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be the field obtained by adjoining all q(c)-roots of the elements of W to K.
If n is a positive square-free integer, relatively prime to p, then define Ln

to be the composite of the fields Lc where c is a prime factor of n. Define

Cn = {σ ∈ Gal(F · Ln/K):σ|F ∈ C, and σ|Lt 6= IdLc for all c|n}

and

an =
|Cn|

[F · Ln:K]
.

Note that if n divides m, then an ≥ am ≥ 0. It follows that the sequence
(an) has a limit as n ranges over all square free integers relatively prime to
p, ordered by divisibility. Let a = lim an.

Theorem 2.2 (Lenstra, ’77). If K is a function field in one variable over
a finite field then the setM has Dirichlet density a.

Lemma 2.3. There exists an irreducible polynomial q not in S, and a
polynomial b ∈ F[t] of degree less than q, such that qx+ b is never a unit
of S−1F[t] as x varies over S−1F[t].

Proof. Let K = F = F(t), C = {IdK} , k = 2 and let W be the
multiplicative subgroup of K∗ generated by F∗ ∪ S. Observe that if p /∈
M(K,F,C,W, k), then the index of ψ(W ) in K

∗
p does not divide 2. In

particular, ψ(W ) 6= K
∗
p. Since S is non-empty, the identity is not in Cn,

hence an < 1 for each possible n > 1, so by Lenstra’s theorem, the Dirichlet
density ofM is less than 1.

Choose q=(q)/∈ M such that q ∈ K is irreducible and different from
all Qi, and b a polynomial of degree less than the degree of q whose class
modulo q lies in K

∗
q \ ψ(W ). The polynomials q and b trivially satisfy the

desired condition. 2

Lemma 2.4. The relation 6= is positive-existentially definable in the struc-
ture FS .

Proof. Let q and b be some polynomials given by Lemma 2.3. The
formula

ψ6=(y) : ∃A,B, x(y | A ∧ qx+ b | B ∧A+B = 1)

defines the relation “y 6= 0” in FS .
First note that the formula ψ6=(y) translates to “There exist r, s, x ∈

S−1F[t] such that ry + s(qx+ b) = 1” in FS.
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736 Leonidas Cerda-Romero and Carlos Mart́ınez-Ranero

If y = 0, then the formula is false, since by Lemma 2.3, qx+ b is never
a unit in S−1F[t].

Assume y 6= 0. Since q and b are relatively prime, by Kornblum’s
theorem, there exists x such that qx+ b is an irreducible, and furthermore
coprime with N(y). By Bézout’s identity, which holds in any Euclidean
domain, there are polynomials r0 and s such that

r0N(y) + s(qx+ b) = 1.

Since y = N(y)u, where u is a unit, we have
r0

u
y + s(qx+ b) = 1. 2

Remark 2.5. As usual, once we have proved that a relation is positive-
existentially definable we can use it freely in forthcoming formulas.

3. Definability of multiplication

Given z ∈ F(t)∗, define sgn(z) to be the unique a ∈ F such that

z =
ax

y
,

and x and y are monic polynomials. By ord∞z we mean the difference
of degrees deg y − deg x. In order to have simpler statements along this
section, we may write ordQ∞ instead of ord∞. It is easy to see that

sgn(x · y) = sgn(x) · sgn(y),

and if ordQ∞x 6= ordQ∞y, then

sgn(x+ y) ∈ { sgn(x), sgn(y)}.

Lemma 3.1. Let x, y, z and v be arbitrary elements of S−1F[t]. Assume
that for all i ∈ {∞, 1, . . . ,M} we have ordQix 6= ordQiy and ordQiz 6=
ordQiv. If the formula as(x ± y, z ± v) holds in FS , then either we have
xv = yz or xz = yv.

Proof. Let u1, u2 be units such that

x+ y = u1(z + v) and x− y = u2(z − v).(3.1)

Observe that since ordQix 6= ordQiy, we have

ordQi(x+ y) = min{ ordQix, ordQiy} = ordQi(x− y)
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and since ordQiz 6= ordQiv, we have

ordQi(z + v) = min{ ordQiz, ordQiv} = ordQi(z − v)

for all 1 ≤ i ≤M . Thus, for each 1 ≤ i ≤M , we have

ordQiu1 +min{ ordQiz, ordQiv} = min{ ordQix, ordQiy}
ordQiu2 +min{ ordQiz, ordQiv} = min{ ordQix, ordQiy}

so that ordQiu1 = ordQiu2 (note that the hypothesis of the Lemma imply
that all the terms in these equalities are actual integers). This implies that
u1 = au2 for some a ∈ F∗. Now we show that a = ±1.

