.

Proposition 3.5. The set
P ={(x,y,z) : x is a unit and z = zy}

is positive existentially definable in the structure Fg.
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Proof. Write I = {0,1,2,3,4}*. The formula

Pro(z,y,z):x | 1A /\ v(Q 'z, Q%, Q" z)
(6,yv)eIxI

defines the set P. Note that if z = xy, then Pro(x,y, z) is trivially satisfied
for (z,y, z) € P, since Q" is a unit. We now prove the converse. We choose
di, for i € {1,..., M}, such that

9; €{0,1,2,3,4} \ {— ordg,y, ordg,z — ordg,z}.
Once d; has been chosen, we choose ~; such that
v € {0,1,2,3,4}\{— ordg,z, 6;+ ordg,y— ordg,z,d;+ ordg,z—2 ordg,x}.
From «; # — ordg,z we have Q7x # £1. In addition for each ¢, we have
° orinQ‘sy = 0; + ordg,y # 0,
e ordg,Q% — ordg,@"z = §; + ordg,y —vi — ordg,r # 0 and
o ordg, @tz — ordg,Q*x? = 6; + ordg,z —; — 2 ordg,x # 0,

as before we still have two degrees of freedom to make the order at infinity
differ so that we can arrange that Q7z, Q%y and Q%7 satisfy the hy-
pothesis of Lemma 3.4. Since we assumed that (x,y, z) holds, in particular
v(QVz, Q%y, Q°+72) holds, so we can conclude that z = xy.

Lemma 3.6. Given x1,...,z, € ST'F[t]\ {0}, there exists a unit u # 1
so that each of x4, ..., and x, divides u — 1.

Proof. Choose any irreducible polynomial P in S and consider
w=P lem{¢(|N (z;)|):i=1,...,n}
where “lem” stands for “least common multiple”. Since N(z;) divides

pANG@)l) 1

in F[t] (by Euler’s theorem - note that N(x;) is prime with P by definition
of the norm), also it divides u — 1, hence

ordp . x;
zi=N@) [[Q; ¥
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divides u — 1 in Fg.
Write I = {0,1}*. Consider the formula ¢(z,)

FuyFu(uy | 1Aug # 18w # IAz+1 | ug—1Ay+1 | ug—1A(u1—1)'8 | u—1Ap0(z, y))
where pg(x,y) is defined as:

/\ z+Qu |y — QM.

vel

Lemma 3.7. Let v,y € S™'F[t]. Assume that for all i € {oo0,1,..., M}
we have ordg,z # 0, ordg,y # 0. If ¢(x,y) holds in Fs, then y = x2.

Proof. Write

M M M
r=fII1Q", v=9g[[Q) and uw=xr][Q)
i=1

i=1 =1

where f (and g) is a polynomial relatively prime with each @;, and k € F*.
From ordg,z # 0 and ordg,y # 0 we have

N@+1)=f]] o+ J] @™

a; >0 ;<0

and

Ny+1) =g ] Q%+ [T @™

B:i>0 B:i<0
Since x + 1 divides u; — 1, also N(z + 1) divides N(u; — 1) in F[t], hence
in particular, since uj is not 1, we have

deg(N(z +1)) < deg(N(u1 — 1)).

On the other hand, since x has non-zero order at infinity, the degree of
N(z + 1) is equal to either

deg(f) + Z a;

a; >0

or

so that we have
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M
(3.2) deg(f) + Z loi| < 2deg(N(up —1))

Analogously, we have

(3-3) deg(g) + Z |Bi| < 2deg(N(u1 —1))

i=1

From Equations (3.2) and (3.3) and because u is not 1 by hypothesis, we
have

2 (2deg(f) + 20, Jou| + deglg) + XM, 8]) < 12deg(N(u — 1))
< 16deg(N(u; — 1))
< deg(N(u —1)),

hence

M
2deg(f)+22\oai!+deg —l—Z\Bz! < deg(N (Z\az\ + Z

=1 =1 a; >0;
(3.4)
On other hand, we have

y—a:Q—P(g [T e -r 1l Q?O"'_ﬁi),
51

i—2a; >0 Bi—2a;<0

where P is a product of powers of the polynomials @);, hence

deg(N(y—2?) <deg( [I QF 7 —y* I Q™)