Since ordQ∞x 6= ordQ∞y and ordQ∞z 6= ordQ∞v we have

sgn(x+ y) = ± sgn(x− y) and sgn(z + v) = ± sgn(z − v).

On the other hand, since we have

sgn(u1) =
sgn(x+ y)

sgn(z + v)
and sgn(u2) =

sgn(x− y)

sgn(z − v)
,

we get a = ±1.
This implies that either u1 = u2 or u1 = −u2. We proceed by cases.
If u1 = u2, then from Equations (3.1), we have x+ y = u1z + u1v and

x− y = u1z − u1v. By adding and subtracting these equations, we obtain
x = u1z and y = u1v, hence xv = yz.

If u1 = −u2, then from Equations (3.1), we have x+ y = u1z+u1v and
x− y = −u1z + u1v. By adding and subtracting these equations again, we
obtain x = u1v and y = u1z, hence xz = vy. 2

The next Lemma is a first step to define the squaring function among
units of S−1F[t].

Lemma 3.2. Let x and y be units in S−1F[t] such that x 6= ±1 and y 6= 1.
Assume that for all i ∈ {∞, 1, . . . ,M} we have ordQix 6= ordQiy. We have:

y = x2 if and only if FS satisfies as(x± 1, y ± x).

Proof. If y = x2 then S−1F[t] trivially satisfies as(x ± 1, y ± x) (since
x is a unit). Suppose that as(x± 1, y ± x) is true in S−1F[t]. By Lemma
3.1, either y = x2 or xy = x. Since x is a unit and y 6= 1, we conclude that
y = x2. 2

From Lemma 3.2, we can show that the squaring function between units
is positive-existentially definable.
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738 Leonidas Cerda-Romero and Carlos Mart́ınez-Ranero

Proposition 3.3. The set

SQu = {(x, y):x, y are units in S−1F[X] and y = x2}

is positive-existentially definable in the structure FS .

Proof. Write I = {0, 1, 2, 3, 4}M and consider the formula

Squ(x, y):x | 1 ∧ y | 1 ∧
^
γ∈I

as(Qγx± 1, Q2γy ±Qγx)

where γ reads as (γ1, . . . , γM) (see Notation 1.2).
Assume that (x, y) holds. In particular, for each γi, for i ∈ {1, ...M}, in

γi ∈ {0, 1, 2, 3, 4} \
½
− ordQix,−

1

2
ordQiy, ordQix− ordQiy

¾
,

Qγx and Q2γy satisfy the hypothesis of Lemma 3.2 except maybe for the
order at infinity. So we have to make sure that

ordQ∞Q
2γy − ordQ∞Q

γx 6= 0,

hence that

ordQ∞y − ordQ∞x+
MX
i=1

ordQ∞Q
γi
i 6= 0,

which clearly can be done since we still have two degrees of freedom for
choosing γ1 (say). We conclude that y = x2. 2

Write ν(x, y, z) for the formula

as(y ± 1, z ± x) ∧ as(y ± x, z ± x2).

Lemma 3.4. Let x be a unit in FS with x 6= ±1. If for all i ∈ {∞, 1, ...,M},
we have ordQiy 6= 0, ordQiz 6= ordQix, ordQiy 6= ordQix and ordQiz 6=
ordQix

2, then z = xy if and only if FS satisfies ν(x, y, z).

Proof. Assume that the formula ν(x, y, z) holds in FS. By Lemma 3.1,
since as(y ± 1, z ± x) holds, we have that either z = xy or x = yz. Again
by Lemma 3.1, since as(y± x, z ± x2) holds, we have that either z = xy or
x3 = yz. So the only case in which we may have z 6= xy is when x = yz
and x3 = yz, which would imply that x = ±1. 2

Proposition 3.5. The set

P = {(x, y, z) : x is a unit and z = xy}

is positive existentially definable in the structure FS .
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Proof. Write I = {0, 1, 2, 3, 4}M . The formula

Pro(x, y, z):x | 1 ∧
^

(δ,γ)∈I×I
ν(Qγx,Qδy,Qδ+γz)

defines the set P . Note that if z = xy, then Pro(x, y, x) is trivially satisfied
for (x, y, z) ∈ P , since Qγx is a unit. We now prove the converse. We choose
δi, for i ∈ {1, ...,M}, such that

δi ∈ {0, 1, 2, 3, 4} \ {− ordQiy, ordQix− ordQiz}.

Once δi has been chosen, we choose γi such that

γi ∈ {0, 1, 2, 3, 4}\{− ordQix, δi+ ordQiy− ordQix, δi+ ordQiz−2 ordQix}.

From γi 6= − ordQix we have Q
γx 6= ±1. In addition for each i, we have

• ordQiQ
δy = δi + ordQiy 6= 0,

• ordQiQ
δy − ordQiQ

γx = δi + ordQiy − γi − ordQix 6= 0 and

• ordQiQ
δ+γz − ordQiQ

2γx2 = δi + ordQiz − γi − 2 ordQix 6= 0,

as before we still have two degrees of freedom to make the order at infinity
differ so that we can arrange that Qγx, Qδy and Qδ+γz satisfy the hy-
pothesis of Lemma 3.4. Since we assumed that (x, y, z) holds, in particular
ν(Qγx,Qδy,Qδ+γz) holds, so we can conclude that z = xy. 2

Lemma 3.6. Given x1, . . . , xn ∈ S−1F[t] \ {0}, there exists a unit u 6= 1
so that each of x1, . . . , and xn divides u− 1.

Proof. Choose any irreducible polynomial P in S and consider

u = P lcm{ϕ(|N(xi)|):i=1,...,n}

where “lcm” stands for “least common multiple”. Since N(xi) divides

Pϕ(|N(xi)|) − 1,

in F[t] (by Euler’s theorem - note that N(xi) is prime with P by definition
of the norm), also it divides u− 1, hence

xi = N(xi)
Y

Q
ordQjxi
j
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divides u− 1 in FS. 2
Write I = {0, 1}M . Consider the formula ϕ(x, y)

∃u1∃u(u1 | 1∧u1 6= 1∧u 6= 1∧x+1 | u1−1∧y+1 | u1−1∧(u1−1)16 | u−1∧ϕ0(x, y))

where ϕ0(x, y) is defined as:^
γ∈I

x±Qγu | y −Q2γu2.

Lemma 3.7. Let x, y ∈ S−1F[t]. Assume that for all i ∈ {∞, 1, . . . ,M}
we have ordQix 6= 0, ordQiy 6= 0. If ϕ(x, y) holds in FS, then y = x2.

Proof. Write

x = f
MY
i=1

Qαi
i , y = g

MY
i=1

Qβi
i and u = κ

MY
i=1

Qδi
i

where f (and g) is a polynomial relatively prime with each Qi, and κ ∈ F∗.
From ordQix 6= 0 and ordQiy 6= 0 we have

N(x+ 1) = f
Y
αi>0

Qαi
i +

Y
αi<0

Q−αii

and
N(y + 1) = g

Y
βi>0

Qβi
i +

Y
βi<0

Q−βii .

Since x+ 1 divides u1 − 1, also N(x+ 1) divides N(u1 − 1) in F[t], hence
in particular, since u1 is not 1, we have

deg(N(x+ 1)) ≤ deg(N(u1 − 1)).

On the other hand, since x has non-zero order at infinity, the degree of
N(x+ 1) is equal to either

deg(f) +
X
αi>0

αi

or X
αi<0

(−αi),

so that we have
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deg(f) +
MX
i=1

|αi| ≤ 2 deg(N(u1 − 1))(3.2)

Analogously, we have

deg(g) +
MX
i=1

|βi| ≤ 2 deg(N(u1 − 1))(3.3)

From Equations (3.2) and (3.3) and because u is not 1 by hypothesis, we
have

2
³
2 deg(f) + 2

PM
i=1 |αi|+ deg(g) +

PM
i=1 |βi|

´
≤ 12 deg(N(u1 − 1))
< 16 deg(N(u1 − 1))
< deg(N(u− 1)),

hence

2 deg(f)+2
MX
i=1

|αi|+deg(g)+
MX
i=1

|βi| < deg(N(u−1))−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠ .

(3.4)
On other hand, we have

y − x2 = P

⎛⎝g Y
βi−2αi≥0

Qβi−2αi
i − f2

Y
βi−2αi<0

Q2αi−βii

⎞⎠ ,

where P is a product of powers of the polynomials Qi, hence

deg(N(y − x2)) ≤ deg( Q
βi−2αi≥0

Qβi−2αi
i − f2

Q
βi−2αi<0

Q2αi−βii )

≤ 2 deg(f) + 2
MP
i=1
|αi|+ deg(g) +

MP
i=1
|βi|,

so from the relation (3.4), we get

deg(N(y − x2)) < deg(N(u− 1))−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠ .(3.5)
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For the sake of contradiction, assume that y is not equal to x2. Since we
assume that ϕ(x, y) holds, in particular by choosing γi ∈ {0, 1} \ {αi − δi}
for each i, we have

x±
Y

Qγi
i u | y −

Y
Q2γii u2.

Since also

x±
Y

Qγi
i u | x2 −

Y
Q2γii u2,

by taking the difference, we obtain

x±
Y

Qγi
i u | y − x2,

therefore

deg
³
N(x±

Y
Qγi
i u)

´
≤ deg(N(y − x2)).(3.6)

We claim that either

deg(N(u− 1))−
MX
i=1

|αi| ≤ deg(N(x+
Y

Qγi
i u)),

or

deg(N(u− 1))−
MX
i=1

|αi| ≤ deg(N(x−
Y

Qγi
i u)),

hence by (3.5), either

deg(N(y − x2)) < deg(N(x+
Y

Qγi
i u))

or

deg(N(y − x2)) < deg(N(x−
Y

Qγi
i u))

which contradicts (3.6).

In order to prove the claim, note that

deg(N(u− 1)) ≤
MX
i=1

|δi|,

hence

deg(N(u− 1))−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠
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is less than or equal to

MX
i=1

|δi|−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠ .

On other hand, for some choice of the sign (and from our choice of
the γi) we have that deg(N(x ±

Q
Qγi
i u)) is equal to the maximum value

between

deg(f) +
X

αi≥γi+δi
(αi − (γi + δi))

and X
αi<γi+δi

(γi + δi − αi)

(indeed, only choice of sign may produce cancelation in x±QQγi
i u). Hence

it suffices to show that

MX
i=1

|δi|−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠ ≤ X
αi<γi+δi

(γi + δi − αi).

We have

MX
i=1

|δi|−

⎛⎝ MX
i=1

|αi|+
X
αi>δi

(αi − δi)

⎞⎠− X
αi<γi+δi

(γi + δi − αi)

≤
X
|δi − αi|−

X
αi>δi

(αi − δi)−
X

αi<γi+δi

(γi + δi − αi)

=
X
αi<δi

(δi − αi)−
X

αi<γi+δi

(γi + δi − αi)

≤
X
αi<δi

(δi − αi)−
X
αi<δi

(γi + δi − αi) ≤ 0.

2

Write J = {0, 1, 2}M and consider the following formula ψ(x, y):^
δ∈J

ϕ
³
Qδx,Q2δy

´
.

Proposition 3.8. If ψ(x, y) holds in FS , then y = x2.
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Proof. This is an immediate consequence of Lemma 3.7, noting that
there exists a choice of δ for which we have ordQiQ

δx 6= 0 and ordQiQ
2δy 6=

0 for each i (from the definition of J). 2
We can now conclude.

Lemma 3.9. The set

SQu = {(x, y):x, y are in S−1F[t] and y = x2}

is positive existentially definable in the structure FS .

Proof. We claim that the formula

Sq(x, y) : (x = 0 ∧ y = 0) ∨
_
δ∈J
(x = ±Q−δ ∧ y = Q−2δ) ∨ ψ(x, y),

defines the set SQu. Indeed, if the formula holds, then it is immediate from
Proposition 3.8 that y = x2.

Assume (x, y) ∈ SQu. Without loss of generality, we can assume x 6= 0
and, x 6= Q−δ and x 6= −Q−δ for all δ ∈ J . Thus, for each δ ∈ J ,
Q2δy ± 1 6= 0.

From Lemma 3.6, there is a unit u1 distinct from 1 such that Qδx± 1
divides u1 − 1 and Q2δy ± 1 divides u1 − 1. Because u1 − 1 is not zero we
deduce, from Lemma 3.6 again, that there is a unit u different from 1 such
that

(u1 − 1)16 | u− 1.

In addition, we have
^

(δ,γ)∈J×I
Qδx±Qγu | Q2δy −Q2γu2. Thus, the

formula ψ(x, y) is satisfied. 2
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