Bi—20; >0 Bi—20;<0

M M
< 2deg(f) +2 ;1 || 4 deg(g) + ‘:Ll il

so from the relation (3.4), we get

(3.5) deg(N(y — 2?)) < deg(N(u — 1)) (Z ;| + Z ) .

a;>0;
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For the sake of contradiction, assume that % is not equal to 22. Since we
assume that ¢(z,y) holds, in particular by choosing v; € {0, 1} \ {a; — 0;}
for each i, we have

x =+ HQ?ZU |y — HQ?%’LF
Since also

x+ HQZIU | 22 — I_IQ?%'U2
by taking the difference, we obtain

xiHQ;”'u |y — 22,
therefore
(3.6) deg (N(z = [ Q)'w)) < deg(N(y — 22).
We claim that either

deg(N(u — 1)) Z || < deg(N(z + [] Q7))
or
deg(N(u—1)) Z || < deg(N(z — ] Q}"w)),
hence by (3.5), either
deg(N(y — 2%)) < deg(N(z + [[ Q7u))

or

deg(N (y — %)) < deg(N(z — [[ Q}"w))

which contradicts (3.6).
In order to prove the claim, note that

deg(N(u — 1)) <Z\5\

hence

deg(N(u—1)) (Zya,|+z )

;>0
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is less than or equal to

Zlél—(ZlazH > (a )

a; >0;

On other hand, for some choice of the sign (and from our choice of
the v;) we have that deg(N(z + [[ Q] u)) is equal to the maximum value
between

deg(f)+ > (i —(vi+d))

a;>7i+6;

and

Y (it —a)

;<vi+6;

(indeed, only choice of sign may produce cancelation in z +]] Q;*u). Hence
it suffices to show that

Z’M‘(Z’%H‘Z ) S (i — ).

a;>6; a; <vi+6;
We have
Z|5|—(Z|az|+z ) > (46 — i)
a;>0; 0; <V +9;
<Z|5 a1|—Z(aZ—5i)— Z (i +0; — ;)
;>0; ;< +0;
= Z (6i — i) — Z (Vi + 6 — ;)
0;<0; 0 <405
<D (=)= > (vt 6 — o) 0.
ai<5i ai<5i

Write J = {0, 1,2} and consider the following formula ) (z,y):

A @ (Q'7,0%y).

oeJ

Proposition 3.8. If¢(z,y) holds in Fg, then y = x2.
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Proof. This is an immediate consequence of Lemma 3.7, noting that
there exists a choice of § for which we have ordg, @’z # 0 and ordg, Q®y #
0 for each i (from the definition of .J).

We can now conclude.

Lemma 3.9. The set
SQu = {(IB,y)I:B,y are in S‘lF[t] and y = x2}

is positive existentially definable in the structure Fg.

Proof. We claim that the formula

Sq(z,y): (z=0Ay=0)V \/ (x=4+Q° Ay =Q )V (x,y),
éedJ

defines the set SQ,. Indeed, if the formula holds, then it is immediate from
Proposition 3.8 that y = 22.

Assume (z,y) € SQ,. Without loss of generality, we can assume z # 0
and, z # Q% and z # —Q % for all § € J. Thus, for each § € J,
Q¥y+1+#0.

From Lemma 3.6, there is a unit u; distinct from 1 such that Q%z + 1
divides 1 — 1 and Q%y + 1 divides u; — 1. Because u; — 1 is not zero we
deduce, from Lemma 3.6 again, that there is a unit u different from 1 such
that

(’LL1 — 1)16 | u—1.
In addition, we have /\ Q%z + Qu | Q¥y — Q*u®. Thus, the

(0,y)eJxI
formula v (x,y) is satisfied.
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